花瓶墩柱计算书
- 格式:doc
- 大小:173.23 KB
- 文档页数:6
墩柱模板计算书一、编制依据《东##高架工程》设计文件;《建筑施工碗扣式钢管脚手架安全技术规范》(JGJ166-2008);《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2011);《建筑施工模板安全技术规范》(JGJ162-2008);《建筑结构荷载规范》(GB-50009-2012);《公路桥涵施工技术规范》(JTG/TF50-2011);《路桥施工计算手册》;《建筑施工计算手册》;《建筑结构静力计算手册》。
二、计算参数(一)结构材料参数1、普通钢筋混凝土容重γ=26KN/m2。
c2、混凝土浇筑速度v=3m/h=200/(T+15)=200/(15+15)=6.6h混凝土初凝时间tβ外加剂影响修正系数,取1.0;1β混凝土坍落度影响修正系数,取1.15;23、5mm钢板:截面模量(每延米)W=1.04cm4,惯性矩I=4.17cm3,弹性模量=125N/mm2。
E=2.1×105MPa,抗拉、抗压、抗弯强度f =215N/mm2,抗剪强度fv4、[10型钢:腹板厚度t=5.3mm,截面模量W=49.3cm3,惯性矩I=198.3cm4,半截面惯性矩S=23.5cm3,截面积A=12.74cm2,弹性模量E=2.1×105MPa,抗拉、抗压、=120N/mm2。
抗弯强度设计值f =205N/mm2,抗剪强度设计值fv5、[16型钢:腹板厚度t=6.5mm,截面模量W=108.3cm3,惯性矩I=866.2cm4,半截面惯性矩S=23.5cm3,截面积A=21.95cm2,弹性模量E=2.1×105MPa,抗拉、抗压、抗弯强度设计值f =205N/mm2,抗剪强度设计值f=120N/mm2。
v6、[20型钢:腹板厚度t=7mm,截面模量W=178.0cm3,惯性矩I=1780.4cm4,半截面惯性矩S=104.7cm3,截面积A=28.83cm2,弹性模量E=2.1×105MPa,抗拉、抗压、抗弯强度设计值f =205N/mm2,抗剪强度设计值f=120N/mm2。
墩柱(门式墩)计算书墩柱模板计算书⼀、编制依据《东##⾼架⼯程》设计⽂件;《建筑施⼯碗扣式钢管脚⼿架安全技术规范》(JGJ166-2008);《建筑施⼯扣件式钢管脚⼿架安全技术规范》(JGJ130-2011);《建筑施⼯模板安全技术规范》(JGJ162-2008);《建筑结构荷载规范》(GB-50009-2012);《公路桥涵施⼯技术规范》(JTG/TF50-2011);《路桥施⼯计算⼿册》;《建筑施⼯计算⼿册》;《建筑结构静⼒计算⼿册》。
⼆、计算参数(⼀)结构材料参数1、普通钢筋混凝⼟容重γ=26KN/m2。
c2、混凝⼟浇筑速度v=3m/h=200/(T+15)=200/(15+15)=6.6h混凝⼟初凝时间tβ外加剂影响修正系数,取1.0;1β混凝⼟坍落度影响修正系数,取1.15;23、5mm钢板:截⾯模量(每延⽶)W=1.04cm4,惯性矩I=4.17cm3,弹性模量=125N/mm2。
E=2.1×105MPa,抗拉、抗压、抗弯强度f =215N/mm2,抗剪强度fv4、[10型钢:腹板厚度t=5.3mm,截⾯模量W=49.3cm3,惯性矩I=198.3cm4,半截⾯惯性矩S=23.5cm3,截⾯积A=12.74cm2,弹性模量E=2.1×105MPa,抗拉、抗压、=120N/mm2。
抗弯强度设计值f =205N/mm2,抗剪强度设计值fv5、[16型钢:腹板厚度t=6.5mm,截⾯模量W=108.3cm3,惯性矩I=866.2cm4,半截⾯惯性矩S=23.5cm3,截⾯积A=21.95cm2,弹性模量E=2.1×105MPa,抗拉、抗压、抗弯强度设计值f =205N/mm2,抗剪强度设计值f=120N/mm2。
