第七节 函数y=Asin(ωx+φ)的性质
- 格式:doc
- 大小:111.00 KB
- 文档页数:2
辅导讲义――函数y =Asin(ωx +φ)的图象及性质教学内容1.y =A sin(ωx +φ)的有关概念y =A sin(ωx +φ)(A >0,ω>0),x ∈[0,+∞)振幅 周期 频率 相位 初相 AT =2πωf =1T =ω2πωx +φφ2.用五点法画y =A sin(ωx +φ)一个周期内的简图 五个特征点的取法:设X =ωx +φ,由X 取0,2π,π,23π,π2来求出相应的x 的值,及对应的y 值,再描点作图.如下表所示.x0-φω π2-φω π-φω 3π2-φω 2π-φω ωx +φ 0 π2 π 3π2 2π y =A sin(ωx +φ)A-A3.函数y =sin x 的图象经变换得到y =A sin(ωx +φ)的图象的步骤如下:[例1] 函数)421sin(2π+=x y 的周期,振幅,初相分别是______________.[巩固1] 函数)20,0,)(sin(πϕωϕω<≤>∈+=R x x y 的部分图象如图,则ω=______;ϕ=______知识模块1 y =A sin(ωx +φ)精典例题透析[巩固] 若关于x 的方程01sin sin 2=+-+m x x 有解,则实数m 的取值范围为_____________.[例5] 要得到)21sin(x y -=的图象,只需将)621sin(π--=x y 的图象_______________.[巩固1] 为得到函数)3cos(π+=x y 的图象,只需将函数x y sin =的图象_____________________.[巩固2] 为得到函数)62sin(π-=x y 的图象,只需将函数x y 2cos =的图象_____________________.[例6] 已知函数x x f πsin )(=的图象的一部分如左图,则右图的函数图象所对的函数解析式为_____________.[巩固1] 函数)0,0,0)(sin()(πϕωϕω<<>>+=A x A x f 的部分图象如图所示,则)(x f 的解析式为____________.[巩固2] 已知函数),0,)(sin()(πϕπωϕω<<->∈+=R x x A x f 的部分图象如图所示,则函数)(x f 的解析式 是_______________.[例7] 设函数f (x )=3sin(ωx +φ)(ω>0,-π2<φ<π2)的图象关于直线x =2π3对称,它的周期是π,则下列说法正确的是________.(填序号)[例](1)已知函数f (x )=2sin(ωx +φ)(其中ω>0,|φ|<π2)的最小正周期是π,且f (0)=3,则ω=_____,φ=_______.(2)已知函数f (x )=A sin(ωx +φ) (A >0,|φ|<π2,ω>0)的图象的一部分如图所示,则该函数的解析式为____________.[巩固] 如图为y =A sin(ωx +φ)的图象的一段.(1)求其解析式;(2)若将y =A sin(ωx +φ)的图象向左平移π6个单位长度后得y =f (x ),求f (x )的对称轴方程.题型三:函数y =A sin(ωx +φ)的性质[例] (2014·重庆改编)已知函数f (x )=3sin(ωx +φ)(ω>0,-π2≤φ<π2)的图象关于直线x =π3对称,且图象上相邻两个最高点的距离为π.(1)求ω和φ的值;(2)当x ∈[0,π2]时,求函数y =f (x )的最大值和最小值.[巩固] 已知函数f (x )=A sin(ωx +φ)(x ∈R ,ω,A >0,0<φ<π2)的最大值为2,最小正周期为π,直线x =π6是其图象的一条对称轴.(1)求函数f (x )的解析式;(2)求函数g (x )=f (x -π12)-f (x +π12)的单调递增区间.1.(2013·山东)将函数y =sin(2x +φ)的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的一个可能取值为( )A .3π4B .π4C .0D .-π42.(2013·浙江)函数f (x )=sin x cos x +32cos 2x 的最小正周期和振幅分别是__________.3.已知函数f (x )=2sin(ωx +φ)(ω>0,且|φ|<π2)的部分图象如图所示,则函数f (x )的一个单调递增区间是______________.4.电流强度I (安)随时间t (秒)变化的函数I =A sin(ωt +φ)(A >0,ω>0,0<φ<π2)的图象如右图所示,则当t =1100秒时,电流强度是_____________.5.已知函数f (x )=2sin ωx 在区间[-π3,π4]上的最小值为-2,则ω的取值范围是_________________.6.设偶函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,△KLM 为等腰直角三角形,∠KML =90°, KL =1,则f (16)的值为________.,7.某城市一年中12个月的平均气温与月份的关系可近似地用三角函数y =a +A cos ⎣⎡⎦⎤π6(x -6) (x =1,2,3,…,12,A >0)来表示,已知6月份的月平均气温最高,为28℃,12月份的月平均气温最低,为18℃,则10月份的平均气温值 为________℃.夯实基础训练。
