轴对称的应用-将军饮马最短路径问题
- 格式:pptx
- 大小:1.59 MB
- 文档页数:13
人教版八年级上册第十三章轴对称课题学习最短路径问题教学设计课题人教版八年级上册第十三章轴对称教具准备多媒体课件,正方体纸盒13.4课题学习最短路径问题学具准备正方体纸盒,三角板课时共(1)课时,第(1)课时执教教师教材分析本节课是在学生已经学习了“两点之间,线段最短”“垂线段最短”的基础上,借助轴对称研究以数学史中的一个经典问题——“将军饮马问题”为载体开展对“最短路径问题”的课题研究,让学生经历将实际问题抽象为数学问题,再利用轴对称将线段和最小问题转化为“两点之间,线段最短”问题.学情分析最短路径问题从本质上说是极值问题,作为八年级的学生,在此之前很少接触,解决这方面问题的经验尚显不足,特别是面对具有实际背景的极值问题,更会感到陌生,无从下手。
教学目标知识与技能1.能利用轴对称解决简单的最短路径问题。
2.体会图形的变化在解决最值问题中的作用。
3.感悟转化思想。
过程与方法1.在将实际问题抽象成几何图形的过程中,提高分析问题、解决问题的能力。
;2.渗透数学建模的思想。
情感态度与价值观1.通过有趣的问题提高学习数学的兴趣.2.体验数学学习的实用性,体现人人都学有所用的数学教学重点利用轴对称将最短路径问题转化为“两点之间,线段最短”问题;培养学生解决实际问题的能力.教学难点路径最短的证明教学过程设计设计意图一、以旧引新,激情引趣1、利用101PPT中本课的一道习题,复习“两点之间,线段最短”为了激发学生的求知欲,利用蚂蚁爬行最短路径问题激情引趣。
充分利用101PPT学科工具中立体展开还原的动画过程,让学生通过观察纸盒的打开过程,寻找蚂蚁的爬行捷径。
从而引出线段公理:两点之间线段最短和垂线段的性质:垂线段最短让学生体会新知识是在原有知识基础上“生长”出来的。
以旧引新,给予学生亲切感,树立学好本节课的信心。
二、展示目标,合理定位利用思维导图,展示本节课的学习目标三、探究新知,教师主导1、师生一起借助信息技术探究“将军饮马问题(一)”传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题:将军每天骑马从城堡出发,到军营,途中马要到小溪边饮水一次。
教师活动学生活动设计意图【活动一】问题引入前几节课,我们学习了轴对称性质在等腰三角形中的应用,本节课,我们将继续探究轴对称性质的另一个实际应用——经典的“将军饮马问题”,请看视频。
【活动二】解决问题问题1:你能把“将军饮马”这个问题抽象为数学问题吗?问题2:注意观察,当饮马点C的位置改变时,你能确定使AC+CB最小的饮马点C的位置吗?问题3:当点A、B在直线l的异侧时,你能在直线l上确定一点C,使线段AC与CB的和最小?问题4 回到“将军饮马”问题,怎样将直线同侧两点转化为直线异侧两点?问题5:你能用所学的知识证明AC+CB最小学生认真观看视频,明晰本节课要探究的问题。
将A、B两地抽象为两个定点,将河抽象为一条直线l。
学生回答并相互补充,最后达成共识。
已知:直线l和直线l的同侧两点A,B;求作:直线l上一点C,使得AC+CB 最小.通过老师的引导启发,使同学们想到作定点的对称点,将两点在直线同侧的问题,转化为两点在直线异侧的问题,提高学生的空间想象能力与逻辑思维能力,让学生在思考和解决问题的过程中,感悟转化的数学思想。
教师引导点拨,从数学史上久负盛名的“将军饮马”问题引入,增加学生们的数学底蕴,提高其人文思想,同时引导学生分析题意,将实际问题转化为数学问题更有利于分析问题、解决问题。
从异侧问题入手,由简到难,逐步深入。
让学生进一步吗?小结:“将军饮马”问题的已知条件是什么?求什么?“将军饮马”的实质是什么?“将军饮马”的作图步骤是什么?跟踪练习:如图P、Q是△ABC的边AB、AC 上的点,你能在BC上确定一点R,使△PQR的周长最短吗?【活动三】“将军饮马”变式1如图,点A 是∠MON 内的一点,分别在OM、ON上作点B、C,使△ABC 的周长最小。