v6、[20型钢:腹板厚度t=7mm,截⾯模量W=178.0cm3,惯性矩I=1780.4cm4,半截⾯惯性矩S=104.7cm3,截⾯积A=28.83cm2,弹性模量E=2.1×105MPa,抗拉、抗压、抗弯强度设计值f =205N/mm2,抗剪强度设计值f=120N/mm2。
漳州xxxx景观桥工程墩柱施工方案墩柱施工方案一、工程概况福建漳州xxxx景观桥梁工程位于漳州市xxxx花博园内,连接花博园内花博会展区与旅游居住区。
该桥所跨河道为不通航的xx河道。
根据已经完成的漳州xxxx景观桥设计方案设计,本桥桥孔布设为9×21m,桥全长196m(含桥台翼墙长)。
其中南引桥跨径布置为4×21m,主桥跨径布置为2×21m,北引桥跨径布置为3×21.引桥段车行桥与人行桥合建,主桥段车行桥与人行桥分幅修建。
引桥段与主桥段车行桥上部结构采用简支预应力混凝土空心板梁,桥面连续。
下部结构为T形桥墩和桩帽式桥台。
主桥段人行桥采用弧形梁独塔斜拉桥,在车行桥两侧各设置一座。
桥塔上塔柱、拉索、主梁均采用钢结构,桥塔下塔柱采用普通钢筋混凝土结构。
基础采用直径1.2m和1.5m的钻孔灌注桩基础。
二、施工准备及组织1、组织有关人员学习《公路桥涵施工技术规范》(JTJ 041-2000)和《公路工程质量检验评定标准》(JTG F80/1-2004),对特殊工种操作人员进行培训和技能考核,必须坚持持证上岗。
2、工程部负责编制墩柱工程施工方案,并对施工班组进行技术交底,班组长负责对操作工人进行技术交底。
3、所用材料必须符合有关技术标准规定,使用前必须严格审核所选用材料的出厂合格证和试验报告,并经工地试验室检测进行验证,合格材料才可使用,不合格的材料一律清除出场。
4、场地及水电的准备:整理施工所需场地;清查安装主要的施工机具,保证其工作状态良好;安装好施工现场所需水电供应设施;准备施工所需用的材料,并作好维护工作,避免受到污染;合理组织施工,做到责任明确,分工合理5、劳动力计划安排:配备技术员2人,负责质量管理(轮班作业,必须做到有人施工就有人做技术指导);配备管理人员3人,全面负责现场施工管理工作(轮班作业,必须做到有人施工就有人管理);8、施工人员45人本工程立柱高度4.236~8.251m,共计立柱10根,根据工程量和工期安排,立柱共计安排施工工人45人,各工种施工人员情况如下:木工10人、钢筋工9人、焊工3人、混凝土工5人(含振捣工3人)、模板工12人、电工1人、杂工5人。
关键词:高架桥;双柱花瓶墩;设计计算1引言随着我国人民生活水平的提高以及城市的快速发展,城市道路交通量越来越大,某些大城市因为用地限制等诸多因素,原有道路拓宽改造困难,城市高架桥的出现,很好地解决了这一问题,既节约了用地空间,又很好地解决了交通拥堵等问题,且城市高架相较于隧道等地下结构,既可以大大节省工程造价,又能缩短建设周期。
随着城市高架桥梁建设的日趋成熟,其上下部结构形式在满足受力要求的基础上,还要兼顾景观效果,故花瓶墩在城市高架桥中的应用越来越多。
对于城市高架中的整体式主线桥,双柱花瓶墩在墩顶向两侧弧形扩头,一方面加大了支座间距,受力合理;另一方面占用地面空间少,空间利用率高。
2花瓶墩受力特点桥墩主要承受上部结构传递下来的荷载,主要包括上部结构恒载、汽车活载、风荷载和温度荷载等,对于连续梁结构,还包含支座不均匀沉降荷载等。
花瓶墩墩柱主要承受通过支座传递下来的竖向力,花瓶墩由于在墩顶向两侧弧形扩头,所以竖向力往往不在墩柱形心,因此在竖向力作用下,墩柱会产生弯矩,且在横桥向风荷载、离心力,顺桥向制动力、摩阻力等水平力的作用下,墩柱在顺桥向及横桥向均产生弯矩,故墩柱可按照双向偏心受压构件进行验算。
对于有系梁的双柱式花瓶墩,因系梁主要承受轴向拉力和弯矩,故系梁可按照拉弯构件进行验算。
3案例分析3.1工程概况本文依托项目为合肥市包公大道工程,西起二十埠河,东至龙兴大道,全长约15.5km,规划为城市快速路。
桥梁工程包括11.7km主线高架及三座互通立交。
本文选取标准跨径3m×30m预应力混凝土连续梁桥下部结构中墩作为研究对象。