考点十八 函数y =A sin(ωx +φ)的图象和性质知识梳理1.五点法作y =A sin(ωx +φ)一个周期内的简图用“五点法”作图,就是令ωx +φ取下列5个特殊值:0, π2, π, 3π2, 2π,通过列表,计算五点的坐标,描点得到图象 2.三角函数图象变换3.函数y =A sin(ωx +φ)的几个概念若函数y =A sin(ωx +φ) (A >0,ω>0,x ∈(-∞,+∞))表示一个振动量时,则A 叫做振幅,T =2πω叫做周期,f =1T叫做频率,ωx +φ叫做相位,φ叫做初相.典例剖析题型一 三角函数的图象变换例1 (2015山东文)要得到函数y =sin ⎝⎛⎭⎫4x -π3的图象,只需将函数y =sin 4x 的图象________.(填序号)① 向左平移π12个单位 ②向右平移π12个单位 ③向左平移π3个单位 ④向右平移π3个单位答案 ②解析 ∵y =sin ⎝⎛⎭⎫4x -π3=sin ⎣⎡⎦⎤4⎝⎛⎭⎫x -π12, ∴要得到y =sin ⎝⎛⎭⎫4x -π3的图象,只需将函数y =sin 4x 的图象向右平移π12个单位.变式训练 把函数y =sin(x +π6)图象上各点的横坐标缩短到原来的12(纵坐标不变),再将图象向右平移π3个单位长度,那么所得图象的一条对称轴方程为________.答案 x =-π2解析 将y =sin(x +π6)图象上各点的横坐标缩短到原来的12(纵坐标不变),得到函数y =sin(2x+π6);再将图象向右平移π3个单位长度,得到函数y =sin[2(x -π3)+π6]=sin(2x -π2),故x =-π2是其图象的一条对称轴方程.解题要点 图象平移时要注意平移量的求解,由y =sin x 的图象变换到y =A sin(ωx +φ)的图象,两种变换区别在于:先相位变换再周期变换(伸缩变换),平移量是|φ|个单位;而先周期变换(伸缩变换)再相位变换,平移量是|φ|ω(ω>0)个单位.原因在于相位变换和周期变换都是针对x 而言,即x 本身加减多少值,而不是依赖于ωx 加减多少值. 题型二 三角函数的五点法作图 例2 设函数y =2sin ⎝⎛⎭⎫2x +π3 (1)用五点法作出它在长度为一个周期的闭区间上的图象;(2)说明函数f (x )的图象可由y =sin x 的图象经过怎样的变换而得到的. 解析 (1) 列表,描点画出图象:(2) 方法一 把y =sin x 的图象上所有的点向左平移π3个单位长度,得到y =sin ⎝⎛⎭⎫x +π3的图象,再把y =sin ⎝⎛⎭⎫x +π3的图象上的点的横坐标缩短到原来的12倍(纵坐标不变),得到y =sin ⎝⎛⎭⎫2x +π3的图象,最后把y =sin ⎝⎛⎭⎫2x +π3上所有点的纵坐标伸长到原来的2倍(横坐标不变),即可得到y =2sin ⎝⎛⎭⎫2x +π3的图象. 方法二 将y =sin x 的图象上每一点的横坐标x 缩短为原来的12倍,纵坐标不变,得到y =sin2x 的图象;再将y =sin 2x 的图象向左平移π6个单位长度,得到y =sin 2⎝⎛⎭⎫x +π6=sin ⎝⎛⎭⎫2x +π3的图象;再将y =sin ⎝⎛⎭⎫2x +π3的图象上每一点的横坐标保持不变,纵坐标伸长为原来的2倍,得到y =2sin ⎝⎛⎭⎫2x +π3的图象. 解题要点 (1)五点法作简图:用“五点法”作y =A sin(ωx +φ)的简图,主要是通过变量代换,设z =ωx +φ,由z 取0,π2,π,32π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象.(2)图象变换:由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)的图象,有两种主要途径:“先平移后伸缩”与“先伸缩后平移”. 题型三 由图象求y =A sin(ωx +φ)的解析式例3 函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,-π2<φ<π2,x ∈R 的部分图象如图所示. (1)求函数y =f (x )的解析式;(2)当x ∈⎣⎡⎦⎤-π,-π6时,求f (x )的取值范围.解析 (1)由题中图象得A =1,T 4=2π3-π6=π2,所以T =2π,则ω=1.将点⎝⎛⎭⎫π6,1代入得sin ⎝⎛⎭⎫π6+φ=1,又-π2<φ<π2,所以φ=π3,因此函数f (x )=sin ⎝⎛⎭⎫x +π3. (2)由于-π≤x ≤-π6,-2π3≤x +π3≤π6,所以-1≤sin ⎝⎛⎭⎫x +π3≤12, 所以f (x )的取值范围是⎣⎡⎦⎤-1,12. 