基于labACT实验箱的一、二阶系统的频率特性测试与分析-论文
- 格式:pdf
- 大小:1.33 MB
- 文档页数:4
实验一一阶系统及二阶系统时域特性MatLab仿真实验(2学时)一、概述:系统时域特性常用的Matlab仿真函数1、传递函数两种形式传递函数通常表达为s的有理分式形式及零极点增益形式。
A、有理分式形式分别将分子、分母中、多项式的系数按降幂排列成行矢量,缺项的系数用0补齐。
上述函可表示为num1=[2 1](注意:方括号,同一行的各元素间留空格或逗号)。
den1=[1 2 2 1]syss1=tf(num1,den1)运行后,返回传递函数G1(s)的形式。
这种形式不能直接进行符号运算!B.零极点增益形式[Z,P,K]=tf2zp(num1,den1)sys2=zpk(Z,P,K)返回零、极点、增益表达式,其Z,P分别将零点和极点表示成列向量,若无零点或极点用[ ](空矩阵)代替。
运行得到G(s)的零点Z=-0.5,极点P=-1,-0.5±j0.866,增益K=2。
指令zp2tf(Z,P,K)将零极点增益变换成有理分式形式,见程序:传递函数的有理分式及零极,点增益模型num1=[2 1]%传递函数的分子系数向量den1=[1 2 2 1]%传递函数的分母系数向量sys1=tf(num1,den1)%传递函数的有理分式模型[Z,P,K]=tf2zp(num1,den1)%有理分式模型转换成零极点增益模型 [num2,den2]=zp2tf(Z,P,K)%零极点增益模型转换成有理分式模型 sys2=zpk(Z ,P ,K)%传递函数的零极点增益模型[A1,B1,C1,D1]=tf2ss(num1,den1)%有理分式模型转换成状态空间模型 [A2,B2,C2,D2]=zp2ss(Z,P,K)%零极点及增益模型转换成状态空间模型 [num1,den1]=ss2tf(A1,B1,C1,D1)%状态空间模型转换成有理分式模型 [Z,P,K]=ss2zp(A2,B2,C2,D2)%状态空间模型转换成零极点增益模型程序中,命令tf2ss ,zp2ss 及ss2tf ,ss2zp 是状态空间模型与有理分式及零、极点、增益模型之间的相互转换。
一二阶系统频率特性测试与分析一、引言二阶系统是控制系统中常见的一种类型,它的频率特性对系统的稳定性和性能具有重要影响。
频率特性测试是分析系统动态响应的重要手段之一,通过对二阶系统进行频率特性测试和分析,可以获取系统的幅频特性和相频特性,进一步了解系统的稳定性和性能指标。
本文将介绍二阶系统频率特性测试的基本原理和方法,并通过实例进行分析。
二、二阶系统频率特性测试原理二阶系统是由两个一阶系统级联组成的复合系统,其传递函数可以表示为:G(s)=K/((s+a)(s+b))其中K为系统的增益,a和b为系统的两个极点。
二阶系统的频率特性可以通过系统的幅频特性和相频特性来描述。
1.幅频特性:幅频特性反映了系统对不同频率输入信号的增益响应。
在频率特性测试中,可以通过给系统输入正弦信号,并测量系统输出信号的幅值与输入信号的幅值之比来得到系统的幅频特性。
一般情况下,可以使用频率响应仪或示波器进行测量。
2.相频特性:相频特性反映了系统对不同频率输入信号的相位响应。
在频率特性测试中,可以通过测量系统输出信号与输入信号的相位差来得到系统的相频特性。
一般情况下,可以使用频率响应仪或示波器进行测量。
三、二阶系统频率特性测试方法二阶系统的频率特性测试方法主要有两种,一种是激励法,另一种是响应法。
1.激励法:激励法是通过给系统输入不同频率的正弦信号,并测量系统的输出响应来获取系统的频率特性。
具体步骤如下:(1)设置输入信号的幅值和频率范围;(2)给系统输入不同频率的正弦信号,并记录系统的输出响应;(3)根据记录的数据,绘制系统的幅频特性曲线和相频特性曲线。
2.响应法:响应法是通过给系统输入一个周期或多个周期的脉冲信号,并测量系统的输出响应的特性来获取系统的频率特性。
具体步骤如下:(1)设置输入信号的幅值、频率和脉冲宽度;(2)给系统输入一个周期或多个周期的脉冲信号,并记录系统的输出响应;(3)根据记录的数据,绘制系统的幅频特性曲线和相频特性曲线。