结合几何画板的演示,师生共同完成证明过程。
学生回答,并相互补充,最后由教师总结。
要求学生用两种方法画图,学生独立思考,画出图形,点名一名学生在黑板上画图。
《最短路径问题》教学设计一、内容和内容解析1、教学内容《最短路径问题》是人教版八年级上册第十三章课题学习第1课时的内容.本节课的主要内容是解决由“将军饮马问题”引出的数学问题“两点在直线同侧求最短路径”以及“两线一点”,“两线两点”等最短路径问题.2、教学内容解析本节课是在学生学习了轴对称的知识以及“两点之间,线段最短”,“连接直线外一点与直线上各点的所有线段中,垂线段最短”等知识的基础上,展开了本节课的求最短路径问题,这节课是轴对称知识的一个很好的应用,进一步巩固了轴对称的知识,使轴对称知识更加灵活,并在学生头脑中打下扎实的基础。
最短路径问题在现实生活中经常遇到,初中阶段,主要以“两点之间,线段最短”“连接直线外一点与直线上各点的所有线段中,垂线段最短”为知识基础,有时还要借助轴对称、平移、旋转等变换进行研究。
本节课以数学史中的一个经典问题一“将军饮马问题”为载体开展对“最短路径问题”的课题研究,让学生经历将实际问题抽象为数学的线段和最小问题,再利用轴对称将线段和最小问题转化为“两点之间,线段最短”(或“三角形两边之和大于第三边”)问题.3、教学重点:利用轴对称将最短路径问题转化为“两点之间,线段最短问题”二、教学目标及其解析1、教学目标:(1)理解并掌握平面内一条直线同侧两个点到直线上的某一点距离之和为最小值时点的位置的确定。
(2)能利用轴对称解决简单的最短路径问题。
(3)通过独立思考,合作探究,培养学生运用数学知识解决实际问题的能力。
2、目标解析:要求学生能将实际问题中的“地点”“河”抽象为数学中的“点”“线”把实际问题抽象为数学的线段和最小问题:能利用轴对称将线段和最小问题转化为“两点之间,线段最短”问题:能另选一点,通过比较、逻辑推理证明所求距离最短:在探索最短路径的过程中,体会轴对称的“桥梁”作用,感悟转化思想。
三、学生学情分析八年级学生的观察、操作、猜想能力较强,但演绎推理、归纳和运用数学的意识比较薄弱,此年龄段的学生具有一定的探究精神和合作意识,能在一定的亲身经历和体验中获取一些数学知识,但在数学的说理上还不规范,演绎推理能力有待加强。
利用轴对称的性质解决有关将军饮马问题之压轴题四种模型全攻略【考点导航】目录【典型例题】【类型一几何图形中的最小值问题】【类型二实际问题中的最短路径问题】【类型三一次函数中线段和最小值问题】【类型四一次函数中线段差最大值问题】【典型例题】【类型一几何图形中的最小值问题】1(2023·浙江·八年级假期作业)如图,CD是△ABC的角平分线,△ABC的面积为12,BC长为6,点E,F 分别是CD,AC上的动点,则AE+EF的最小值是()A.6B.4C.3D.2【变式训练】1(2023春·山东济南·七年级统考期末)如图,在△ABC中,AB=AC,BC=4,面积是10;AB的垂直平分线ED分别交AC,AB边于E、D两点,若点F为BC边的中点,点P为线段ED上一动点,则△PBF 周长的最小值为()A.7B.9C.10D.142(2023秋·河南许昌·八年级许昌市第一中学校联考期末)如图,等腰三角形ABC的底边BC长为4,面积是18,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点C为线段EF上一动点,则△CDG周长的最小值为()A.4B.9C.11D.133(2022春·七年级单元测试)如图,△ABC 中,∠ACB =90°,AC =BC ,AB =4,点E 在BC 上,且BE =2,点P 在∠ABC 的平分线BD 上运动,则PE +PC 的长度最小值为()A.1B.2C.3D.44(2023秋·甘肃·八年级统考期末)如图,∠AOB =15°,M 是边OA 上的一个定点,且OM =12cm ,N ,P 分别是边OA 、OB 上的动点,则PM +PN 的最小值是.5(2023春·广东揭阳·七年级惠来县第一中学校考期末)如图,在等腰△ABC 中,AB =AC ,BC =7,作AD ⊥BC 于点D ,AD =12AB ,点E 为AC 边上的中点,点P 为BC 上一动点,则PA +PE 的最小值为.6(2023春·广东深圳·七年级统考期末)如图,点C ,D 分别是角∠AOB 两边OA 、OB 上的定点,∠AOB =20°,OC =OD =4.