解题要点 确定y =A sin(ωx +φ)+b (A >0,ω>0)的步骤和方法 (1)求A ,b :确定函数的最大值M 和最小值m ,则A =M -m 2,b =M +m2;(2)求ω:确定函数的周期T ,则可得ω=2πT ;(3)求φ:常用的方法有:①代入法:把图象上的一个已知点代入(此时A ,ω,b 已知)或代入图象与直线y =b 的交点求解(此时要注意交点在上升区间上还是在下降区间上).②五点法:确定φ值时,往往以寻找“五点法”中的某一个点为突破口.具体如下: “第一点”(即图象上升时与x 轴的交点)时ωx +φ=0;“第二点”(即图象的“峰点”)时ωx +φ=π2;“第三点”(即图象下降时与x 轴的交点)时ωx +φ=π;“第四点”(即图象的“谷点”)时ωx +φ=3π2;“第五点”时ωx +φ=2π.题型四 函数y =A sin(ωx +φ)的对称性、周期性、奇偶性 例4 函数f (x )=cos(2x -π6)的最小正周期是________.答案 π解析 最小正周期为T =2πω=2π2=π.变式训练 已知函数f (x )=sin ⎝⎛⎭⎫2x +3π2(x ∈R ),下面结论错误的是________.(填序号) ① 函数f (x )的最小正周期为π ② 函数f (x )是偶函数③ 函数f (x )的图象关于直线x =π4对称④ 函数f (x )在区间⎣⎡⎦⎤0,π2上是增函数 答案 ③解析 f (x )=sin ⎝⎛⎭⎫2x +3π2=-cos 2x ,故其最小正周期为π,故①正确;易知函数f (x )是偶函数,②正确;由函数f (x )=-cos 2x 的图象可知,函数f (x )的图象不关于直线x =π4对称,③错误;由函数f (x )的图象易知,函数f (x )在⎣⎡⎦⎤0,π2上是增函数,④正确,故选③. 解题要点 1.三角函数的奇偶性的判断技巧:首先要知道基本三角函数的奇偶性,再根据题目去判断所求三角函数的奇偶性;也可以根据图象做判断.2.求三角函数周期的方法: ①利用周期函数的定义.②利用公式:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|.③利用图象. 3.三角函数的对称性:正、余弦函数的图象既是中心对称图形,又是轴对称图形,正切函数的图象只是中心对称图形,应熟记它们的对称轴和对称中心,并注意数形结合思想的应用.另外函数y =A sin(ωx +φ)、余弦函数y =A cos(ωx +φ)在对称轴处必取极值±A ,在对称轴处必取0,借助这一性质可快速解题.当堂练习1.函数f (x )=2sin(ωx +φ)(ω>0,-π2<φ<π2)的部分图象如图所示,则ω,φ的值分别是________.答案 2,-π3解析 由图象可得,3T 4=5π12-⎝⎛⎭⎫-π3=3π4, ∴T =π,则ω=2ππ=2,再将点⎝⎛⎭⎫5π12,2代入f (x )=2sin(2x +φ)中得,sin ⎝⎛⎭⎫5π6+φ=1, 令5π6+φ=2k π+π2,k ∈Z , 解得,φ=2k π-π3,k ∈Z ,又∵φ∈⎝⎛⎭⎫-π2,π2,则取k =0,∴φ=-π3. 2.(2014·辽宁卷) 将函数y =3sin ⎝⎛⎭⎫2x +π3的图象向右平移π2个单位长度,所得图象对应的函数________.(填序号)①在区间⎣⎡⎦⎤π12,7π12上单调递减 ②在区间⎣⎡⎦⎤π12,7π12上单调递增③在区间⎣⎡⎦⎤-π6,π3上单调递减 ④在区间⎣⎡⎦⎤-π6,π3上单调递增 答案 ②解析 由题可知,将函数y =3sin ⎝⎛⎭⎫2x +π3的图象向右平移π2个单位长度得到函数y =3sin ⎝⎛⎭⎫2x -23π的图象,令-π2+2k π≤2x -23π≤π2+2k π,k ∈Z ,即π12+k π≤x ≤7π12+k π,k ∈Z 时,函数单调递增,即函数y =3sin ⎝⎛⎭⎫2x -23π的单调递增区间为⎣⎡⎦⎤π12+k π,7π12+k π,k ∈Z ,可知当k =0时,函数在区间⎣⎡⎦⎤π12,7π12上单调递增.3. (2014·四川卷)为了得到函数y =sin (2x +1)的图象,只需把函数y =sin 2x 的图象上所有的点________.(填序号)①向左平行移动12个单位长度 ②向右平行移动12个单位长度③向左平行移动1个单位长度 ④向右平行移动1个单位长度 答案 ①解析 因为y =sin(2x +1)=sin2⎝⎛⎭⎫x +12,所以为得到函数y =sin(2x +1)的图象,只需要将y =sin 2x 的图象向左平行移动12个单位长度.4.(2014·安徽卷)若将函数f (x )=sin ⎝⎛⎭⎫2x +π4的图象向右平移φ个单位,所得图象关于y 轴对称,则φ的最小正值是________. 答案3π8解析 将f (x )=sin ⎝⎛⎭⎫2x +π4的图象向右平移φ个单位,得到y =sin ⎝⎛⎭⎫2x +π4-2φ的图象,由该函数的图象关于y 轴对称,可知sin ⎝⎛⎭⎫π4-2φ=±1,即sin ⎝⎛⎭⎫2φ-π4=±1,故2φ-π4=k π+π2,k ∈Z ,即φ=k π2+3π8,k ∈Z ,所以当φ>0时,φmin =3π8.5.(2015新课标Ⅰ文)函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为________.