【实验目的】1. 掌握测量典型一阶系统和二阶系统的频率特性曲线的方法;2. 掌握软件仿真求取一、二阶系统的开环频率特性的方法;3. 学会用Nyquist 判据判定系统的稳定性。
【实验设备与软件】1. labACT 实验台与虚拟示波器2. MATLAB 软件 【实验原理】1.系统的频率特性测试方法对于现行定常系统,当输入端加入一个正弦信号)sin()(t X t X m ωω=时,其稳态输出是一个与输入信号频率相同,但幅值和相位都不同的正弦信号)s in ()()s in ()(ψωωψω+=+=t j G X t Y s Y m m 。
幅频特性:m m X Y j G /)(=ω,即输入与输出信号的幅度比值,通常转换成)(lg 20ωj G 形式。
相频特性:)(arg )(ωωϕj G =,可以直接基于虚拟示波器读取,也可以用“李沙育图行”法得到。
可以将用Bode 图或Nyquist 图表示幅频特性和相频特。
在labACT 试验台采用的测试结构图如下:被测定稳定系统对于实验就是有源放大电路模拟的一、二阶稳定系统。
2.系统的频率测试硬件原理 1)正弦信号源的产生方法频率特性测试时,一系列不同频率输入正弦信号可以通过下图示的原理产生。
按照某种频率不断变化的数字信号输入到DAC0832,转换成模拟信号,经一级运放将其转换为模拟电压信号,再经过一个运放就可以实现双极性电压输出。
根据数模转换原理,知 R V NV 8012-= (1) 再根据反相加法器运算方法,得R R R V N V N V R R V R R V 1281282282201210--=⎪⎭⎫⎝⎛+-⨯-=⎪⎪⎭⎫ ⎝⎛+-= (2) 由表达式可以看出输出时双极性的:当N 大于128时,输出为正;反之则为负;当输入为128时,输出为0.在labACT 实验箱上使用的参考电压时5V 的,内部程序可以产生频率范围是对一阶系统是0.5 H Z ~64H Z 、对二阶系统是0.5 H Z ~16 H Z 的信号,并由B2单元的OUT2输出。
广西大学实验报告纸姓名:指导老师:胡老师 成绩: 学院:电气工程学院专业:自动化班级:121 实验内容:零、极点对限性控制系统的影响2014年 11月 16 日【实验时间】2014年11月14日 【实验地点】宿舍 【实验目的】1. 掌握测量典型一阶系统和二阶系统的频率特性曲线的方法;2. 掌握软件仿真求取一、二阶系统的开环频率特性的方法;3. 学会用Nyquist 判据判定系统的稳定性。
【实验设备与软件】1. labACT 实验台与虚拟示波器2. MATLAB 软件 【实验原理】1.系统的频率特性测试方法对于现行定常系统,当输入端加入一个正弦信号)sin()(t X t X m ωω=时,其稳态输出是一个与输入信号频率相同,但幅值和相位都不同的正弦信号)sin()()sin()(ψωωψω+=+=t j G X t Y s Y m m 。
幅频特性:m m X Y j G /)(=ω,即输入与输出信号的幅度比值,通常转换成)(lg 20ωj G 形式。
相频特性:)(arg )(ωωϕj G =,可以直接基于虚拟示波器读取,也可以用“李沙育图行”法得到。
可以将用Bode 图或Nyquist 图表示幅频特性和相频特。
在labACT 试验台采用的测试结构图如下:被测定稳定系统对于实验就是有源放大电路模拟的一、二阶稳定系统。
2.系统的频率测试硬件原理 1)正弦信号源的产生方法频率特性测试时,一系列不同频率输入正弦信号可以通过下图示的原理产生。
按照某种频率不断变化的数字信号输入到DAC0832,转换成模拟信号,经一级运放将其转换为模拟电压信号,再经过一个运放就可以实现双极性电压输出。
根据数模转换原理,知R V NV 8012-= (1) 再根据反相加法器运算方法,得R R R V N V N V R R V R R V 1281282282201210--=⎪⎭⎫ ⎝⎛+-⨯-=⎪⎪⎭⎫ ⎝⎛+-= (2) 由表达式可以看出输出时双极性的:当N 大于128时,输出为正;反之则为负;当输入为128时,输出为0.在labACT 实验箱上使用的参考电压时5V 的,内部程序可以产生频率范围是对一阶系统是0.5 H Z ~64H Z 、对二阶系统是0.5 H Z ~16 H Z 的信号,并由B2单元的OUT2输出。
