数列求通项公式的题型
- 格式:doc
- 大小:87.50 KB
- 文档页数:4
高考数学复习历年考点题型专题讲解38数列中的通项公式一、题型精讲 解题方法与技巧 题型一、由S a n n 与的关系求通项公式例1、(2020届山东省烟台市高三上期末)已知数列{}n a 的前n 项和n S 满足()()21n n S n a n N *=+∈,且12a =.求数列{}n a 的通项公式;【解析】因为2(1)n n S n a =+,n *∈N , 所以112(2)n n S n a ++=+,n *∈N ,两式相减得112(2)(1)n n n a n a n a ++=+-+, 整理得1(1)n n na n a +=+,即11n n a a n n +=+,n *∈N ,所以n a n ⎧⎫⎨⎬⎩⎭为常数列, 所以121n a a n ==,所以2n a n =例2、(2020届山东省枣庄、滕州市高三上期末)已知等比数列{}n a 满足1,a 2,a 31a a -成等差数列,且134a a a =;等差数列{}n b 的前n 项和2(1)log 2nn n a S +=.求:(1),n a n b ;【解析】设{}n a 的公比为q. 因为1,a 2,a 31a a -成等差数列, 所以()21312a a a a =+-,即232a a =.因为20a ≠,所以322a q a ==. 因为134a a a =,所以4132a a q a ===. 因此112n n n a a q-==.由题意,2(1)log 2n n n a S +=(1)2n n+=.所以111b S ==,1223b b S +==,从而22b =.所以{}n b 的公差21211d b b =-=-=.所以1(1)1(1)1n b b n d n n =+-=+-⋅=.例3、(2020届山东省德州市高三上期末)已知数列{}n a 的前n 项和为n S ,且0n a >,242n n n S a a =+.求数列{}n a 的通项公式;【解析】当1n =时,211142a a a =+,整理得2112a a =,10a >,解得12a =;当2n ≥时,242n n n S a a =+①,可得211142n n n S a a ---=+②,①-②得2211422n n n n n a a a a a --=-+-,即()()221120n n n n a a a a ----+=,化简得()()1120n n n n a a a a --+--=,因为0n a >,10n n a a -∴+>,所以12n n a a --=,从而{}n a 是以2为首项,公差为2的等差数列,所以()2212n a n n =+-=; 题型二、由a a n n 与1+的递推关系求通项公式例3、【2019年高考全国II 卷理数】已知数列{a n }和{b n }满足a 1=1,b 1=0,1434n n n a a b +-=+,1434n n n b b a +-=-.(1)证明:{a n +b n }是等比数列,{a n –b n }是等差数列; (2)求{a n }和{b n }的通项公式.【解析】(1)由题设得114()2()n n n n a b a b +++=+,即111()2n n n n a b a b +++=+. 又因为a 1+b 1=l ,所以{}n n a b +是首项为1,公比为12的等比数列. 由题设得114()4()8n n n n a b a b ++-=-+,即112n n n n a b a b ++-=-+.又因为a 1–b 1=l ,所以{}n n a b -是首项为1,公差为2的等差数列. (2)由(1)知,112n n n a b -+=,21nn a b n -=-. 所以111[()()]222n n n n n na ab a b n =++-=+-, 111[()()]222n n n n n n b a b a b n =+--=-+.例4、(2020届山东省德州市高三上期末)对于数列{}n a ,规定{}n a ∆为数列{}n a 的一阶差分数列,其中()*1n n n a a a n +∆=-∈N ,对自然数()2k k ≥,规定{}kn a ∆为数列{}n a 的k 阶差分数列,其中111k k k n n n a a a --+∆=∆-∆.若11a =,且()2*12n n n n a a a n +∆-∆+=-∈N ,则数列{}n a 的通项公式为()A .212n n a n -=⨯ B .12n n a n -=⨯C .()212n n a n -=+⨯D .()1212n n a n -=-⨯【答案】B【解析】根据题中定义可得()()2*1112n n n n n n n n a a a a a a n a +++∆-∆+=∆-∆-∆+=-∈N ,即()1122nn n n n n n n a a a a a a a ++-∆=--=-=-,即122nn n a a +=+,等式两边同时除以12n +,得111222n n n n a a ++=+,111222n n n n a a ++∴-=且1122a =, 所以,数列2n n a ⎧⎫⎨⎬⎩⎭是以12为首项,以12为公差的等差数列,()1112222n n a n n ∴=+-=, 因此,12n n a n -=⋅.故选:B.例5、【2019年高考天津卷理数】设{}n a 是等差数列,{}n b 是等比数列.已知1122334,622,24a b b a b a ===-=+,.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)设数列{}n c 满足111,22,2,1,,k k n kk c n c b n +=⎧<<=⎨=⎩其中*k ∈N . (i )求数列(){}221nna c -的通项公式;【解析】(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .依题意得2662,6124,q d q d =+⎧⎨=+⎩解得3,2,d q =⎧⎨=⎩故14(1)331,6232n n n n a n n b -=+-⨯=+=⨯=⨯. 所以,{}n a 的通项公式为{}31,n n a n b =+的通项公式为32n n b =⨯. (2)(i )()()()()22211321321941nnnn n n n a c a b -=-=⨯+⨯-=⨯-.所以,数列(){}221nna c -的通项公式为()221941nnn a c -=⨯-.题型三、新定义题型中通项公式的求法例6、【2020年高考江苏】已知数列{}()n a n ∈*N 的首项a 1=1,前n 项和为S n .设λ与k 是常数,若对一切正整数n ,均有11111kk k n nn S S a λ++-=成立,则称此数列为“λ~k ”数列.(1)若等差数列{}n a 是“λ~1”数列,求λ的值; (2)若数列{}n a”数列,且0n a >,求数列{}n a 的通项公式; 【解析】(1)因为等差数列{}n a 是“λ~1”数列,则11n n n S S a λ++-=,即11n n a a λ++=,也即1(1)0n a λ+-=,此式对一切正整数n 均成立.若1λ≠,则10n a +=恒成立,故320a a -=,而211a a -=-,这与{}n a 是等差数列矛盾.所以1λ=.(此时,任意首项为1的等差数列都是“1~1”数列)(2)因为数列*{}()n a n ∈N是“”数列,==.因为0n a >,所以10n n S S +>>1-=.n b,则1n b -=221(1)(1)(1)3n n n b b b -=->. 解得2n b =,即2=,也即14n nS S +=, 所以数列{}n S 是公比为4的等比数列.因为111S a ==,所以14n n S -=.则21(1),34(2).n n n a n -=⎧=⎨⨯≥⎩例7、【2019年高考北京卷理数】已知数列{a n },从中选取第i 1项、第i 2项、…、第i m 项(i 1<i 2<…<i m ),若12mi i i a a a <<⋅⋅⋅<,则称新数列12mi i i a a a ⋅⋅⋅,,,为{a n }的长度为m 的递增子列.规定:数列{a n }的任意一项都是{a n }的长度为1的递增子列.(1)写出数列1,8,3,7,5,6,9的一个长度为4的递增子列; (2)已知数列{a n }的长度为p 的递增子列的末项的最小值为0m a ,长度为q的递增子列的末项的最小值为0n a .若p <q ,求证:0m a <0n a ;(3)设无穷数列{a n }的各项均为正整数,且任意两项均不相等.若{a n }的长度为s 的递增子列末项的最小值为2s –1,且长度为s 末项为2s –1的递增子列恰有2s -1个(s =1,2,…),求数列{a n }的通项公式.【解析】(1)1,3,5,6.(答案不唯一)(2)设长度为q 末项为0n a 的一个递增子列为1210,,,,q r r r n a a a a -.由p <q ,得1pq r r n a a a -≤<.因为{}n a 的长度为p 的递增子列末项的最小值为0m a ,又12,,,pr r r a a a 是{}n a 的长度为p 的递增子列,所以0pm r a a ≤.所以0m n a a <·(3)由题设知,所有正奇数都是{}n a 中的项.先证明:若2m 是{}n a 中的项,则2m 必排在2m −1之前(m 为正整数).假设2m 排在2m −1之后.