3.2下部结构桥墩设计方案3.2.1墩柱形式方案比选根据上部结构的受力、外形特点并兼顾景观效果,高架桥下部结构一般采用柱式、板式、T型、Y型等样式的桥墩。
包公大道主线高架采用整体式断面,横向双向六车道,高架横断面全宽25m,根据主梁横断面尺寸,主线跨线桥标准桥墩必须采用双柱式,因此本项目桥墩设计主要针对不同墩柱形式展开,按照前述原则选择一个与上部结构和整体环境协调的桥墩形式。
xx高速公路xx连接线工程xx标段盖梁支架施工设计计算一、工程概况xx高速公路xx连接线工程主线桥墩柱结构设计为圆柱式、花瓶式。
其中花瓶墩盖梁68个,门式墩盖梁1个,采用门式满堂支架和少钢管支架两种支架形式;圆柱墩盖梁51个,采用双抱箍沉重支架现浇。
197号花瓶墩为过渡墩,墩身高8.192米;其盖梁结构尺寸:长24.5m×宽2m×高1.4~2.8m,盖梁上的背墙高70cm,宽82cm。
257号花瓶墩墩身高 11.47米,是全线花瓶墩盖梁最高的墩位,盖梁结构尺寸:长24.5m ×宽2m×高1.15~2.8m。
200号圆柱墩盖梁墩身高9.974米,墩柱直径1.5米,其盖梁尺寸为:长25.15m×宽2.2m×高1.8m。
二、计算依据(1)《公路桥涵设计通用规范》JTG D60-2004;(2)《公路桥涵钢结构及木结构设计规范》(JTJ 025—86);(3)《钢结构设计规范》GB50017-2003;(4)《公路桥涵施工技术规范》JTG/T F50-2011;(5)《路桥施工计算手册》人民交通出版社。
(6)各种材料的设计控制值采用《钢结构设计规范》GB50017-2003取值:A3钢材的允许拉、压应力[σ拉、压]=215MPa;A3钢材的允许剪切应力[τ]=125MPa;Mn16钢材的允许拉、压应力[σ拉、压]=310MPa;Mn16钢材的允许剪切应力[τ]=180MPa;变形控制按L/400进行控制。
三、盖梁支架计算3.1满堂支架计算(1)支架设计197号花瓶墩盖梁采用1019门式支架,门架立杆钢管为φ57×2.5mm,门架加强杆为φ26.8×2.2mm钢管,门架钢材均采用Q235,横向间距4×60+5×45+8×30+9×30+19+17×30+19+9×30+8×30+5×45+4×60cm,详见图3.1-1,纵向间距0.12cm,采用顶托与调节杆调节高度,顶托上放置[10型钢。
某立交主线桥花瓶墩计算报告计算:复核:审核:主线花瓶墩计算一、概述:主线桥上部结构为预应力混凝土连续箱梁,主线花瓶墩采用双柱桥墩接承台再接双排桩的形式,根据受力需要有群桩有6根桩和8根桩,本次计算选取了墩高较高的23号桥墩进行计算。
本次考虑汽车效应、温差效应、支座摩阻力,其中结构重要性系数取为1.1,汽车荷载冲击系数为1.3;花瓶墩墩底截面尺寸为180cmx210cm,顺桥向单侧配置双排32跟直径28mm的钢筋;桩基直径为150cm,桩基均配置32根直径25mm 钢筋,钢筋采用HRB400钢筋。
二、桥墩及桩基计算1、桥墩计算计算单个桥墩墩底内力及验算结果如下:单位KN.m经计算在最不利荷载组合下,桥墩墩底裂缝宽度为0.17mm,小于0.2mm,满足规范要求。
计算结果:最大弯矩强度验算:截面受力性质: 下拉偏压内力描述: Nj = 1.14e+04 KN, Qj = 676 KN, Mj = 9.41e+03 KN-m截面抗力: NR = 2.94e+04 KN >= Nj = 1.14e+04 KN(满足)最大轴力强度验算截面受力性质: 下拉偏压内力描述: Nj = 2.14e+04 KN, Qj = 676 KN, Mj = 9.41e+03 KN-m截面抗力: NR = 4.51e+04 KN >= Nj = 2.14e+04 KN(满足)桥墩计算结论:桥墩墩柱的裂缝宽度及强度验算均满足规范要求。
2、桩基计算计算单个桩基内力及验算结果如下:经计算在最不利荷载组合下,桥墩墩底裂缝宽度为0.02mm,小于0.2mm,满足规范要求。