实验四二阶系统的频率响应与频率特性测量一、实验目的1.掌握频率特性的实验测试方法,进一步理解频率特性的物理意义2.掌握根据频率响应实验结果绘制Bode图的方法3.根据二阶系统的Bode图,确定系统的数学模型4.掌握二阶系统的频域指标与时域指标的对应关系二、实验仪器与设备1.自动控制原理学习机2.计算机(安装自动控制原理实验系统)3.万用表及接线三、实验原理1.输入、输出波形直接测试法如图4-1所示,给定的被测对象是一个稳定的系统。
由实验系统提供正弦信号,每选择一个频率,即可利用实验系统获得输入、输出随时间变化的曲线,取输出稳定后同周期的输入、输出曲线如图4-2。
图4-1 测量被控系统的频率响应图4-2 稳定后系统的输入输出曲线幅频特性)(2)(2)(ωωωmmXYjG=相频特性oTtjG360)(⨯∆-=∠ω2.李沙育图形法取被测对象某一选定频率下的输入信号x (t )和输出信号y (t )(去掉不稳定部分),利用实验系统做X-Y 图,得到一个椭圆图形,如图4-3所示。
图4-3 李沙育图形幅频特性:)(2)(2)(ωωωm m X Y j G =相频特性:如图4-3,椭圆长轴在第一、三象限,()()()ωωωφm 01-2Y 2Y sin=若椭圆长轴在第二、四象限,()()()ωωωφm 01-o 2Y 2Y sin-180=随着角频率的增加,大多数情况下椭圆逆时针运动,表明输出信号Y (t )滞后于输入信号X (t ),相位的计算结果要添加一个负号,如果椭圆顺时针运动,Y (t )超前于X (t ),计算结果为正。
幅值取两倍是为了便于测量。
3.测试频率的选取选取合适的实验测试频率范围是准确确定系统频率特性的关键。
控制系统多为低通滤波器,在频率很低时,系统的输出能够复现输入信号,通常,取被测对象转折频率的1/10作为起始测试频率,若对象模型未知,则先确定最大测试频率,方法是先测出输入信号频率为0时输出的幅值Y (0),逐渐增大输入信号频率,直至输出幅值Y m 为Y (0)/(50-100),此时频率便可确定为最大测试频率,测试频率可以在0与max ω之间选取若干点。
实验七 二阶系统的特性测量一、实验目的1、掌握二阶网络的构成方法。
2、掌握二阶网络的系统响应特性。
3、了解二阶网络波特图的测量方法。
二、实验内容1、通过阶跃信号观察其阶跃响应。
2、通过正弦信号观察系统的幅频特性,学会绘制波特图。
三、实验步骤1、把二阶系统分析模块插在主板上,用导线接通此模块“电源接入”和主板上的电源(看清标识,防止接错,带保护电路),并打开此模块的电源开关。
2、二阶网络单位阶跃响应测量:函数信号发生器模块产生一频率为1KHz ,峰峰值为5V 左右的方波信号,将方波信号加入到此实验模块的“输入”端。
用示波器测量二阶网络的单位阶跃响应,改变系统的阻尼系数,可以观察不同阻尼情况下的阶跃响应。
与图2-7-2进行比较。
3、二阶网络波特图的测量 幅频特性的测量:(1)首先用函数信号发生器模块的频率选择在中频段,“频率调节”选择最小频率(约为1KHz ),使其产生一峰峰值为5V 左右的正弦信号,加入到此实验模块的插孔“输入”端。
(2)用示波器测量“输出”,观察二阶网络的输出信号。
(3)然后不断增加信号源的输出频率(以二倍频为一步进,即2K 、4K 、6K ……),并保持其输出幅度不变,测量相应频点,并记录下输出信号的幅度、输出信号与输入信号的相位差。
以频率与输出幅度(可换算成相对0点的相对电平值,单位为dB )为变量画出一曲线,即为二阶网络的幅频特性。
相频特性的测量:(1)首先用函数信号发生器模块的频率选择在中频段,“频率调节”选择最小频率(约为1 K ),使其产生一峰峰值为5V 左右的正弦信号,加入到此实验模块的插孔“输入”端。
(2)用示波器的两个探头测量,一个测输出,一个测输入,用李沙育图的方法观察(以45、90、135、180为特征角度)。
不同系统阻尼情况下的幅频和相频特性:先使二阶系统工作在欠阻尼状态下,即1<ξ ,进行观察,可以改变系统的工作阻尼状态,测量过阻尼状态的幅频特性和相频特性。
实验一、二阶系统时域响应特性的实验研究一、实验目的:1. 学习并掌握利用MATLAB编程平台进行控制系统时域仿真的方法。
2. 通过仿真实验研究并总结二阶系统参数对时域响应特性影响的规律。