点E ,F 分别是边OB ,OA 上的动点,则CE +EF +FD 的最小值是.7(2023春·广东佛山·八年级校考期中)如图,已知△ABC ≌△CDA ,将△ABC 沿AC 所在的直线折叠至△AB C的位置,点B的对应点为B ,连结BB .(1)直接填空:B B与AC的位置关系是;(2)点P、Q分别是线段AC、BC上的两个动点(不与点A、B、C重合),已知△BB C的面积为36,BC=8,求PB+PQ的最小值;(3)试探索:△ABC的内角满足什么条件时,△AB E是直角三角形?8(2023春·广东深圳·七年级统考期末)【初步感知】(1)如图1,已知△ABC为等边三角形,点D为边BC上一动点(点D不与点B,点C重合).以AD为边向右侧作等边△ADE,连接CE.求证:△ABD≌△ACE;【类比探究】(2)如图2,若点D在边BC的延长线上,随着动点D的运动位置不同,猜想并证明:①AB与CE的位置关系为:;②线段EC、AC、CD之间的数量关系为:.【拓展应用】(3)如图3,在等边△ABC中,AB=3,点P是边AC上一定点且AP=1,若点D为射线BC上动点,以DP为边向右侧作等边△DPE,连接CE、BE.请问:PE+BE是否有最小值?若有,请直接写出其最小值;若没有,请说明理由.【类型二实际问题中的最短路径问题】1(2023春·广东广州·八年级华南师大附中校考期中)如图,A、B两个村子在笔直河岸的同侧,A、B两村到河岸的距离分别为AC=2km,BD=5km,CD=6km,现在要在河岸CD上建一水厂E向A、B两村输送自来水,要求水厂E到A、B两村的距离之和最短.(1)在图中作出水厂E的位置(要求:尺规作图,不写作法,保留作图痕迹);(2)求水厂E到A、B两村的距离之和的最小值.【变式训练】1(2023春·八年级课时练习)如图,A,B两个村庄在河CD的同侧,两村庄的距离为a千米,a2=13,它们到河CD的距离分别是1千米和3千米.为了解决这两个村庄的饮水问题,乡政府决定在河CD边上修建一水厂向A,B两村输送水.(1)在图上作出向A,B两村铺设水管所用材料最省时的水厂位置M.(只需作图,不需要证明)(2)经预算,修建水厂需20万元,铺设水管的所有费用平均每千米为3万元,其他费用需5万元,求完成这项工程乡政府投入的资金至少为多少万元.2(2021秋·江苏苏州·八年级校考阶段练习)如图,小区A与公路l的距离AC=200米,小区B与公路l的距离BD=400米,已知CD=800米,(1)政府准备在公路边建造一座公交站台Q,使Q到A、B两小区的路程相等,求CQ的长;(2)现要在公路旁建造一利民超市P,使P到A、B两小区的路程之和最短,求PA+PB的最小值,并求CP的长度.3(2023春·全国·七年级专题练习)问题情境:老师在黑板上出了这样一道题:直线l同旁有两个定点A,B,在直线l上是否存在点P,使得PA+PB的值最小?小明的解法如下:如图,作点A关于直线l的对称点A ,连接A B,则A B与直线l的交点即为P,且PA+ PB的最小值为A B.问题提出:(1)如图,等腰Rt△ABC的直角边长为4,E是斜边AB的中点,P是AC边上的一动点,求PB+PE的最小值.问题解决:(2)如图,为了解决A,B两村的村民饮用水问题,A,B两村计划在一水渠上建造一个蓄水池M,从蓄水池M处向A,B两村引水,A,B两村到河边的距离分别为AC=3千米,BD=9千米,CD=9千米.若蓄水池往两村铺设水管的工程费用为每千米15000元,请你在水渠CD上选择蓄水池M的位置,使铺设水管的费用最少,并求出最少的铺设水管的费用.