设121,,,,21m p p p a a a m --是数列{}n a 的长度为m 末项为2m −1的递增子列,则121,,,,21,2m p p p a a a m m --是数列{}n a 的长度为m +1末项为2m 的递增子列.与已知矛盾.再证明:所有正偶数都是{}n a 中的项.假设存在正偶数不是{}n a 中的项,设不在{}n a 中的最小的正偶数为2m . 因为2k 排在2k −1之前(k =1,2,…,m −1),所以2k 和21k -不可能在{}n a 的同一个递增子列中.又{}n a 中不超过2m +1的数为1,2,…,2m −2,2m −1,2m +1,所以{}n a 的长度为m +1且末项为2m +1的递增子列个数至多为1(1)22221122m m m --⨯⨯⨯⨯⨯⨯=<个.与已知矛盾.最后证明:2m 排在2m −3之后(m ≥2为整数).假设存在2m (m ≥2),使得2m 排在2m −3之前,则{}n a 的长度为m +1且末项为2m +l 的递增子列的个数小于2m .与已知矛盾.综上,数列{}n a 只可能为2,1,4,3,…,2m −3,2m ,2m −1,…. 经验证,数列2,1,4,3,…,2m −3,2m ,2m −1,…符合条件.所以1,1,n n n a n n +⎧=⎨-⎩为奇数,为偶数.二、达标训练1、(2020届浙江省温州市高三4月二模)已知数列{}n a 满足:12125 1,6n n n a a a a n -≤⎧=⎨-⎩()*n N ∈)若正整数()5k k ≥使得2221212k k a a a a a a ++⋯+=⋯成立,则k =()A .16B .17C .18D .19【答案】B【解析】当6n ≥时,()1211111n n n n n a a a a a a a +--==+-,即211n n n a a a +=-+,且631a =.故()()()222677687116......55n n n n a a a a a a a a a n a a n +++++=-+-++-+-=-+-,2221211...161k k k a a a a k a +++++=+-=+,故17k =.故选:B .2、(2020届山东省潍坊市高三上学期统考)设数列{}n a 的前n 项和为n S ,且21n S n n =-+,在正项等比数列{}n b 中22b a =,45b a =.求{}n a 和{}n b 的通项公式;【解析】当1n =时,111a S ==, 当2n ≥时,1n n n a S S -=- =22(1)[(1)(1)1]n n n n -+----+=22n -,所以1(1)22(2)n n a n n =⎧=⎨-≥⎩.所以22b =,48b =于是2424b q b ==,解得2q 或2q =-(舍)所以22n n b b q-=⋅=12n -.3、(2020届山东省日照市高三上期末联考)已知数列{}{},n n a b 满足:1112,,2n n n n a a n b a n b ++=+-==.(1)证明数列{}n b 是等比数列,并求数列{}n b 的通项; 【解析】证明:因为n n b a n -=,所以n n b a n =+.因为121n n a a n +=+- 所以()()112n n a n a n +++=+ 所以12n n b b +=.又12b =,所以{}n b 是首项为12b =,公比为2的等比数列,所以1222n n n b -=⨯=.4、(2020·山东省淄博实验中学高三上期末)已知数列{}n a 的各项均为正数,对任意*n ∈N ,它的前n 项和n S 满足()()1126n n n S a a =++,并且2a ,4a ,9a 成等比数列.求数列{}n a 的通项公式;【解析】对任意*n ∈N ,有()()1126n n n S a a =++,①∴当1a =时,有()()11111126S a a a ==++,解得11a =或2. 当2n ≥时,有()()1111126n n n S a a ---=++.② ①-②并整理得()()1130n n n n a a a a --+--=. 而数列{}n a 的各项均为正数,13n n a a -∴-=. 当11a =时,()13132n a n n =+-=-,此时2429a a a =成立;当12a =时,()23131n a n n =+-=-,此时2429a a a =,不成立,舍去.32n a n ∴=-,*n ∈N .5、(2020届山东师范大学附中高三月考)设等差数列{}n a 前n 项和为n S ,满足424S S =,917a =.(1)求数列{}n a 的通项公式;(2)设数列{}n b 满足1212112n n n b b b a a a +++=-…,求数列{}n b 的通项公式 【解析】(1)设等差数列{}n a 首项为1a ,公差为d .由已知得11914684817a d a d a a d +=+⎧⎨=+=⎩,解得112a d =⎧⎨=⎩.于是12(1)21n a n n =+-=-.(2)当1n =时,1111122b a =-=. 当2n ≥时,1111(1)(1)222n n n n nb a -=---=, 当1n =时上式也成立.于是12n n nb a =. 故12122n n n n n b a -==. 6、(2020·浙江温州中学3月高考模拟)已知各项均为正数的数列{}n a 的前n 项和为n S ,且11a =,n a =*n N ∈,且2n ≥)求数列{}n a 的通项公式;【解析】由n a =1n n S S --=+1(2)n =≥,所以数列1==为首项,以1为公差的等差数列,1(1)1n n =+-⨯=,即2n S n =,当2n ≥时,121n n n a S S n -=-=-,当1n =时,111a S ==,也满足上式,所以21n a n =-;7、【2019年高考浙江卷】设等差数列{}n a 的前n 项和为n S ,34a =,43a S =,数列{}n b 满足:对每个12,,,n n n n n n n S b S b S b *++∈+++N 成等比数列.(1)求数列{},{}n n a b 的通项公式;【解析】(1)设数列{}n a 的公差为d ,由题意得11124,333a d a d a d +=+=+,解得10,2a d ==. 从而*22,n a n n =-∈N . 所以2*n S n n n =-∈N ,,由12,,n n n n n n S b S b S b +++++成等比数列得()()()212n n n n n n S b S b S b +++=++.解得()2121n n n n b S S S d++=-. 所以2*,n b n n n =+∈N .8、【2019年高考江苏卷】定义首项为1且公比为正数的等比数列为“M-数列”.(1)已知等比数列{a n }()n *∈N 满足:245132,440a a a a a a =-+=,求证:数列{a n }为“M-数列”;(2)已知数列{b n }()n *∈N 满足:111221,n n n b S b b +==-,其中S n 为数列{b n }的前n项和.①求数列{b n }的通项公式;【解析】解:(1)设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由245321440a a a a a a =⎧⎨-+=⎩,得244112111440a q a q a q a q a ⎧=⎨-+=⎩,解得112a q =⎧⎨=⎩.因此数列{}n a 为“M—数列”.(2)①因为1122n n n S b b +=-,所以0n b ≠.由1111,b S b ==,得212211b =-,则22b =. 由1122n n n S b b +=-,得112()n n n n nb b S b b ++=-,当2n ≥时,由1n n n b S S -=-,得()()111122n n n nn n n n n b b b b b b b b b +-+-=---,整理得112n n n b b b +-+=.所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n ()*n ∈N .。
高中数学《数列》常见、常考题型总结题型一数列通项公式的求法1.前n 项和法(知n S 求n a )⎩⎨⎧-=-11n n n S S S a )2()1(≥=n n 例1、已知数列}{n a 的前n 项和212n n S n -=,求数列|}{|n a 的前n 项和n T 变式:已知数列}{n a 的前n 项和n n S n 122-=,求数列|}{|n a 的前n 项和n T 练习:1234.n S 52.(1(2例1.例2.例3.3.(11-n q .(2例1、在数列}{n a 中111,1-+==n n a n n a a )2(≥n ,求数列的通项公式。
答案:12+=n a n 练习:1、在数列}{n a 中1111,1-+-==n n a n n a a )2(≥n ,求n n S a 与。
答案:)1(2+=n n a n2、求数列)2(1232,111≥+-==-n a n n a a n n 的通项公式。