3. 通过仿真实验研究并总结二阶系统附加一个极点和一个零点对时域响应特性影响的规律。
二、实验任务及要求:(一)实验任务:自行选择二阶系统模型及参数,设计实验程序及步骤仿真研究二阶系统参数(,)对系统时域响应特性的影响;研究二阶系统分别附加一个极点、一个零点后对系统时域响应特性的影响;根据实验结果,总结各自的响应规律。
(二)实验要求:1. 分别选择不少于六个的和取值,仿真其阶跃(或脉冲)响应。
通过绘图展示参数,对时域响应的影响。
不同和变化分别绘制于两幅图中。
2. 通过图解法获得各时域响应指标,并进行比较,总结出二阶系统参数变化对时域系统响应特性影响的规律。
3. 分别选择不少于六个取值的附加零点、极点,仿真其阶跃(或脉冲)响应,将响应曲线分别绘制于两幅图中,并与无零、极点响应比较。
4. 通过图解法获得各响应的时域指标并进行比较分析系统附加零点、极点对二阶系统时域响应特性影响的规律。
以上仿真及图形绘制全部采用MATLAB平台编程完成1-1:wn=1;zeta=[0.1,0.2,0.4,0.7,1.0,2.0];t=[0:0.1:12];num=[wn^2];hold onfor i=1:length(zetaden=[1,2*zeta(i*wn,wn^2]sys=tf(num,den;step(sys,tendhold offgrid ongtext('zeta=0.1';gtext('zeta=0.2';gtext('zeta=0.4';gtext('zeta=0.7';gtext('zeta=1.0';gtext('zeta=2.0';1-2:wn=[0.95,1.0,1.05,1.1,1.15,1.2,];zeta=0.65;t=[0:0.01:10];hold onfor i=1:length(wndnum=[wn(i^2];den=[1,2*zeta*wn(i,wn(i^2];sys=tf(num,den;step(sys,thold offgrid ongtext('wn=0.95';gtext('wn=1.0';gtext('wn=1.05';gtext('wn=1.1';gtext('wn=1.15';gtext('wn=1.25';2:分析得:当恒定时,二阶系统的响应随ζ的增大响应变快。
实验三 二阶开环系统的频率特性曲线一.实验要求1.研究表征系统稳定程度的相位裕度γ和幅值穿越频率c ω对系统的影响。
2.了解和掌握欠阻尼二阶开环系统中的相位裕度γ和幅值穿越频率c ω的计算。
3.观察和分析欠阻尼二阶开环系统波德图中的相位裕度γ和幅值穿越频率ωc ,与计算值作比对。
二.实验内容及步骤本实验用于观察和分析二阶开环系统的频率特性曲线。
由于Ⅰ型系统含有一个积分环节,它在开环时响应曲线是发散的,因此欲获得其开环频率特性时,还是需构建成闭环系统,测试其闭环频率特性,然后通过公式换算,获得其开环频率特性。
自然频率:TiT K=n ω 阻尼比:KT Ti21=ξ (3-2-1) 谐振频率:221ξωω-=n r 谐振峰值:2121lg20)(ξξω-=r L (3-2-2)计算欠阻尼二阶闭环系统中的幅值穿越频率ωc 、相位裕度γ: 幅值穿越频率: 24241ξξωω-+⨯=n c (3-2-3)相位裕度: 424122arctan)(180ξξξωϕγ++-=+=c(3-2-4)γ值越小,Mp%越大,振荡越厉害;γ值越大,Mp%小,调节时间ts 越长,因此为使二阶闭环系统不致于振荡太厉害及调节时间太长,一般希望:30°≤γ≤70° (3-2-5)本实验所构成的二阶系统符合式(3-2-5)要求。
被测系统模拟电路图的构成如图1所示。
图1 实验电路本实验将数/模转换器(B2)单元作为信号发生器,自动产生的超低频正弦信号的频率从低到高变化(0.5Hz~16Hz ),OUT2输出施加于被测系统的输入端r (t),然后分别测量被测系统的输出信号的开环对数幅值和相位,数据经相关运算后在虚拟示波器中显示。
实验步骤:(1)将数/模转换器(B2)输出OUT2作为被测系统的输入。
(2)构造模拟电路:安置短路套及测孔联线表同笫3.2.2 节《二阶闭环系统的频率特性曲线测试》。