【类型三一次函数中线段和最小值问题】1(2023春·山东德州·八年级校考阶段练习)如图,一次函数y=12x+2的图象分别与x轴、y轴交于点A、B,以线段AB为边在第二象限内作等腰Rt△ABC,∠BAC=90°.(可能用到的公式:若A(x1,y1),B(x2,y2),①AB中点坐标为x1+x22,y1+y22;②AB=x1-x22+y1-y22(1)求线段AB的长;(2)过B、C两点的直线对应的函数表达式.(3)点D是BC中点,在直线AB上是否存在一点P,使得PC+PD有最小值?若存在,则求出此最小值;若不存在,则说明理由.【变式训练】1(2023春·河北石家庄·八年级石家庄市第四十一中学校考期中)一次函数y=kx+b的图像经过两点A4,0,B0,8.点D m,4在这个函数图像上(1)求这个一次函数表达式;(2)求m的值;(3)点C为OA的中点,点P为OB上一动点,求PC+PD的最小值.2(2023春·湖南长沙·八年级校联考期中)如图,直线l1经过点A4,0,与直线l2:y=x交于点B a,43.(1)求a的值和直线l1的解析式;(2)直线l1与y轴交于点C,求△BOC的面积;(3)在y轴上是否存在点P,使得PB+PA的值最小,若存在,请求出PB+PA的最小值,若不存在,请说明理由.3(2023春·重庆万州·九年级重庆市万州第一中学校联考期中)如图1,直线l1:y=-14x+1与x轴,y轴分别交于A,B两点,直线l2与x轴,y轴分别交于C,D两点,两直线相交于点P,已知点C的坐标为( -2,0),点P的横坐标为-45.(1)直接写出点A、P的坐标,并求出直线l2的函数表达式;(2)如图2,过点A作x轴的垂线,交直线l2于点M,点Q是线段AM上的一动点,连接QD,QC,当△QDC 的周长最小时,求点Q的坐标和周长的最小值.(3)在第(2)问的条件下,若点N是直线AM上的一个动点,以D,Q,N三点为顶点的三角形是等腰三角形,请直接写出此时点N的坐标.【类型四一次函数中线段差最大值问题】1(2023秋·四川成都·八年级统考期末)如图所示,直线l1:y=x-1与y轴交于点A,直线l2:y=-2x-4与x轴交于点B,直线l1与l2交于点C.(1)求点A,C的坐标;(2)点P在直线l1上运动,求出满足条件S△PBC=S△ABC且异于点A的点P的坐标;(3)点D(2,0)为x轴上一定点,当点Q在直线l1上运动时,请直接写出DQ-BQ的最大值.【变式训练】1如图①,平面直角坐标系中,直线y=kx+b与x轴交于点A(-10,0),与y轴交于点B,与直线y= x交于点C(a,7).-73(1)求直线AB的表达式;(2)如图②,在(1)的条件下,过点E作直线l⊥x轴,交直线y=-7x于点F,交直线y=kx+b于点G,若3点E的坐标是(-15,0),求△CGF的面积;(3)点M为y轴上OB的中点,直线l上是否存在点P,使PM-PC的值最大?若存在,求出这个最大值;若不存在,说明理由;2在进行13.4《最短路径问题》的学习时,同学们从一句唐诗“白日登山望烽火,黄昏饮马傍交河”(唐•李颀《古从军行》出发,一起研究了蕴含在其中的数学问题--“将军饮马”问题.同学们先研究了最特殊的情况,再利用所学的轴对称知识,将复杂问题转化为简单问题,找到了问题的答案,并进行了证明.下列图形分别说明了以上研究过程.证明过程如下:如图4,在直线l上另取任一点C ,连结AC ,BC ,B C ,∵点B,B 关于直线l对称,点C,C 在l上,∴CB=,C B=,∴AC+CB=AC+CB =.在△AC B 中,∵AB <AC +C B ,∴AC+CB<AC +C B ,即AC+CB最小.(1)请将证明过程补充完整.(直接填在横线上)(2)课堂小结时,小明所在的小组同学提出,如图1,A,B是直线l同旁的两个定点.在直线l上是否存在一点P,使PB-PA的值最大呢?请你类比“将军饮马”问题的探究过程,先说明如何确定点P的位置,再证明你的结论是正确的.(3)如图,平面直角坐标系中,M2,2,N4,-1,MN=13,P是坐标轴上的点,则PM-PN的最大值为,此时P点坐标为.