4.形如sra pa a n n n +=--11型(取倒数法)例1.已知数列{}n a 中,21=a ,)2(1211≥+=--n a a a n n n ,求通项公式n a练习:1、若数列}{n a 中,11=a ,131+=+n n n a a a ,求通项公式n a .答案:231-=n a n2、若数列}{n a 中,11=a ,112--=-n n n n a a a a ,求通项公式n a .答案:121-=n a n5.形如0(,1≠+=+c d ca a n n ,其中a a =1)型(构造新的等比数列)(1)若c=1时,数列{n a }为等差数列;(2)若d=0时,数列{n a }为等比数列;(3)若01≠≠且d c 时,数列{n a }为线性递推数列,其通项可通过待定系数法构造辅助数列来求. 方法如下:设,利用待定系数法求出A例126.(1)若例题.所以{=∴n b (2)若①若②若令n b 例1.在数列{}n a 中,521-=a ,且)(3211N n a a n n n ∈+-=--.求通项公式n a1、已知数列{}n a 中,211=a ,n n n a a 21(21+=-,求通项公式n a 。
关键是找出各项与项数n 的关系.) 例1:根据数列的前4项,写出它的一个通项公式: (1)9,99,999,9999,…(2) ,17164,1093,542,211(3) ,52,21,32,1(4) ,54,43,32,21-- 答案:(1)110-=nn a (2);122++=n n n a n (3);12+=n a n (4)1)1(1+⋅-=+n na n n .公式法1:特殊数列 例2: 已知数列{a n }是公差为d 的等差数列,数列{b n }是公比为q 的(q ∈R 且q ≠1)的等比数列,若函数f (x ) = (x -1)2,且a 1 = f (d -1),a 3 = f (d +1),b 1 = f (q +1),b 3 = f (q -1),(1)求数列{ a n }和{ b n }的通项公式;答案:a n =a 1+(n -1)d = 2(n -1); b n =b ·q n -1=4·(-2)n -1 例3. 等差数列{}n a 是递减数列,且432a a a ⋅⋅=48,432a a a ++=12,则数列的通项公式是( )(A) 122-=n a n (B)42+=n a n (C) 122+-=n a n (D) 102+-=n a n (D)例4. 已知等比数列{}n a 的首项11=a ,公比10<<q ,设数列{}n b 的通项为21+++=n n n a a b ,求数列{}n b 的通项 公式.简析:由题意,321++++=n n n a a b ,又{}n a 是等比数列,公比为q ∴q a a a a b b n n n n n n =++=+++++21321,故数列{}n b 是等比数列,易得)1()1(1+=⋅+=-q q q q q b nn n .点评:当数列为等差或等比数列时,可直接利用等差或等比数列的通项公式,只需求首项及公差公比.公式法2: 知n s 利用公式 ⎩⎨⎧≥-==-2,1,11n S S n s a n n n .例5:已知下列两数列}{n a 的前n 项和s n 的公式,求}{n a 的通项公式.(1)13-+=n n S n . (2)12-=n s n答案:(1)n a =3232+-n n ,(2)⎩⎨⎧≥-==)2(12)1(0n n n a n 点评:先分n=1和2≥n 两种情况,然后验证能否统一.【型如)(1n f a a n n +=+的地退关系递推关系】简析:已知a a =1,)(1n f a a n n =-+,其中f(n)可以是关于n 的一次、二次函数、指数函数、分式函数,求通项n a . ①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和; ② 若f(n)是关于n 的指数函数,累加后可转化为等比数列求和;③若f(n)是关于n 的二次函数,累加后可分组求和; ④若f(n)是关于n 的分式函数,累加后可裂项求和各式相加得例5:已知数列6,9,14,21,30,…求此数列的一个通项. .答案:)(52N n n a n ∈+=例6. 若在数列{}n a 中,31=a ,n n n a a 21+=+,求通项n a .答案:n a =12+n例7.已知数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式. 答案:na n 12-=(1)当f(n)为常数,即:q a a nn =+1(其中q 是不为0的常数),此时数列为等比数列,n a =11-⋅n q a . (2)当f(n)为n 的函数时,用累乘法.例8:在数列{n a }中,1a =1, (n+1)·1+n a =n ·n a ,求n a 的表达式. 例9: 已知数列{}n a 中,311=a ,前n 项和n S 与n a 的关系是 n n a n n S )12(-= ,试求通项公式n a . . 答案:.)12(12(1-+=n n a n 思考题1:已知1,111->-+=+a n na a n n ,求数列{a n }的通项公式.分析:原式化为 ),1(1+=+n a n a 若令1+=n n a b ,则问题进一步转化为n n nb b =+1形式,累积得解.构造1:【形如0(,1≠+=+c d ca a n n ,其中a a =1)型】 (1)若c=1时,数列{n a }为等差数列; (2)若d=0时,数列{n a }为等比数列;(3)若01≠≠且d c 时,数列{n a }为线性递推数列,其通项可通过待定系数法构造等比数列来求.方法如下:设)(1λλ+=++n n a c a ,得λ)1(1-+=+c ca a n n ,与题设,1d ca a n n +=+比较系数得)0(,1≠-=c c dλ,所以:)1(11-+=-+-c d a c c d a n n ,即⎭⎬⎫⎩⎨⎧-+1c d a n 构成以11-+c d a 为首项,以c 为公比的等比数列. 例10:已知数}{n a 的递推关系为121+=+n n a a ,且11=a 求通项n a . 答案:12-=nn a构造2:相邻项的差为特殊数列例11:在数列{}n a 中,11=a ,22=a ,n n n a a a 313212+=++,求n a .提示:变为)(31112n n n n a a a a --=-+++. 构造3:倒数为特殊数列【形如sra pa a n n n +=--11】例12: 已知数列{n a }中11=a 且11+=+n n n a a a (N n ∈),,求数列的通项公式. 答案 nb a n n 11==例13:设数列}{n c 的各项是一个等差数列与一个等比数列对应项的和,若c 1=2,c 2=4,c 3=7,c 4=12,求通项公式c n解析:设1)1(-+-+=n n bqd n a c 建立方程组,解得.点评:用待定系数法解题时,常先假定通项公式或前n 项和公式为某一多项式,一般地,若数列}{n a 为等差数列:则c bn a n +=,cn bn s n +=2(b 、c为常数),若数列}{n a 为等比数列,则1-=n n Aq a ,)1,0(≠≠-=q Aq A Aq s n n .例14:(1)数列{n a }满足01=a ,且)1(2121-=++++-n a a a a n n ,求数列{a n }的通项公式.解析:由题得 )1(2121-=++++-n a a a a n n ① 2≥n 时, )2(2121-=+++-n a a a n ② 由①、②得⎩⎨⎧≥==2,21,0n n a n .(2)数列{n a }满足11=a ,且2121n a a a a n n =⋅⋅- ,求数列{a n }的通项公式(3)已知数列}{n a 中,,2121,211+==+n n a a a 求通项n a . 八、【讨论法-了解】(1)若d a a n n =++1(d 为常数),则数列{n a }为“等和数列”,它是一个周期数列,周期为 其通项分为奇数项和偶数项来讨论. (2)形如)(1n f a a n n =⋅+型①若p a a n n =⋅+1(p 为常数),则数列{n a }为“等 积数列”,它是一个周期数列,周期为2,其通项分奇数项和偶数项来讨论;②若f(n)为n 的函数(非常数)时,可 通过逐差法得)1(1-=⋅-n f a a n n ,两式相除后,分奇偶项来分求通项. 例15: 数列{n a }满足01=a ,21=++n n a a ,求数列{a n }的通项公式.专题二:数列求和方法详解(六种方法)1、等差数列求和公式:d n n na a a n a a n a a n S n n n n 2)1(2)(2)(2)(123121-+==+=+=+=-- 2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn[例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 答案xx x s n n --=1)1([例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n n S n S n f 的最大值. 答案n =8时,501)(max =n f方法简介:此法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①(1≠x )解析:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积:设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=…②①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:nn n x n xx x S x )12(1121)1(1----⋅+=--.∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+. 试一试1:求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n 前n 项的和. 答案: 1224-+-=n n n S方法简介:这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +,然后再除以2得解.[例4] 求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值 . 答案S =44.5 方法简介:有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.一般分两步:①找通向项公式②由通项公式确定如何分组;[例5] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 答案 2)13(11n n a a a s n n -+--=-.试一试1 求11111111111个n ⋅⋅⋅+⋅⋅⋅+++之和 .简析:由于与n k k k a =-=⋅⋅⋅⨯=⋅⋅⋅)110(91999991111111个个、分别求和. 方法简介:这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项及分母有理化)如:(1))()1(n f n f a n -+= ; (2)11++=n n a n =n n -+1;(3)n n n n tan )1tan()1cos(cos 1sin -+=+;4)111)1(1+-=+=n n n n a n(5))121121(211)12)(12()2(2+--+=+-=n n n n n a n . [例6] 求数列⋅⋅⋅++⋅⋅⋅++,21,,421,311n n 的前n 项和.[例7] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. 试一试1:已知数列{a n }:)3)(1(8++=n n a n ,求前n 项和. 试一试2:1003211321121111+++++++++++ ..方法简介:针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .[例8] 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值. 答案 0 [例9] 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.(周期数列)[例10] 在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值; 答案 10。
数列求通项公式的方法(八种方法)(一)由数列的前几项求数列的通项公式(观察法)1.(1)数列-11×2,12×3,-13×4,14×5,…的一个通项公式a n=________.(2)数列{a n}的前4项是32,1,710,917,则这个数列的一个通项公式a n=________.解析:(1)这个数列前4项的绝对值都等于序号与序号加1的积的倒数,且奇数项为负,偶数项为正,所以它的一个通项公式为a n=(-1)n1n(n+1).(2)数列{a n}的前4项可变形为2×1+112+1,2×2+122+1,2×3+132+1,2×4+142+1,故a n=2n+1n2+1.答案:(1)(-1)n1n(n+1)(2)2n+1n2+1由数列的前几项求数列通项公式的策略根据所给数列的前几项求其通项公式时,需仔细观察分析,抓住以下几方面的特征,并对此进行归纳、联想,具体如下:(1)分式中分子、分母的特征;(2)相邻项的变化特征;(3)拆项后的特征;(4)各项符号特征等.(二)由a n与S n的关系求通项a n(公式法)2.(2017·东营模拟)设数列{a n}的前n项和为S n,数列{S n}的前n项和为T n,满足T n=2S n-n2,n∈N*.(1)求a1的值;(2)求数列{a n}的通项公式.解析:(1)令n=1时,T1=2S1-1,∵T1=S1=a1,∴a1=2a1-1,∴a1=1.(2)n≥2时,T n-1=2S n-1-(n-1)2,则S n=T n-T n-1=2S n-n2-[2S n-1-(n-1)2]=2(S n-S n-1)-2n+1=2a n-2n+1.因为当n=1时a1=S1=1也满足上式,所以S n=2a n-2n+1(n≥1),当n≥2时,S n-1=2a n-1-2(n-1)+1,两式相减得a n=2a n-2a n-1-2,所以a n=2a n-1+2(n≥2),所以a n+2=2(a n-1+2),因为a1+2=3≠0,所以数列{a n+2}是以3为首项,公比为2的等比数列.所以a n+2=3×2n-1,∴a n=3×2n-1-2,当n=1时也成立,所以a n=3×2n-1-2.1.规律方法已知S n求a n的3个步骤(1)先利用a1=S1求出a1;(2)用n-1替换S n中的n得到一个新的关系,利用a n=S n-S n-1(n≥2)便可求出当n≥2时a n的表达式;(3)对n=1时的结果进行检验,看是否符合n≥2时a n的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n=1与n≥2两段来写.(三)由递推关系求数列的通项公式递推公式和通项公式是数列的两种表示方法,它们都可以确定数列中的任意一项,只是由递推公式确定数列中的项时,不如通项公式直接.归纳起来常见的探究角度有:(1)形如a n +1=a n f (n ),求a n . (累乘法) (2)形如a n +1=a n +f (n ),求a n . (累加法)(3)形如a n +1=Aa n +B (A ≠0且A ≠1),求a n . (构造法一)(4)形如a n +1=Aa nBa n +C (A ,B ,C 为常数),求a n . (取倒数法,构造二)命题点1 形如a n +1=a n f (n ),求a n3.在数列{a n }中,a 1=1,a n =n -1n a n -1(n ≥2),求数列{a n }的通项公式. 解析:因为a n =n -1n a n -1(n ≥2), 所以a n -1=n -2n -1a n -2,…,a 2=12a 1.由累乘法可得a n =a 1·12·23·…·n -1n =a 1n =1n (n ≥2).又a 1=1符合上式,∴a n =1n .命题点2 形如a n +1-a n =f (n ),求a n4.在数列{a n }中,a 1=2,a n +1=a n +3n +2,求数列{a n }的通项公式. 解析:因为a n +1-a n =3n +2,所以a n -a n -1=3n -1(n ≥2),所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=n (3n +1)2(n ≥2).当n =1时,a 1=2=12×(3×1+1),符合上式,所以a n =32n 2+n 2. 命题点3 形如a n +1=Aa n +B (A ≠0且A ≠1)求a n5.在数列{a n }中a 1=1,a n +1=3a n +2,求数列{a n }的通项公式.解析:因为a n +1=3a n +2,所以a n +1+1=3(a n +1),所以a n +1+1a n +1=3,所以数列{a n +1}为等比数列,公比q =3.又a 1+1=2,所以a n +1=2·3n -1,所以a n =2·3n-1-1.1111()n n n n n n n n a pa qa a xa pa q x px q x a x p a x ++++=+===+⇒=+⇒-=-数列第一类型解释:代换 代入 原式命题点4 形如a n +1=Aa nBa n +C(A ,B ,C 为常数),求a n6.已知数列{a n }中,a 1=1,a n +1=2a na n +2,求数列{a n }的通项公式.解析:∵a n +1=2a na n +2,a 1=1,∴a n ≠0,∴1a n +1=1a n +12,即1a n +1-1a n =12,又a 1=1,则1a 1=1,∴⎩⎨⎧⎭⎬⎫1a n 是以1为首项,12为公差的等差数列.∴1a n =1a 1+(n -1)×12=n 2+12, ∴a n =2n +1(n ∈N *).课堂练习 a n 与S n 的关系求通项a n (公式法)1.已知数列{}n a 的前n 项和为23nn S =-,则n a = .2.已知n S 是数列{}n a 的前n 项和,且11=a ,12n n na S +=.则n a = .3.数列{}n a 满足112n n S a =-,则n a = . 4.若数列{a n }的前n 项和为S n ,且满足S n =32a n -3,则数列{a n }的前n 项和S n 等于5.各项为正数的数列{}n a 满足2421n n n a S a =--(*n ∈N ),其中n S 为{}n a 前n 项和.(1)求1a ,2a 的值; (2)求数列{}n a 的通项公式6.已知2a 、5a 是方程027122=+-x x 的两根,数列{}n a 是递增的等差数列,数列{}n b 的前n 项和为n S ,且n n b S 211-=(*∈N n ).求数列{}n a ,{}n b 的通项公式; 7.已知数列{}n a 的前n 项和为S n ,且312n n S a =-*()n ∈N .(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)在数列{}n b 中,15b =,1n n n b b a +=+,求数列{}n b 的通项公式.8.数列{}n a 的前n 项和为n S ,若12a =且12n n S S n -=+(2n ≥,*n ∈N ).( I )求n S ; ( II ) 是否存在等比数列{}n b 满足112339, b a b a b a ===,?若存在,则求出数列{}n b 的通项公式;若不存在,则说明理由.9、已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式. (累加法)10、已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