答案 ⎝⎛⎭⎫2k -14,2k +34,k ∈Z 解析 由已知图象可求得ω与φ的值,然后利用余弦函数的单调区间求解. 由图象知,周期T =2⎝⎛⎭⎫54-14=2, ∴2πω=2,∴ω=π. 由π×14+φ=π2+2k π,k ∈Z ,不妨取φ=π4,∴f (x )=cos ⎝⎛⎭⎫πx +π4. 由2k π<πx +π4<2k π+π,k ∈Z ,得2k -14<x <2k +34,k ∈Z ,∴f (x )的单调递减区间为⎝⎛⎭⎫2k -14,2k +34,k ∈Z . 课后作业一、 填空题1.将函数f (x )=sin 2x 的图象向左平移π12个单位,得到函数g (x )=sin(2x +φ)0<φ<π2的图象,则φ等于________. 答案 π6解析 由题意g (x )=sin 2(x +π12)=sin(2x +π6),又g (x )=sin(2x +φ),0<φ<π2,∴φ=π6.2.将函数y =sin(2x +φ)的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的一个可能取值为________. 答案 π4解析 由函数横向平移规律“左加右减”则y =sin(2x +φ)向左平移π8个单位得y =sin(2x +π4+φ).由y =sin(2x +π4+φ)为偶函数得π4+φ=π2+k π,k ∈Z ,则φ=π4+k π,k ∈Z ,则φ的一个可能值为π4.3.下列函数中,周期为π,且在[π4,π2]上为减函数的是________.①y =sin(2x +π2) ②y =cos(2x +π2) ③y =sin(x +π2) ④y =cos(x +π2)答案 ①解析 对于选项①,注意到y =sin(2x +π2)=cos2x 的周期为π,且在[π4,π2]上是减函数,故选①.4.函数y =cos x (x ∈R )的图象向左平移π2个单位后,得到函数y =g (x )的图象,则g (x )的解析式应为________. 答案 -sin x解析 由图象的平移得g (x )=cos ⎝⎛⎭⎫x +π2=-sin x . 5.已知函数y =cos(ωx +φ)(ω>0,|φ|<π)的部分图象如图所示,则________.① ω=1,φ=2π3② ω=1,φ=-2π3③ ω=2,φ=2π3④ ω=2,φ=-2π3答案 ④解析 由题图可知14T =7π12-π3=π4,∴T =π,又T =2πω,∴ω=2,又f (x )的图象过点⎝⎛⎭⎫π3,1,∴cos ⎝⎛⎭⎫2×π3+φ=1,∴2π3+φ=2k π,令k =0,得φ=-23π. 6.要得到函数y =sin(x -π6)的图象可将函数y =sin(x +π6)的图象上的所有点________.答案 向右平移π3个长度单位解析 由y =sin[(x -π3)+π6]=sin(x -π6)知应向右平移π3个长度单位.7.(2015陕西理)如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ⎝⎛⎭⎫π6x +φ+k ,据此函数可知,这段时间水深(单位:m)的最大值为________.答案 8解析 由图易得y min =k -3=2,则k =5. ∴y max =k +3=8.8.将函数f (x )=sin ωx (其中ω>0)的图象向右平移π4个单位长度,所得图象经过点⎝⎛⎭⎫3π4,0,则ω的最小值是________. 答案 2解析 ∵y =sin ω(x -π4)过点(34π,0),∴sin π2ω=0,∴π2ω=k π,ω=2k ,当k =1时,ω最小值为2.9.函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示,则f (x )=________.答案 2sin(π8x +π4)解析 依题意得,A =2,2πω=2×(6+2)=16,ω=π8, sin(π8×2+φ)=1,又|φ|<π2,因此φ=π4,f (x )=2sin(π8x +π4). 10.设y =sin(ωx +φ)(ω>0,φ<(-π2,π2))的最小正周期为π,且其图象关于直线x =π12对称,则在下面四个结论中:①图象关于点(π4,0)对称; ②图象关于点(π3,0)对称;③在[0,π6]上是增函数; ④在[-π6,0]上是增函数.正确结论的编号为________. 答案 ②④解析 ∵T =π,∴ω=2,∴y =sin(2x +φ),∵图象关于直线x =π12对称,∴π6+φ=π2+k π,(k ∈Z ),∴φ=π3+k π(k ∈Z ),又∵φ∈(-π2,π2),∴φ=π3. ∴y =sin(2x +π3).当x =π4时,y =sin(π2+π3)=12,故①不正确.当x =π3时,y =0,故②正确;当x ∈[0,π6]时,2x +π3∈[π3,2π3],y =sin(2x +π3)不是增函数,即③不正确;当x ∈[-π6,0]时,2x +π3∈[0,π3]⊆[0,π2],故④正确.11. (2015湖南文)已知ω>0,在函数y =2sin ωx 与y =2cos ωx 的图象的交点中,距离最短的两个交点的距离为23,则ω=________. 