最大弯矩强度验算截面受力性质: 下拉偏压内力描述: Nj = 1.38e+03 KN, Qj = 225 KN, Mj = 373 KN-m截面抗力: NR = 1.06e+04 KN >= Nj = 1.38e+03 KN(满足)最大轴力强度验算截面受力性质: 下拉偏压内力描述: Nj = 9.61e+03 KN, Qj = 225 KN, Mj = 373 KN-m截面抗力: NR = 2.31e+04 KN >= Nj = 9.61e+03 KN(满足)桩基计算结论:桥墩桩基裂缝宽度及强度验算均满足规范要求。
xxxxx高速公路常见跨径组合桥墩的计算xxxxx高速公路桥梁上部结构大部分采用先简支后连续预应力混凝土箱梁或板梁,下部结构采用双柱式墩、柱式台或肋台,钻孔灌注桩基础。
为了设计方便,给出如下几种跨径组合下相应的桥墩几何参数的计算书。
设计参数:(见下表)设计荷载:公路-Ⅰ级,q k=10。
5KN/m;集中荷载的取值视桥梁跨径的不同取值见下表:桥墩墩身材料:C30混凝土,Ec=3.0×104Mp a;非连续端采用滑板式支座,其规格与对应的连续端的板式支座相同。
支座的力学性能根据规范取值。
一、桥墩墩顶集成刚度计算1、桥墩截面惯性矩计算按照公式:I i=π×d4/64;其中d为柱径。
2、桥墩抗推刚度计算根据公式K1=3×EcI/H3计算,其中混凝土的弹性模量没有考虑0.8的折减系数是偏于安全的。
计算结果见下表:3、支座抗推刚度计算支座抗推刚度按下式计算:K2=nAG/t式中K2:一横排支座的抗推刚度;n:一横排支座的支座个数,每个梁底放置两个支座,8个支座串连放置在盖梁上,所以每个墩分配的支座个数为4,所以n=4;A:一个支座的平面面积,根据具体的支座规格计算;G:橡胶支座剪切弹性模量,根据规范取1。
1×104Mp a;t:支座橡胶层总厚度,根据橡胶支座的规格取橡胶支座厚度的0.8倍。
计算结果见下表:4、墩顶与支座集成刚度的计算在墩顶有一排支座串连,再与墩顶刚度串连,串连后的刚度即为支座顶部由支座与桥墩联合的集成刚度。
其计算公式为:K= K1×K2 /( K1+ K2)计算结果见下表:二、桥墩墩顶水平荷载效应计算1、混凝土收缩+徐变在墩顶产生的水平力按照公式:p1=c×△x×k其中:c—收缩系数,计算中按照混凝土收缩+徐变按相当于降温30℃的影响力计算,c=30×10—5;△x-桥墩距离变形零点的距离;变形零点x 根据以下公式计算:i c l k Rx C nkμ+=⨯∑∑l i :桥墩矩桥台的距离; n :桥墩个数;k :桥墩顶部合成刚度;R μ∑:桥台摩擦系数与上部结构竖直反力的乘积,由于联端支座与桥台支座的摩阻力大小相差不大,方向相反,所以近似地认为R μ∑=0.计算结果见下表:计算中没有考虑桥墩刚度的差异是出于如下考虑:首先,由于桥墩小于12米时,根据规范和相关资料可以不考虑二阶弯矩的影响,这就大大降低了由于竖向荷载引起的弯矩的数值;其次,墩高的降低虽然增加了墩的刚度而导致了相同变形下水平力的增加,但由于墩高的降低,墩顶水平力在墩底产生的弯矩也有所降低;出于以上两项的考虑,在荷载相同的情况下,如果高12米的墩根据计算是安全的,则小于12米的墩也是安全的。
花瓶型桥墩定型钢模板计算内容提要:对花瓶型桥墩采用的定型钢模板进行受力验算,以确保墩柱施工的安全。
关键词:花瓶型桥墩、定型钢模板、计算参数、模板计算、竖肋计算、小横肋计算、横向大肋计算、抗风计算1、模板计算书1.1、计算参数1.1.1、模板采用厚6mm的定型钢模板,自重为0.047KN/㎡。
钢模板的力学参数:极限强度[σ]=215Mpa,抗剪极限[T]=125Mpa,弹性模量E=206000Mpa,容许挠度[v]=1.5mm。
1.1.2、模板小横肋采用h=110mm,厚度为b=8mm的钢板,间距均为30cm, 弹性模量E=206000Mpa,截面抵挡矩W=bh2/6=8×110×110÷6=16133mm3,惯性矩I=bh3/12=8×110×110×110÷12=887333mm4,极限强度[σ]=215Mpa。