数列求通项经典题型
数列求通项公式的经典题型有:
1. 已知数列的前 n 项和为 S_n,求数列的通项公式。
2. 已知数列的前 n 项和 S_n 和数列的第 n 项 a_n 的关系,求数列的通项公式。
3. 已知数列的前 n 项和 S_n 和数列的递推关系式,求数列的通项公式。
4. 已知数列的递推关系式,求数列的通项公式。
5. 已知数列的递推关系式和数列的前 n 项和 S_n,求数列的通项公式。
6. 已知数列的递推关系式和数列的第n 项a_n 的性质,求数列的通项公式。
7. 已知数列的递推关系式和数列的前 n 项和 S_n 的性质,求数列的通项公式。
8. 已知数列的第 n 项 a_n 和其前 n 项和 S_n 的关系,求数列的通项公式。
9. 已知数列的第 n 项 a_n 和其前 n 项和 S_n 的关系以及数列的一些性质,求数列的通项公式。
10. 已知数列的第 n 项 a_n 和其前 n 项和 S_n 的关系以及数列的一些性质,求数列的通项公式。
专题19 常见数列通项公式的求解一,题型选讲 题型一, 公式法若已知一个数列是等差数列或者等比数列则直接运用通项公式求,即可.例1,已知{}n a 是各项均为正数的等差数列,其前n 项和为n S ,且2344026a a S ⋅==,. 则数列{}n a 的通项公式 ; 【答案】31n a n =-.【解析】 因为数列{}n a 是正项等差数列,设首项为1a ,公差为(0)d d >,所以111()(2)40,4(41)426,20.a d a d d a d ++=⎧⎪-⎪+=⎨⎪>⎪⎩ 解得123a d =⎧⎨=⎩,所以31n a n =-.题型二,之间的关系与s a nn用a n =⎩⎪⎨⎪⎧a 1,n =1,S n -S n -1,n ≥2,将递推关系转化为仅含有a n 的关系式(如果转化为a n 不能解决问题,则考虑转化为仅含有S n 的关系式,特别注意当n≥2时,S n -S n -1=a n ,.例2,(2018苏锡常镇调研)已知S n 是数列{a n }的前n 项和,a 1=3,且2S n =a n +1-3(n ∈N *). (1) 求数列{a n }的通项公式;规范解答 (1) 2S n =a n +1-3,2S n -1=a n -3(n≥2),两式相减,得2a n =a n +1-a n .即当n≥2时,a n +1=3a n .(2分) 由a 1=S 1=3,得6=a 2-3,即a 2=9,满足a 2=3a 1. 所以对n ∈N *,都有a n +1=3a n ,即a n +1a n=3.所以数列{a n }是首项为3,公比为3的等比数列,通项公式a n =3n .(4分)题型二,累加法若已知连续两项差的形式,形如a n -a n -1=f (n )(n ∈N*且n ≥2).则运用累加法进行求数列的通项.即:n ≥2时,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1.例3,(2019南京学情调研)在数列{a n }中,已知a 1=1,a n +1=a n +1n (n +1)(n ∈N *),则a 10的值为________.【答案】1910【解析】 由a n +1=a n +1n (n +1)得a n +1-a n =1n -1n +1,故a 2-a 1=1-12,a 3-a 2=12-13,a 4-a 3=13-14,…,a 10-a 9=19-110,所以a 10=1910.例4, 已知数列{}n a 满足11a =,21a =-,当3n ≥,n N *∈时,1312(1)(2)n n a a n n n n --=----. (1)求数列{}n a 的通项公式; 【解析】 ∵当3n ≥,n N *∈时,13113()12(1)(2)21n n a a n n n n n n --==-------, ∴3213(1)212a a -=-,34113()3223a a -=-,…,1113()1221n n a a n n n n --=-----. 把上面1n -个等式左右两边分别相加,得1213(1)11n a a n n --=---,整理,得25n a n =-. 当2n =时,满足.∴ 2.1,1,25,n n a n n =⎧=⎨-⎩≥题型三,叠乘法若已知连续两项的商的形式,形如a na n -1=f (n )(n ∈N*且n ≥2),则运用叠乘法进行求数列的通项.即 :n ≥2时,a n=a n a n -1·a n -1a n -2·…·a 2a 1·a 1.例5,(2018徐州期末)已知数列{a n }中,a 1=1,a n =2n a n -1(n ∈N *且n ≥2),则a n = . 【答案】a n =2(n -1)(n +2)2.解析由题意,a na n -1=2n ,a n -1a n -2=2n -1, …, a 2a 1=22, 叠乘得a n a 1=2n ·2n -1·…·22=2(n -1)(n +2)2, 所以a n =2(n -1)(n +2)2(n ≥2),a 1=1也符合. 所以a n =2(n -1)(n +2)2.题型四,构造法若一个数列既不是等差数列页不是等比数列,则考虑次数列加减一个实数或者变量,或者进行其它变形的处理得当一个特殊数列.形如a n =pa n -1+q (n ∈N*且n ≥2,p ≠1) 化为a n +q p -1=p (a n -1+qp -1)形式.令b n =a n+qp -1,即得b n =pb n -1,转化成{b n }为等比数列,从而求数列{a n }的通项公式. 例6,设数列{}n a 的前n 项和为n S .已知11a =,2121233n n S a n n n +=---,*n N ∈.求数列{}n a 的通项公式. 【解析】2121233n n S a n n n +=---,*n N ∈. ∴ 321112(1)(2)2333n n n n n n S na n n n na ++++=---=- . ①∴当2n ≥时,1(1)(1)2(1)3n n n n n S n a =-+=--. ②由①—②,得 1122(1)(1)n n n n S S na n a n n -+-=---+.1222n n n a S S -=-,12(1)(1)n n n a na n a n n +∴=---+.111n n a a n n +∴-=+,∴数列n a n ⎧⎫⎨⎬⎩⎭是以首项为111a =,公差为1的等差数列.()()21112nn a n n a n n n,∴=+⨯-=∴=≥ . 当1n =时,上式显然成立. 2*,n a n n N ∴=∈. 例7,已知数列{a n }中,a 1=1,且a n +1+3a n +4=0,n ∈N *. (1) 求证:{a n +1}是等比数列,并求数列{a n }的通项公式;(2) 数列{a n }中是否存在不同的三项按照一定顺序重新排列后,构成等差数列?若存在,求满足条件的项;若不存在,说明理由.规范解答 (1) 由a n +1+3a n +4=0得a n +1+1=-3(a n +1),n ∈N *.(2分) 其中a 1=1,所以a 1+1=2≠0,可得a n +1≠0,n ∈N *.(4分)所以a n +1+1a n +1=-3,n ∈N *,所以{a n +1}是以2为首项,-3为公比的等比数列.(6分)所以a n +1=2(-3)n -1,即a n =2(-3)n -1-1,则数列{a n }的通项公式为a n =2(-3)n -1-1,n ∈N *.(8分) (2)若数列{a n }中存在三项a m ,a n ,a k (m <n <k )符合题意,其中k -n ,k -m ,n -m 都是正整数.(9分) 分以下三种情形:①a m 位于中间,则2a m =a n +a k ,即2=2(-3)n -1-1+2(-3)k -1-1, 所以2(-3)m =(-3)n +(-3)k ,两边同时除以(-3)m 得2=(-3)n -m +(-3)k -m,等式右边是3的倍数,等式不成立,舍去;②a n 位于中间,则2a n =a m +a k ,即2=2(-3)m -1-1+2(-3)k -1-1,所以2(-3)n =(-3)m +(-3)k ,两边同时除以(-3)m 得2(-3)n -m =1+(-3)k -m,即1=2(-3)n -m -(-3)k-m,等式右边是3的倍数,等式不成立,舍去;③a k 位于中间,则2a k =a m +a n ,即2=2(-3)m -1-1+2(-3)n -1-1, 所以2(-3)k =(-3)m +(-3)n ,两边同时除以(-3)m ,得2(-3)k -m=1+(-3)n -m ,即1=2(-3)k-m-(-3)n -m ,等式右边是3的倍数,等式不成立,舍去.