答案 π2解析 由⎩⎪⎨⎪⎧y =2sin ωx ,y =2cos ωx得sin ωx =cos ωx ,∴tan ωx =1,ωx =k π+π4 (k ∈Z ).∵ω>0,∴x =k πω+π4ω(k ∈Z ).设距离最短的两个交点分别为(x 1,y 1),(x 2,y 2),不妨取x 1=π4ω,x 2=5π4ω,则|x 2-x 1|=⎪⎪⎪⎪5π4ω-π4ω=πω.又结合图形知|y 2-y 1|=⎪⎪⎪⎪2×⎝⎛⎭⎫-22-2×22=22, 且(x 1,y 1)与(x 2,y 2)间的距离为23, ∴(x 2-x 1)2+(y 2-y 1)2=(23)2, ∴⎝⎛⎭⎫πω2+(22)2=12,∴ω=π2. 二、解答题12. 已知函数f (x )=2sin ⎝⎛⎭⎫2x -π4+1. (1)求它的振幅、最小正周期、初相; (2)画出函数y =f (x )在⎣⎡⎦⎤-π2,π2上的图象.解析 (1)振幅为2,最小正周期T =π,初相为-π4.(2)图象如图所示.13.(2015湖北文)某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:(1) f (x )的解析式; (2) 将y =f (x )图象上所有点向左平行移动π6个单位长度,得到y =g (x )的图象,求y =g (x )的图象离原点O 最近的对称中心.解析 (1)根据表中已知数据,解得A =5,ω=2,φ=-π6.数据补全如下表:且函数表达式为f (x )=5sin ⎝⎭⎫2x -π6. (2)由(1)知f (x )=5sin ⎝⎛⎭⎫2x -π6, 因此g (x )=5sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π6-π6=5sin ⎝⎛⎭⎫2x +π6. 因为y =sin x 的对称中心为(k π,0),k ∈Z . 令2x +π6=k π,解得x =k π2-π12,k ∈Z .即y =g (x )图象的对称中心为⎝⎛⎭⎫k π2-π12,0,k ∈Z ,其中离原点O 最近的对称中心为⎝⎛⎭⎫-π12,0.。
《函数y =A sin(ωx +φ)的图象与性质》知识清单知识点1(0)ϕϕ≠对函数sin()y x ϕ=+的图象的影响一般地,当动点M 的起点位置Q 所对应的角为ϕ时,对应的函数是sin()(0)y x ϕϕ=+≠,把正弦曲线上的所有点向①______(当0ϕ>时)或向右(当0ϕ<时)平移②______个单位长度,就得到函数sin()y x ϕ=+的图象.知识点2(0)ωω>对函数sin()y x ωϕ=+的图象的影响一般地,函数sin()(0)y x ωϕω=+>的周期是③______,把sin()y x ϕ=+图象上所有点的横坐标④______(当1ω>时)或⑤______(当01ω<<时)到原来的1ω倍(纵坐标不变),就得到sin()y x ωϕ=+的图象.知识点3(0)A A >对sin()y A x ωϕ=+的图象的影响一般地,函数sin()y A x ωϕ=+的图象,可以看作是把sin()y x ωϕ=+图象上所有点的纵坐标⑥______(当A 1>时)或⑦______(当01A <<时)到原来的A 倍(横坐标不变)而得到.从而,函数sin()y A x ωϕ=+的值域是⑧______,最大值是A ,最小值是A -.知识点4函数sin y x =的图象与y =sin()(0,0)A x A ωϕω+>>的图象的关系知识点5描述简谐运动的物理量简谐运动可以用函数sin(),[0,)y A x x ωϕ=+∈+∞表示,其中0,0A ω>>.(1)A 是简谐运动的振幅,它是做简谐运动的物体离开平衡位置的⑨______;(2)周期2T πω=,它是做简谐运动的物体往复运动一次所需要的⑩______;(3)频率由公式12f T ωπ==给出,它是做简谐运动的物体在单位时间内往复运动的⑪______; (4)x ωϕ+称为⑫______;(5)0x =时的相位ϕ称为⑬______.答案:①左②||ϕ③2πω④缩短⑤伸长⑥伸长⑦缩短⑧[,]A A -⑨最大距离⑩时间⑪次数⑫相位⑬初相【知识辨析】判断正误,正确的画“√”,错误的画“⨯”.1.将函数sin y x =的图象向左平移2π个单位长度,得到函数cos y x =的图象.( ) 2.将函数sin y x =图象上各点的纵坐标变为原来的2倍,便得到函数2sin y x =的图象.( )3.把函数sin y x =的图象上所有点的横坐标伸长到原来的2倍,得到sin 2y x =的图象.( )4.把函数sin 2y x =的图象向左平移4π个单位长度,得到函数sin 24y x π⎛⎫=+ ⎪⎝⎭的图象.( )5.在sin()y A x ωϕ=+的图象中,相邻的两条对称轴之间的距离为1个周期.( )6.函数13sin 26y x π⎛⎫=- ⎪⎝⎭的相位为6π-.( ) 答案:1.√2.√3.×应得到1sin 2y x =的图象. 4.×应得到sin 2()sin(2)42y x x ππ=+=+的图象. 5.×相邻的两条对称轴间的距离为半个周期.6.×函数13sin()26y x π=-的初相为6π-,相位为126x π-.。