1.1.3、模板大横肋短边横肋采用280mm槽钢,槽钢的截面系数W=339.5×103mm3,惯性矩I=4752.5×104mm4,极限强度[σ]=215Mpa。
2.1.4、模板竖肋采用100mm槽钢,间距350mm,惯性矩I=198.3×104mm4,弹性模量 E=210000Mpa,截面抵挡矩W=bh2/6=6×120×120÷6=14400mm3,极限强度[σ]=215Mpa。
1.1.5、模板外侧斜向支撑采用ø48钢管,抗压强度[f]=215N/mm2,回转半径i=160mm,截面积A=424mm2,截面抵挡矩W=5080mm3,惯性矩I=121900mm4,极限强度[σ]=215Mpa。
1.1.6、施工荷载取2.5KPa,振捣荷载取2.0KPa,钢筋砼自重取25KN/m3,计算侧压力时砼自重取γ=24KN/m3。
1.1.7、螺栓的抗剪强度设计值fv=140Mpa。
目录
一、基本资料 (1)
二、面板检算 (2)
三、竖肋检算 (4)
四、背架检算 (4)
五、对拉拉杆检算 (5)
六、连接螺栓检算 (5)
一、基本资料
1、模板基本尺寸
桥墩浇筑时采用全钢模板,模板由平面模板和平面接倒角的端侧莫组成,模板设计高度按全高一次浇注配模,最高墩(浇注高度最大值)H=8.8m ,面板为h=6㎜厚钢板;竖肋[8,间距为325mm ;背架为双[14b (较宽部分不适合对拉拉杆则用[16b ),间距为1000mm ;对拉拉杆Ф30圆钢,间距为1250mm ;说明:间距均取值最大值。
综合计算时,取截面最大,型钢最小进行计算。
2、模板计算主要参数
(1)砼自重c γ=2.5 t/m 3=25KN/m 3;
(2)钢材弹性模量E s =2.1×105 MPa ; 重力加速度取10N/kg ; (3)容许挠度:1/400 (4)Q235材料强度设计值:
抗拉、压和弯:[f]=215Mpa 抗剪:[f v ]= 125Mpa
(5)恒荷载分项系数1.2 (6)活荷载分项系数1.4
(7)施工最高高度:按平坡截面取值H=8.8 m
3、计算荷载
当采用内部振捣器,混凝土的浇筑速度在6m/h 以下时,新浇的普通混凝土作用于模板的最大侧压力可以按照下列二式计算,并取二式中的较小值。
2
1
21022.0v t F c ββγ= ⑴
h F c γ= ⑵ 式中:
F ─新浇筑混凝土对模板的最大侧压力(kN/m 2); v ─浇注速度(m/h );取4m/h ;
γc ─混凝土的重力密度(kN/m 3);取25KN/m 3 ; 0t ─新浇混凝土的初凝时间,取200/(T+15),取0t =5h ; T ─混凝土的入模温度,取25℃;
H ─混凝土侧压力计算总高度(m );取8.8m ;
β1─外加剂影响修正系数,不掺外加剂时取为1.0,掺具有缓凝作 用的外加剂时取为1.2;取β1 =1.2;
β2─混凝土坍落度影响修正系数,当坍落度小于30mm 时, 取为0.85;50-90mm 时,取为1.10;110-150mm 时,取为1.15;取β2 =1.15
1
2
012132
2
0.220.2225/5 1.2 1.154/76/c F t v
kN m h m h kN m γββ==⨯⨯⨯⨯⨯=
32c F γh 25/m 8.8220kN/m kN m ==⨯=
取F1=76 kN/m 2。
混凝土有效压头高度:H1=F1/γc=76/25=3 m ; 均布荷载计算H2=8.8m-3m=5.8m ;
倾倒混凝土产生的冲击荷载:F2=4km/m 2; 振捣混凝土产生的水平荷载平均值:F3=4km/m 2;
二、面板检算
面板支承于横肋和竖肋之间,竖肋间距为32.5cm ,计算有效压头下最
大压力有效均布荷载,取0.65m 板简化为两边固定两边简支进行受力计算,Lx/Ly=0.5,查表取得系数0.0416; 受均布荷载q (取1m 板计算);