(15分)综上可得,数列{a n }中不存在三项满足题意.(16分)题型五,总体代入形如a 1+2a 2+…+na n =f (n )或a 1a 2…a n =f (n ) 列出⎩⎨⎧a 1+2a 2+…+na n =f (n )a 1+2a 2+…+(n -1)a n -1=f (n -1)(n ∈N *且n ≥2),两式作差得a n =f (n )-f (n -1)n(n ∈N *且n ≥2),或者列出⎩⎨⎧a 1a 2…a n =f (n )a 1a 2…a n -1=f (n -1)(n ∈N *且n ≥2),两式作商得a n =f (n )f (n -1) (n ∈N *且n ≥2),例8,(2019镇江期末)设数列{a n }是各项均为正数的等比数列,a 1=2,a 2a 4=64.数列{b n }满足:对任意的正整数n,都有a 1b 1+a 2b 2+…+a n b n =(n -1)·2n +1+2. (1) 分别求数列{a n }与{b n }的通项公式.. 规范解答 (1)设等比数列{a n }的公比为q(q>0),因为a 1=2,a 2a 4=a 1q·a 1q 3=64,解得q =2,则a n =2n .(1分) 当n =1时,a 1b 1=2,则b 1=1;(2分)当n≥2时,a 1b 1+a 2b 2+…+a n b n =(n -1)·2n +1+2 ①, a 1b 1+a 2b 2+…+a n -1b n -1=(n -2)·2n +2 ②, ①-②得a n b n =n·2n ,则b n =n. 综上,b n =n.(4分)题型六,通项公式中奇偶性的讨论形如a n +a n +1=f (n )或a n a n +1=f (n )形式列出⎩⎨⎧a n +a n +1=f (n )a n +1+a n +2=f (n +1),两式作差得a n +2-a n =f (n +1)-f (n ),即找到隔项间的关系.例9, 已知正项数列{}n a 的前n 项和为n S ,且11(1)(1)6()n n n a a a a S n ,+=++=+,*∈N n . (1)求数列{}n a 的通项公式;(2)若对于n *∀∈N ,都有(31)n S n n +≤成立,求实数a 取值范围. 解 (1)当1n时,121(1)(1)6(1)a a S ,故25a ;当2n ≥时,11(1)(1)6(1)n nn a a S n ,所以+111(1)(+1(1)(1)6()6(1)n n nnnna a a a S n S n ),即11(1)()6(1)n nn na a a a ,又0na ,所以116nna a , 所以216(1)66k a a k ka,25+6(1)61ka k k ,*kN ,故**33, ,,31, ,.nn a n n a n n n N N 为奇数为偶数二,达标训练1,(2018盐城三模)设数列{}n a 的前n 项和为n S ,若*2()n n S a n n N =+∈,则数列{}n a 的通项公式为n a =▲ .【答案】:12n-【解析】:因为2n n S a n=+,当1n =时,11121a S a ==+,即11a =-;当2n ≥时,()()111221221n n n n n n n a S S a n a n a a ---=-=+-+-=-+⎡⎤⎣⎦ ,即121n n a a -=- ,所以()1121n n a a --=- ,即1121n n a a --=- ,所以数列{}1n a -为首项112a -=- ,公比2q =的等比数列,所以1122n n a --=-⨯,即12n n a =-.2,(2019无锡期末)设等比数列{a n }的公比为q(q>0,q≠1),前n 项和为Sn,且2a 1a 3=a 4,数列{b n }的前n 项和Tn 满足2Tn =n(bn -1),n ∈N *,b 2= 1.(1) 求数列 {a n },{b n }的通项公式; 解:(1) 因为2a 1a 3=a 4,所以2a 1·a 1q 2=a 1q 3, 所以a 1=q 2,所以a n =q 2q n -1=12q n .(2分)因为2T n =n (b n -1),n ∈N * ① 所以2T n +1=(n +1)(b n +1-1),n ∈N ②②-①,得2T n +1-2T n =(n +1)b n +1-nb n -(n +1)+n ,n ∈N *. 所以2b n +1=(n +1)b n +1-nb n -(n +1)+n . 所以(n -1)b n +1=nb n +1,n ∈N *, ③(4分) 所以nb n +2=(n +1)b n +1+1,n ∈N , ④④-③得nb n +2-(n -1)b n +1=(n +1)b n +1-nb n ,n ∈N * 所以nb n +2+nb n =2nb n +1,n ∈N *,所以b n +2+b n =2b n +1, 所以b n +2-b n +1=b n +1-b n ,所以{b n }为等差数列. 因为n =1时b 1=-1,又b 2=1. 所以公差为2,所以b n =2n -3.(6分)3,(2018南京学情调研)已知数列{a n }的各项均为正数,记数列{a n }的前n 项和为S n ,数列{a 2n}的前n 项和为T n ,且3T n =S 2n +2S n,n ∈N *. (1) 求a 1的值;(2) 求数列{a n }的通项公式;规范解答 (1) 由3T 1=S 21+2S 1,得3a 21=a 21+2a 1,即a 21-a 1=0.因为a 1>0,所以a 1=1.(2分)(2) 因为3T n =S 2n +2S n , ① 所以3T n +1=S 2n +1+2S n +1, ②②-①,得3a 2n +1=S 2n +1-S 2n +2a n +1,即3a 2n +1=(S n +1+S n )(S n +1-S n )+2a n +1,即3a 2n +1=(S n +1+S n )a n +1+2a n +1,因为a n +1>0,所以3a n +1=S n +1+S n +2, ③(5分) 所以3a n +2=S n +2+S n +1+2, ④④-③,得3a n +2-3a n +1=a n +2+a n +1,即a n +2=2a n +1, 所以当n≥2时,a n +1a n=2.(8分)又由3T 2=S 22+2S 2,得3(1+a 22)=(1+a 2)2+2(1+a 2),即a 22-2a 2=0.因为a 2>0,所以a 2=2,所以a 2a 1=2,所以对n ∈N *,都有a n +1a n=2成立,所以数列{a n }的通项公式为a n =2n -1,n ∈N *.(10分)4,(2018扬州期末)已知各项都是正数的数列{a n }的前n 项和为S n ,且2S n =a 2n +a n ,数列{b n }满足b 1=12,2b n +1=b n +b na n.(1) 求数列{a n },{b n }的通项公式; 规范解答 (1) 2S n =a 2n +a n ①,2S n +1=a 2n +1+a n +1 ②,②-①得2a n +1=a 2n +1-a 2n +a n +1-a n ,即(a n +1+a n )(a n +1-a n -1)=0.因为{a n }是正数数列,所以a n +1-a n -1=0,即a n +1-a n =1,所以{a n }是等差数列,其中公差为1. 在2S n =a 2n +a n 中,令n =1,得a 1=1, 所以a n =n.(2分)由2b n +1=b n +b n a n 得b n +1n +1=12·b n n,所以数列⎩⎨⎧⎭⎬⎫b n n 是等比数列,其中首项为12,公比为12,所以b n n =⎝⎛⎭⎫12n ,即b n =n2n .(5分)5,(2018苏锡常镇调研)已知S n 是数列{a n }的前n 项和,a 1=3,且2S n =a n +1-3(n ∈N *). (1) 求数列{a n }的通项公式;规范解答 (1) 2S n =a n +1-3,2S n -1=a n -3(n≥2),两式相减,得2a n =a n +1-a n .即当n≥2时,a n +1=3a n .(2分) 由a 1=S 1=3,得6=a 2-3,即a 2=9,满足a 2=3a 1. 所以对n ∈N *,都有a n +1=3a n ,即a n +1a n=3.所以数列{a n }是首项为3,公比为3的等比数列,通项公式a n =3n .(4分)6, 已知各项均为正数的数列{}n a 的首项11a = ,n S 是数列{}n a 的前n 项和,且满足111112n n n n n n n n a S a S a a a a ++++-+-= (n ∈N *).(1)求证:1n n S a ⎧⎫+⎨⎬⎩⎭是等差数列;(2)求数列{}n a 的通项n a .解 (1)因为111112n n n n n n n n a S a S a a a a ++++-+-=,所以1111112n n n n n n S S a a a a +++-+-=, 即111112n n n n S S a a ++++-=, 所以数列1n n S a ⎧⎫+⎨⎬⎩⎭是以2为首项,12为公差的等差数列.(2)由(1)可知112(1)2n n S n a +=+-⋅,即,31()22n n n S a +=+ . ① 当n ≥2时, 111(1)2n n nS a --+=+. ②①-②得,13222n n n n n a a a -++=-. 即1(1)(2)n n n a n a -+=+,所以121n n a an n -=++ (n ≥2),所以2n a n ⎧⎫⎨⎬+⎩⎭是常数列,且为13,所以1(2)3n a n =+.。