正弦型函数y=Asin(ωx+φ)的图像和性质导入新课思路1(情境引入)在物理和工程技术的许多问题中,都要遇到形如y=Asin(ωx+φ)的函数(其中A 、ω、φ是常数)。
例如,物体做简谐振动时位移y 与时间x 的关系,交流电中电流强度y 与时间x 的关系等,都可用这类函数来表示。
这些问题的实际意义往往可从其函数图象上直观地看出,因此,我们有必要画好这些函数的图象。
揭示课题:函数y=Asin(ωx+φ)的图象。
思路2(直接导入)从解析式来看,函数y=sinx 与函数y=Asin(ωx+φ)存在着怎样的关系?从图象上看,函数y=sinx 与函数y=Asin(ωx+φ)存在着怎样的关系?接下来,我们就分别探索φ、ω、A 对y=Asin(ωx+φ)的图象的影响。
一、新知探究 提出问题(1)你能用学过的三角函数知识描述大观览车周而复始的运动吗?(2)你能算出某一时刻你的“座位”离开地面的高度吗?活动:教师可先制作一个大观览车模型,让学生动手画出大观览车的示意图,或先演示课件然后和学生一起探究上述问题。
如图1是大观览车的示意图。
设观览车转轮半径长为R ,转动的角度为ωrad/s.点P 0表示座椅的初始位置.此时∠xoP 0=φ,当转轮转动t 秒后,点P 0P 位置,射线OP 的转角为ωt+φ,由正弦函数的定义,得点P 的纵坐标y 与时间t 的函数关系为y=Rsin(ωt+φ).这样,如果已知车轮半径R ,转动的角速度ω和初始的角度φ你就可计算出某一时刻你的“座位”离开地面的高度了。
在函数y= Rsin(ωt+φ)中,点P 旋转一周所需要的时间 T=ϖπ2,叫做点P 的转动周期。
在一秒内,点P 旋转的周数f=,2π=T 叫做转动的频率。
OP 0与x 轴正向的夹角φ叫做初相。
例如一动点以角速度4πrad/s 做匀速圆周运动,则T=.21,2142Hz Tf s ===ππ形如y=Asin(ωx+φ)(其中A ,ω,φ都是常数)的函数,在物理、工程等科学的研究中经常遇到,这种类型的函数通常叫做正弦函数。
教师辅导讲义()()f x T f x +=,那么函数()f x 就叫做周期函数,T 叫做该函数的周期.4、⑴)sin(ϕω+=x A y 对称轴:令2x k πωϕπ+=+,得ωϕππ-+=2k x对称中心:πϕωk x =+,得ωϕπ-=k x ,))(0,(Z k k ∈-ωϕπ; ⑵)cos(ϕω+=x A y 对称轴:令πϕωk x =+,得ωϕπ-=k x ;对称中心:2ππϕω+=+k x ,得ωϕππ-+=2k x ,))(0,2(Z k k ∈-+ωϕππ;⑶周期公式:①函数sin()y A x ωϕ=+及cos()y A x ωϕ=+的周期ωπ2=T (A 、ω、ϕ为常数,且A ≠0).②函数()φω+=x A y tan 的周期ωπ=T (A 、ω、ϕ为常数,且A ≠0). 6. 五点法作的简图,设,取0、、、、来求相应的值以及对应的y 值再描点作图。
7. )sin(ϕ+ω=x A y 的的图像8. 函数的变换:(1)函数的平移变换)sin(ϕω+=x A y ϕω+=x t 2ππ23ππ2xA .B .C .D .3.(多选)已知a 是实数,则函数f (x )=1+sin ax 的值可能是( )A .0B .1C .2D .34.已知函数()sin f x x ω=(其中0ω>)图象过(,1)π-点,且在区间(0,)3π上单调递增,则ω的值为_______.【本知识点小结1】【例题解析2】探究φ对y=sin(x +φ)的图象的影响1.将函数()3sin 6f x x π⎛⎫=+ ⎪⎝⎭的图像向右平移4π个单位长度后,所得图像对应的函数解析式可以是( )A .3sin 12y x π⎛⎫=- ⎪⎝⎭B .23sin 3y x π⎛⎫=+ ⎪⎝⎭ C .53sin 12y x π⎛⎫=+ ⎪⎝⎭ D .3sin 3y x π⎛⎫=- ⎪⎝⎭2.函数()2sin(2)02f x x πϕϕ⎛⎫=+<< ⎪⎝⎭的图象如图所示,现将()y f x =的图象向右平移6π个单位长度,所得图象对应的函数解析式为( )A .2sin 26y x π⎛⎫=- ⎪⎝⎭B .2sin 26y x π⎛⎫=+ ⎪⎝⎭ C .2cos2y x = D .2sin 2y x =3.(多选)要得到函数sin y x =的图象,只需将sin 24y x π⎛⎫=+ ⎪⎝⎭的图象( )A .先将图像向右平移8π,再将图像上各点的纵坐标不变,横坐标变为原来的2倍B .先将图像向右平移2π,再将图像上各点的纵坐标不变,横坐标变为原来的2倍 C .先将图像上各点的纵坐标不变,横坐标变为原来的2倍,再将图像向右平移4πD .先将图像上各点的纵坐标不变,横坐标变为原来的2倍,再将图像向右平移8π4.在平面直角坐标系中,将曲线:sin 2C y x =上每一点的横坐标变为原来的2倍,纵坐标保持不变,所得新的曲线的方程为______________________________.【巩固练习2】1.将函数sin y x =的图象向左平移π4个单位长度,再向上平移2个单位长度,得到的图象的解析式是( )A .