q=(F1+F2)*1.2*0.65m=(76+4)*1.2*0.65 =62.4 N/mm ; 面板最大弯矩:
2
20.04160.0416*62.4/*(325)274.19.M ql N mm mm N m ===
板的抵抗拒:
2
263
max bh 0.65*0.006
3.9*1066
W m -=== max max 63
max M 274.19.70.32153.9*10N m Mpa Mpa W m
σ-==≤=
满足要求; 式中:σ-面板承受的应力(2/N mm );
M -面板计算最大弯矩(.N mm ); W -面板截面抵抗拒; b -面板截面宽度; h -面板截面厚度;
()()
353
22
2.110(0.006m)415
3.8.1211210.3Eh MPa K N m ν⨯⨯===-⨯- 434ql 62.410/0.3250.002610.67mm b 4153.8.m 0.65m /l =0.67mm/325mm=1/4851/400 N m m f B K N f ⨯⨯=⨯⨯⨯≤()==满足要求
式中:E -为弹性模量,h -板厚,ν-泊桑比;B -挠度计算系数
三、竖肋检算
竖肋采用[8槽钢,简化为支承在背架上的多跨连续梁,背楞间距为1m ,连续梁承受32.5cm 宽的均布荷载,则: q=(F1+F2)*1.2*0.325m=(76+4)*1.2*0.325 =31.2 N/mm ;
实际竖肋是跨度1m 的多跨简支梁,为计算方便,近似按单跨简支梁 计算,跨中最大弯矩为:
22
1131.2/m 1m 390088
M ql KN N m ==⨯⨯=⋅()
[8槽钢的截面特性:3
25325x w mm = 41013000x I mm =
max 3
M 3900.15421525325x N m
Mpa Mpa W mm
σ==≤= 4124
5245531.2/10384384 2.110/10130001.91mm [1000/400] 2.5 mm
x ql N mm mm f EI N mm mm ⨯=⨯
⨯⨯<== = 满足要求
四、背架检算
背架采用双拼[14b ,背架的支撑点为对拉拉杆及斜拉拉杆杆,考虑拉杆承受最大距离(极限取值)作为计算载荷范围,水平最大间距为1.6m ,纵向间距1m,可简化跨度为1.6m 的简支梁,承受竖肋传递的集中荷载,为计算方面,可按均布荷载来计算,则: q=(F1+F2)*1.2*1m=(76+4)*1.2*1 =96 N/mm ;
跨中最大弯矩为:
22211
96 1.630.7288
M q l kN m ==⨯⨯=⋅
背架的截面特性:
333
287.051017410x w mm =⨯⨯=⨯
4442609.410121910x I mm =⨯⨯=⨯
32M 30.27.174 MPa []215 MPa 17410x KN m
w mm
σσ=<=⨯=
=满足要求 434
252445596/10(1.6)384384 2.110/1219101.25mm 1600/4004x q l N m m f EI N mm mm mm ⨯⨯=⨯
⨯⨯⨯≤== =满足要求
五、对拉拉杆检算
拉杆采用φ30圆钢,A =307 mm 2;
按单根拉杆承受a=1.6m b=1m 面积内均布荷载进行计算,则:
2(764)/ 1.61128P q a b KN m m m KN =⨯⨯=+⨯⨯=
32
12810181 MPa []215 MPa 707t P N f A mm
σ⨯==≤==满足要求 六、连接螺栓检算
取长度2.2米高度1米为计算单元,采用4.8级M20螺栓,间距200mm.
2
(764)/ 2.21176p KN m m m KN =+⨯⨯=
10005200n ==个
单个螺栓承受17635.25N KN == M20螺栓截面积2314A mm =
2170a 314mm 53.3835.2b V N MP kN N kN =⨯=≥=M20许用拉力设计值
满足要求。