高中数学-数列求通项公式方法汇总及经典练习(含答案)1、定义法:直接求首项和公差或公比。
2、公式法:1 (1) (2)n n nn S n a S S n -=⎧=⎨-≥⎩两种用途(列举),结果要验证能否写成统一的式子.例、数列{}n a 的各项都为正数,且满足()()2*14nna S n N +=∈,求数列的通项公式.解一:由()()2*14nna S n N +=∈得()()()221114411n n n n n aS S a a +++=-=---化简得()()1120n n n n a a a a +++--=,因为10,2n n n a a a +>∴-=,又()2111441S a a ==-得11a =,故{}n a 是以1为首项,2为公差的等差数列,所以21n a n =-.解二:由()()2*14nn a S n N +=∈,可得()11,12n n n a S S n -=-∴=--≥化简可得)211n S -=,即1=,又11S =,所以数列是首项为1,公差为1的等差数列,∴n =,从而2n S n =,所以121n n n a S S n -=-=-,又11a =也适合,故21n a n =-.练习:已知数列{a n }的前n 项和S n 满足120n n n a S S -+=(2n ≥),a 1=21,求n a . 答案:a n =⎪⎪⎩⎪⎪⎨⎧≥--=)2()1(21)1(21n n n n .扩展一:作差法例、在数列}{n a 中,11a =,212323(1)n a a a na n n ++++=-+,求n a .解:由212323(1)n a a a na n n ++++=-+,得2123123(1)(2)1n a a a n a n n -++++-=-+-,两式相减,得66n na n =-+,∴ 1 (=1)66 (2)n n a n n n⎧⎪=-⎨≥⎪⎩.练习(理):已知数列{}n a 满足11231123(1)(2)n n a a a a a n a n -==++++-≥,,求n a .解:由123123(1)(2)n n a a a a n a n -=++++-≥,得1123123(1)n n n a a a a n a na +-=++++-+,两式相减,得1n n n a a na +-=,即11(2)n na n n a +=+≥,所以13222122![(1)43]2n n n n n a a a n a a n n a a a a a ---=⋅⋅⋅⋅=-⋅⋅⨯=又由已知,得2122a a a =+,则211a a ==,代入上式,得!13452n n a n =⋅⋅⋅⋅⋅=, 所以,{}n a 的通项公式为 1 (1)! (2)2n n a n n =⎧⎪=⎨≥⎪⎩.扩展二、作商法例、在数列}{n a 中,11a =,对所有的2n ≥,都有2123n a a a a n ••••=,求n a .解:∵2123n a a a a n ••••=,∴21232(1)n a a a a n -••••=-,故当2n ≥时,两式相除,得22(1)n n a n =-, ∴221 (=1) (2)(1)n n a n n n ⎧⎪=⎨≥⎪-⎩.3、 叠加法:对于型如)(1n f a a n n =-+类的通项公式.例、在数列{n a }中,31=a ,)1(11++=+n n a a n n ,求通项公式n a .答案:na n 14-=. 例、已知数列{}n a 满足112231n n n n a a ++=++-(*n N ∈),352a =,求通项n a .解:由112231n nn n aa ++=++-,两边同除以12n +,得()111131112222n n n n n n n a a n ++++-=-+≥,列出相加得121212121332323212212121-+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=---n a a n n n n又由已知求得16a =,∴()*231n n n n N a n ∈=•++.练习:已知数列}a {n 满足3a 132a a 1nn 1n =+⋅+=+,,求数列}a {n 的通项公式.答案:1n 32n 31332a n nn -+=++--⋅=.4、叠乘法:一般地,对于型如1+n a =f (n)·n a 的类型例(理)、已知数列{}n a 满足112(1)53nn n a n a a +=+⨯=,,求数列{}n a 的通项公式.解:因为112(1)53nn n a n a a +=+⨯=,,所以0n a ≠,则12(1)5n n na n a +=+,故13211221n n n n n a a a a a a a a a a ---=⋅⋅⋅⋅⋅121[2(11)5][2(21)5][2(11)5]3n n n n --=-+-++⨯⨯(1)1(1)(2)21122[(1)32]53325!n n n n n n n n n ---+-+++-=-⋅⋅⨯⨯⨯=⨯⨯⨯,所以数列{}n a 的通项公式为(1)12325!n n n n a n --=⨯⨯⨯.练习:在数列{a n }中,112a =,11(1n n n a a a n --=⋅+≥2),求n a . 答案:)1(1+=n n a n . 5、构造法:型如a n+1=pa n +f(n) (p 为常数且p ≠0, p ≠1)的数列(1)f(n)= q (q 为常数) 一般地,递推关系式a +1=pa n +q (p 、q 为常数,且p ≠0,p ≠1)等价与)1(11pqa p p q a n n --=--+,则{p q a n --1}为等比数列,从而可求n a .例、已知数列{}n a 满足112a =,132n n a a --=(2n ≥),求通项n a . 解:由132n n a a --=,得111(1)2n n a a --=--,又11210a -=≠,所以数列{1}n a -是首项为12,公比为12-的等比数列,∴11111(1)()1()22n nn a a -=---=+-. 练习:已知数列}{n a 的递推关系为121+=+n n a a ,且11=a ,求通项n a . 答案:12-=n na .(2) f(n)为等比数列,如f(n)= q n (q 为常数) ,两边同除以q n ,得111+=++nn n n qa p q a q ,令nn n a b q =,则可转化为b n+1=pb n +q 的形式求解.例、已知数列{a n }中,a 1=65,1111()32n n n a a ++=+,求通项n a . 解:由条件,得2 n+1a n+1=32(2 n a n )+1,令b n =2 n a n ,则b n+1=32b n +1,b n+1-3=32(b n -3) 易得 b n =3)32(341+--n ,即2 n a n =3)32(341+--n , ∴ a n =n n 2332+-. 练习、已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求通项n a .答案:31()222nn a n =-.(3) f(n)为等差数列,如1n n a Aa Bn C +=++型递推式,可构造等比数列.(选学,注重记忆方法)例、已知数列{}n a 满足11=a ,11212n n a a n -=+-(2n ≥),求.解:令n n b a An B =++,则n n a b An B =--,∴11(1)n n a b A n B --=---,代入已知条件, 得11[(1)]212n n b An B b A n B n ---=---+-,即11111(2)(1)2222n n b b A n A B -=++++-,令202A +=,1022A B +-=,解得A=-4,B=6,所以112n n b b -=,且46n n b a n =-+, ∴{}n b 是以3为首项、以12为公比的等比数列,故132n n b -=,故13462n n a n -=+-. 点拨:通过引入一些尚待确定的系数,经过变形与比较,把问题转化成基本数列(等差或等比数列)求解. 练习:在数列{}a n 中,132a =,1263n n a a n --=-,求通项a n . 答案:a n nn -+=69912·().解:由1263n n a a n --=-,得111(63)22n n a a n -=+-,令11[(1)]2n n a An B a A n B -++=+-+,比较系数可得:A=-6,B=9,令n n b a An B =++,则有112n n b b -=,又1192b a A B ==++,∴{}n b 是首项为92,公比为12的等比数列,所以b n n =-92121(),故a n n n-+=69912·(). (4) f(n)为非等差数列,非等比数列法一、构造等差数列法例、在数列{}n a 中,1112(2)2()n n n n a a a n λλλ+*+==++-∈N ,,其中0λ>,求数列{}n a 的通项公式.解:由条件可得111221n nn nn n a a λλλλ+++⎛⎫⎛⎫-=-+ ⎪⎪⎝⎭⎝⎭,∴数列2n n n a λλ⎧⎫⎪⎪⎛⎫-⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是首项为0,公差为1的等差数列,故21nnn a n λλ⎛⎫-=- ⎪⎝⎭,∴(1)2n n n a n λ=-+. 练习:在数列{a n }中,a na n a n n n n n 1132212==+++++,()()(),求通项a n 。