πsin 24y x ⎛⎫=-+ ⎪⎝⎭B .πsin 24y x ⎛⎫=+- ⎪⎝⎭C .πsin 24y x ⎛⎫=-- ⎪⎝⎭D .πsin 24y x ⎛⎫=++ ⎪⎝⎭2.函数2sin 24y x π⎛⎫=+ ⎪⎝⎭的振幅、频率和初相分别为( )A .2,1π,4πB .2,12π,4π C .2,1π,8π D .2,12π,8π-3.(多选)已知函数()3sin()0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象如图所示,则下列说法正确的是( )A .()f x 的图象关于直线4x π=-对称B .()f x 的图象的对称中心是,04π⎛⎫- ⎪⎝⎭C .将()f x 的图象向右平移12π个单位长度,得到3sin3y x =的图象 D .将()f x 的图象向左平移12π个单位长度,得到3sin3y x =的图象 4.将函数()sin 06y x πωω⎛⎫=-> ⎪⎝⎭的图像分别向左、向右各平移6π个单位长度后,所得的两个函数图像的对称轴重合,则ω的最小值为___________.C .()f x 的图象关于点π,06⎛⎫ ⎪⎝⎭对称 D .()f x 在π0,2⎛⎫⎪⎝⎭内是增函数4.函数()()ππ2sin 0,22f x x ωϕωϕ⎛⎫=+>-<< ⎪⎝⎭的部分图象如图所示,则函数()f x 解析式为__________.【本知识点小结4】 四、当堂检测限时(分钟) 用时(分钟)难度 分值 得分 得分率一、单选题1.()cos y x ωϕ=+的部分图像如图所示,则其单调递减区间为( )A .172,2,Z 1212k k k ⎛⎫++∈ ⎪⎝⎭B .17,,Z 1212k k k ⎛⎫++∈ ⎪⎝⎭C .172π,2π,Z 1212k k k ⎛⎫++∈ ⎪⎝⎭D .17π,π,Z 1212k k k ⎛⎫++∈ ⎪⎝⎭2.已知曲线12π:sin 3C y x ω⎛⎫=+ ⎪⎝⎭的周期为π,2:sin C y x =,则下面结论正确的是( ) A .把2C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π3个单位长度,得到曲线1CB .把2C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π6个单位长度,得到曲线1CC .把2C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π3个单位长度,得到曲线1CD .把2C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π6个单位长度,得到曲线1C3.已知函数()π3sin 24f x x ⎛⎫=-+ ⎪⎝⎭的图象,给出以下四个论断( )A .()f x 的图象关于直线5π8x =-对称B .()f x 的图象的一个对称中心为7π,08⎛⎫⎪⎝⎭C .()f x 在区间π3π,88⎡⎤⎢⎥⎣⎦上是减函数D .()f x 可由3sin 2y x =-向左平移π8个单位4.如图是函数π()3sin()0,||2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象,则,ωϕ的值是( )A .2,3ωϕ==πB .π2,6ωϕ== C .1π,23ωϕ== D .1π,26ωϕ==5.(2021秋•渝水区校级月考)若将函数y =sin (3x +φ)的图象向右平移π4个单位后得到的图象关于点(π3,0)对称,则|φ|的最小值是( ) A .π4B .π3C .π2D .3π46.(2021秋•谯城区校级月考)已知函数f(x)=Ksin(ωx +φ)(K >0,0<ω<10,|φ|<π2)的部分图象如图所示,点A(0,√32),B(7π24,−1),则将函数f (x )图象向左平移π12个单位长度,然后横坐标变为原来的2倍、纵坐标不变,得到的图象对应的函数解析式是( )A .y =sin(2x +5π12) B .y =sin(8x +5π12)C .y =sin(2x +2π3)D .y =sin(8x +2π3)C .0x ∃∈R 且00x ≠,使得()()00f x f x =-D .x ∀∈R ,都有()56f x f x π⎛⎫-=- ⎪⎝⎭11.(2021秋•湛江月考)函数f (x )=3cos (ωx +φ)(ω>0,|φ|<π2)的最小正周期为4π,将f (x )的图象向左平移π3个单位长度,得到函数g (x )的图象,且g (x )是奇函数,则( ) A .φ=π3B .g (x )在区间[π3,3π2]上的最大值为﹣3C .φ=π6D .g (x )在区间[π3,3π2]的最大值为−3212.(2021秋•湖南月考)已知函数y =A sin (ωx +φ)(πA >0,ω>0,|φ|<π2)的部分图象如图,将该函数的图象向x 轴负方向平移π6个单位,再把所得曲线上点的横坐标变为原来2倍(纵坐标不变),得到函数f (x )的图象.下列结论正确的是( )A .当−π5≤x ≤2π3时,f (x )的取值范围是[﹣1,2] B .f (−41π6)=√3C .