(3)运行、观察、记录:① 将数/模转换器(B2)输出OUT2作为被测系统的输入,运行LABACT 程序,在界面的自动控制菜单下的线性控制系统的频率响应分析-实验项目,选择二阶系统,就会弹出虚拟示波器的界面,点击开始,实验开始后,实验机将自动产生0.5Hz~16H 等多种频率信号,等待将近十分钟,测试结束后,观察闭环对数幅频、相频曲线和幅相曲线。
基于matlab的二阶动态系统特性分析LT1. 二阶系统的性能指标1.1. 一般系统的描述凡是能够用二阶微分方程描述的系统称为二阶系统。
从物理上讲,二阶系统包含两个独立的储能元件,能量在两个元件之间交换,是系统具有往复震荡的趋势。
当阻尼比不够充分大时,系统呈现出震荡的特性,所以,二阶系统也称为二阶震荡环节。
很多实际工程系统都是二阶系统,而且许多高阶系统在一定条件下也可以简化成为二阶系统近似求解。
因此,分析二阶系统的时间相应具有重要的实际意义。
传递函数可以反映系统的结构参数,二阶系统的典型传递函数是: 22021)()()(n n i s s s X s X s G ωξω++== 其中,n ω为二阶系统的无阻尼固有频率,ξ称为二阶系统的阻尼比。
1.2. 二阶系统的性能指标系统的基本要求一般有稳定性、准确性和快速性这三个指标。
系统分析及时对这三个指标进行分析。
建立系统的数学模型后,就可以用不同的方法来分析和研究系统,以便于找出工程中需要的系统。
在时域内,这三个方面的性能都可以通过求解描述系统的微分方程来获得,而微分方程的解则由系统的结构参数、初始条件以及输入信号所决定。
上升时间r t :当系统的阶跃响应第一次达到稳态值的时间。
上升时间是系统 响应速度的一种度量。
上升时间越短,响应速度越快。
峰值时间p t:系统阶跃响应达到最大值的时间。
最大值一般都发生在阶跃响应的第一个峰值时间,所以又称为峰值时间。
调节时间s t :当系统的阶跃响应衰减到给定的误差带内,并且以后不再超出给定的误差带的时间。
最大超调量p M :相应曲线的最大峰值与稳态值的差称为最大超调量p M,即)(max ∞-=c c M p或者不以百分数表示,则记为=p M %100)()(max ⨯∞∞-c c c最大超调量pM 反映了系统输出量在调节过程中与稳态值的最大偏差,是衡量系统性能的一个重要的指标。
在实际应用中,常用的动态性能指标多为上升时间、调节时间和超调量。
东南大学自动化学院课程名称:自动控制原理实验实验名称:系统频率特性的测试姓名:学号:专业:实验室:实验时间:2013年11月22日同组人员:评定成绩:审阅教师:一、实验目的:(1)明确测量幅频和相频特性曲线的意义;(2)掌握幅频曲线和相频特性曲线的测量方法;(3)利用幅频曲线求出系统的传递函数;二、实验原理:在设计控制系统时,首先要建立系统的数学模型,而建立系统的数学模型是控制系统设计的重点和难点。
如果系统的各个部分都可以拆开,每个物理参数能独立得到,并能用物理公式来表达,这属机理建模方式,通常教材中用的是机理建模方式。
如果系统的各个部分无法拆开或不能测量具体的物理量,不能用准确完整的物理关系式表达,真实系统往往是这样。
比如“黑盒”,那只能用二端口网络纯的实验方法来建立系统的数学模型,实验建模有多种方法。
此次实验采用开环频率特性测试方法,确定系统传递函数。
准确的系统建模是很困难的,要用反复多次,模型还不一定建准。
另外,利用系统的频率特性可用来分析和设计控制系统,用Bode 图设计控制系统就是其中一种。
幅频特性就是输出幅度随频率的变化与输入幅度之比,即)()(ωωio U U A =。
测幅频特性时,改变正弦信号源的频率,测出输入信号的幅值或峰峰值和输输出信号的幅值或峰峰值。
测相频有两种方法:(1)双踪信号比较法:将正弦信号接系统输入端,同时用双踪示波器的Y1和Y2测量系统的输入端和输出端两个正弦波,示波器触发正确的话,可看到两个不同相位的正弦波,测出波形的周期T 和相位差Δt ,则相位差0360⨯∆=ΦTt 。
这种方法直观,容易理解。
就模拟示波器而言,这种方法用于高频信号测量比较合适。
(2)沙育图形法:将系统输入端的正弦信号接示波器的X 轴输入,将系统输出端的正弦信号接示波器的Y 轴输入,两个正弦波将合成一个椭圆。
通过椭圆的切、割比值,椭圆所在的象限,椭圆轨迹的旋转方向这三个要素来决定相位差。
就模拟示波器而言,这种方法用于低频信号测量比较合适。