数列通项公式—常见9种求法一、公式法例1 已知数列满足,,求数列的通项公式。
解:两边除以,得,则,故数列是以为首项,以为公差的等差数列,由等差数列的通项公式,得,所以数列的通项公式为。
评注:本题解题的关键是把递推关系式转化为,说明数列是等差数列,再直接利用等差数列的通项公式求出,进而求出数列的通项公式。
二、累加法例2 已知数列满足,求数列的通项公式。
解:由得则所以数列的通项公式为。
评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式。
例3 已知数列满足,求数列的通项公式解:由得所以评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式。
例4已知数列满足,求数列的通项公式。
解:两边除以,得,则,故因此,则评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式,最后再求数列的通项公式。
三、累乘法例5 已知数列满足,求数列的通项公式。
解:因为,所以,则,故所以数列的通项公式为评注:本题解题的关键是把递推关系转化为,进而求出,即得数列的通项公式。
例6 已知数列满足,求的通项公式。
解:因为①所以②用②式-①式得则故所以③由,,则,又知,则,代入③得。
所以,的通项公式为评注:本题解题的关键是把递推关系式转化为,进而求出,从而可得当的表达式,最后再求出数列的通项公式。
四、待定系数法例7已知数列满足,求数列的通项公式。
解:设④将代入④式,得,等式两边消去,得,两边除以,得代入④式得⑤由及⑤式得,则,则数列是以为首项,以2为公比的等比数列,则,故。
评注:本题解题的关键是把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。
例8 已知数列满足,求数列的通项公式。
解:设⑥将代入⑥式,得整理得。
令,则,代入⑥式得⑦由及⑦式,得,则,故数列是以为首项,以3为公比的等比数列,因此,则。
评注:本题解题的关键是把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求数列的通项公式。
求数列通项专题题型一:定义法(也叫公式法)直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目例:等差数列}a {n 是递增数列,前n 项和为n S ,且931a ,a ,a 成等比数列,255a S =.求数列}a {n 的通项。
解:设数列}a {n 公差为)0d (d > ∵931a ,a ,a 成等比数列,∴9123a a a =,即)d 8a (a )d 2a (1121+=+,得d a d 12= ∵0d ≠,∴d a 1=………①∵255S a = ∴211)d 4a (d 245a 5+=⋅⨯+…………②由①②得:53a 1=,53d = ∴n 5353)1n (53a n =⨯-+=题型二:已知的关系求通项公式(或)n n S a 与()n n S f a =这种类型一般利用与消去⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-)2()1(11n S S n S a n n n )()(11---=-=n n n n n a f a f S S a n S )2(≥n 或与消去进行求解。
)(1--=n n n S S f S )2(≥n n a 例:(1)已知数列的前项和,求数列的通项公式}{n a n 22+=n S n }{n a 解:当时,;1=n 311==S a 当时,; 2≥n 122)1(2221-=---+=-=-n n n S S a n n n ⎩⎨⎧≥-==∴)2(12)1(3n n n a n (2)已知数列的前项和满足,求数列的通项公式}{n a n n S 1)1(log 2+=+n S n }{n a 解:由,得,1)1(log 2+=+n S n 121-=+n n S ⎩⎨⎧≥==∴)2(2)1(3n n a nn 练习:1、已知数列{}的前n 项和为, 求.n a 32nn S =-n a 2、数列的前n 项和为,,,求的通项公式{}n a n S 11=a )(1121≥+=+n S a n n {}n a题型三:形如用累加法(也叫逐差求和法):)(1n f a a n n +=+(1)若f(n)为常数,即:,此时数列为等差数列,则=.d a a n n =-+1n a d n a )1(1-+(2)若f(n)为n 的函数时,用累加法. 方法如下: 由 得:)(1n f a a n n =-+时,,2≥n )1(1-=--n f a a n n ,)2(21-=---n f a a n n )2(23f a a =-以上各式相加得)1(12f a a =- 即:.)1()2()2()1(1f f n f n f a a n +++-+-=- ∑-=+=111)(n k n k f a a 为了书写方便,也可用横式来写:时,,2≥n )1(1-=--n f a a n n ∴112211)()()(a a a a a a a a n n n n n +-++-+-=--- =.1)1()2()2()1(a f f n f n f ++++-+- 例1:已知数列{a n }中,a 1=1,对任意自然数n 都有11(1)n n a a n n -=++,求n a .解:由已知得11(1)n n a a n n --=+,121(1)n n a a n n ---=-,……,32134a a -=⨯,21123a a -=⨯,以上式子累加,利用111(1)1n n n n =-++得 n a -1a =1111...23(2)(1)(1)(1)n n n n n n ++++⨯---+=1121n -+, 3121n a n ∴=-+例2:已知数列满足,求数列的通项公式。
数列求通项公式的题型
典型题的技巧解法
1、求通项公式
(1)观察法。
(2)由递推公式求通项。
对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。
(1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数)
例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。
求a n 。
例2、已知{}n a 满足112
n n a a +=
,而12a =,求n a =?
(2)递推式为a n+1=a n +f (n ) 例3、已知{}n a 中112a =,12141
n n a a n +=+-,求n a .
例3、解: 由已知可知)12)(12(11-+=
-+n n a a n n )1
21121(21+--=n n
(3)递推式为a n+1=pa n +q (p ,q 为常数)
例4、{}n a 中,11a =,对于n >1(n ∈N )有132n n a a -=+,求n a .
(4)递推式为an+1=pan+qn (p ,q 为常数)
(5)递推式为21n n n a pa qa ++=+
思路:设21n n n a pa qa ++=+,可以变形为:211()n n n n a a a a αβα+++-=-,
于是{a n+1-αa n }是公比为β的等比数列,就转化为前面的类型。
求n a 。
(6)递推式为S n 与a n 的关系式
关系;(2)试用
n 表示a n 。
2.数列求和问题的方法
(1)、应用公式法
等差、等比数列可直接利用等差、等比数列的前n 项和公式求和,另外记住以下公式对求和来说是有益的。
1+3+5+……+(2n-1)=n 2
【例8】 求数列1,(3+5),(7+9+10),(13+15+17+19),…前n 项的和。
例8、解 本题实际是求各奇数的和,在数列的前n 项中,共有1+2+…+n=
)1(2
1+n n 个奇数,
(2)、分解转化法
对通项进行分解、组合,转化为等差数列或等比数列求和。
【例9】求和S=1·(n 2-1)+ 2·(n 2-22)+3·(n 2-32)+…+n (n 2-n 2)
(3)、倒序相加法
适用于给定式子中与首末两项之和具有典型的规律的数列,采取把正着写与倒着写的两个和式相加,然后求和。
例10、求和:12363n n n n n
S C C nC =+++
(4)、错位相减法
如果一个数列是由一个等差数列与一个等比数列对应项相乘构成的,可把和式的两端同乘以上面的等比数列的公比,然后错位相减求和.
例11、 求数列1,3x ,5x 2,…,(2n-1)x n-1前n 项的和.
(5)裂项法:
把通项公式整理成两项(式多项)差的形式,然后前后相消。
常见裂项方法:
例12、求和
1111 153759(21)(23)
n n +++
∙∙∙-+
注:在消项时一定注意消去了哪些项,还剩下哪些项,一般地剩下的正项与负项一样多。
在掌握常见题型的解法的同时,也要注重数学思想在解决数列问题时的应用。