曲线y =f (x )的对称轴是x =k π+π2(k ∈Z )D .若|x 1﹣x 2|<π2,则|f (x 1)﹣f (x 2)|<4三.填空题 13.已知函数()()cos (0,0π)f x x ωϕωϕ=+>≤≤是奇函数,且在ππ,64⎡⎤-⎢⎥⎣⎦上是严格减函数,则ω的最大值为_______________.14.已知函数()y f x =的表达式()()1sin 20,022f x A x A πϕϕ⎛⎫=+-><< ⎪⎝⎭,()y f x =的图象在y 轴上的截距为1,且关于直线12x π=对称,若存在0,2x π⎡⎤∈⎢⎥⎣⎦,使()23m m f x -≥成立,则实数m 的取值范围为______.。
§7 函数y =Asin(ωx +φ)的性质(1课时)
洋浦实验中学 吴永和
一、 教学目标:
1、 知识与技能
(1)进一步理解表达式y =Asin(ωx +φ),掌握A 、φ、ωx +φ的含义;(2)熟练掌握由x y sin =的图象得到函数)()sin(R x k x A y ∈+ϕ+ω=的图象的方法;(3)会由函数y =Asin(ωx +φ)的图像讨论其性质;(4)能解决一些综合性的问题。
2、 过程与方法
通过具体例题和学生练习,使学生能正确作出函数y =Asin(ωx +φ)的图像;并根据图像求解关系性质的问题;讲解例题,总结方法,巩固练习。
3、 情感态度与价值观
通过本节的学习,渗透数形结合的思想;通过学生的亲身实践,引发学生学习兴趣;创设问题情景,激发学生分析、探求的学习态度;让学生感受数学的严谨性,培养学生逻辑思维的缜密性。
二、教学重、难点
重点:函数y =Asin(ωx +φ)的图像,函数y =Asin(ωx +φ)的性质。
难点: 各种性质的应用。
三、学法与教学用具
在前面,我们讨论了正弦、余弦、正切函数的性质,如:定义域、值域、最值、周期性、单调性和奇偶性,那么,对于函数y =Asin(ωx +φ)的性质会是什么样的呢?今天我们这一节课就研究这个问题。
教学用具:投影机、三角板
四、教学思路
【创设情境,揭示课题】
函数y =Asin(ωx +φ)的性质问题,是三角函数中的重要问题,是高中数学的重点内容,也是高考的热点,因为,函数y =Asin(ωx +φ)在我们的实际生活中可以找到很多模型,与我们的生活息息相关。
【探究新知】
复习提问:(1)如何由x y sin =的图象得到函数)sin(ϕ+ω=x A y 的图象?
(2)如何用五点法作)sin(ϕ+ω=x A y 的图象?
(3)ϕω、、A 对函数)sin(ϕ+ω=x A y 图象的影响作用
函数[)0,0(,),0),sin(>ω>+∞∈ϕ+ω=A x x A y 其中的物理意义:
函数表示一个振动量时:
A :这个量振动时离开平衡位置的最大距离,称为“振幅”
T :ω
π=
2T 往复振动一次所需的时间,称为“周期” f :π
ω==21T f 单位时间内往返振动的次数,称为“频率” ϕ+ωx :称为相位
ϕ:x = 0时的相位,称为“初相” 例一.函数)2||,0,0(),sin(π<ϕ>ω>ϕ+ω=A x A y 的最小值是-2,其图象最
高点与最低点横坐标差是3π,又:图象过点(0,1),求函数解析式。
解:易知:A = 2 半周期π=32T ∴T = 6π 即π=ω
π62 从而:31=ω 设:)3
1
sin(2ϕ+=x y 令x = 0 有1sin 2=ϕ 又:2||π<
ϕ ∴6
π=ϕ ∴所求函数解析式为)631sin(2π+=x y 例二.函数f (x )的横坐标伸长为原来的2倍,再向左平移2
π个单位所得的曲线是x y sin 2
1=的图像,试求)(x f y =的解析式。
解:将x y sin 21=的图像向右平移2
π个单位得:)2sin(21π-=x y 即x y cos 21-=的图像再将横坐标压缩到原来的21得:x y 2cos 2
1-= ∴x x f y 2cos 21)(-== 例三.求下列函数的最大值、最小值,以及达到最大值、最小值时x 的集合。
(1)y =sinx -2 (2)y =
34sin 21x (3)y =21cos(3x +4π) 解:(1)当x =2k π+
2π(k ∈Z)时,sinx 取最大值1,此时函数y =sinx -2取最大值-1; 当x =2k π+2
3π(k ∈Z)时,sinx 取最小值-1,此时函数y =sinx -2取最小值-3; (2)、(3)略,见教材P59
例四.(1)求函数y =2sin(
21x -3
π)的递增区间; (2)求函数y =31cos(4x +65π)的递减区间。
解:略,见教材P60
【巩固深化,发展思维】
学生课堂练习:教材P60练习3
五、归纳整理,整体认识
(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?
(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
(3)你在这节课中的表现怎样?你的体会是什么?
六、布置作业: 习题1-7第4,5,6题.
七、课后反思。