(直接写答案)3如图,在直角坐标系中,直线l:y=43x+8与x轴、y轴分别交于点B,点A,直线x=-2交AB于点C,D是直线x=-2上一动点,且在点C的上方,设D(-2,m)(1)求点O到直线AB的距离;(2)当四边形AOBD的面积为38时,求点D的坐标,此时在x轴上有一点E(8,0),在y轴上找一点M,使|ME-MD|最大,请求出|ME-MD|的最大值以及M点的坐标;(3)在(2)的条件下,将直线l:y=43x+8左右平移,平移的距离为t(t>0时,往右平移;t<0时,往左平移)平移后直线上点A,点B的对应点分别为点A′、点B′,当△A′B′D为等腰三角形时,求t的值.。
13.4最短路径问题1--将军饮马型2-一点两轴型一.【知识要点】题方法是关键。
二.【经典例题】1.如图,已知∠AOB,点P在∠AOB内部,请在射线OA上确定点M,在射线OB上确定点N,使△PMN的周长最小。
【问题 1】作法作图原理在直线 l 上求一点 P,使PA+PB 值最小。
连 AB,与 l 交点即为 P.两点之间线段最短.PA+PB 最小值为 AB.【问题 2】作法作图原理在直线 l 上求一点 P,使PA+PB 值最小.作 B 关于 l 的对称点 B'连 A B',与 l 交点即为 P.两点之间线段最短.PA+PB 最小值为A B'.【问题 3】“将军饮马”作法作图原理在直线 l1 、 l2 上分别求点M、N,使△PMN 的周长最小.分别作点 P 关于两直线的对称点 P'和 P',连 P'P',与两直线交点即为M,N.两点之间线段最短.PM+MN+PN 的最小值为线段 P'P''的长。
【问题 5】作法作图原理在 l1上求点 A,在 l2上求点 B,使 PA+AB 值最小.作点P 关于l1的对称点P',作P'B⊥ l2于B,交l1于 A.点到直线,垂线段最短PA+AB 的值最小为P'B三.【题库】 【A 】1.有一个养鱼专业户,在如图所示地形的两个池塘内养鱼,他住的地方在P 点,每天早上必须去池塘边投放鱼食,试问他怎么走才能走最少的路程完成放食回到住地?说明理由.2.如图:点P 为∠AOB 内一点,分别作出P 点关于OA 、OB 的对称点P 1,P 2,连接P 1P 2交OA 于M ,交OB 于N ,P 1P 2=15,则△PMN 的周长为 .【B 】1.如图,四边形ABCD 中,∠C=50°,∠B=∠D=90°,在BC 、CD 上分别找一点M 、N ,使△A MN 周长最小时,则∠MAN 的度数为____________。
P 2P 1N MO PB A2.如图,点P 为∠AOB 内一点,分别作出点P 关于OA 、OB 的对称点1P 、2P ,连接1P 2P 交OA 于M ,交OB 于N ,若1P 2P =6,则△PMN 的周长为( ). A.4 B.5 C.6 D.7【C 】1.如图,四边形ABCD 中,∠BAD=120°,∠B=∠D=90°,在BC 、CD 上分别找一点M 、N ,使△AMN 周长最小时,则∠AMN+∠ANM 的度数为( )。
第11讲最短路径探究之将军饮马【知识点睛】❖将军饮马模型总结:,❖其他“两动一定”型最值问题模型:、,❖ “造桥选址”类将军饮马模型:村庄A 和村庄B 位于一条小河的两侧,若河岸彼此平行,要架设一座与河岸垂直的桥,桥址应该如何选择,才能使A 与B 之间的距离最短❖ 特别地:的两邻边中,一边是间距d 、另一边是定动线段AM 或BN 【类题训练】1.如图,在锐角三角形ABC 中,AB =4,∠BAC =60°,∠BAC AD和AB 上的动点,当BM +MN 取得最小值时,AN =( ) A .2B .4C .6D .82.如图,在矩形ABCD 中,AB =10,AD =6,动点P 满足S △P AB =S 矩形ABCD ,则点P 到A 、B 两点距离之和P A +PB 的最小值为( ) A .3B .2C .10D .23.如图,在等腰△ABC 中,AB =AC ,AD 是BC 边上的高,点E 是高AD 上任意一点,点F 是边AB 上任意一点,AB =5,BD =3,AD =4,则BE +EF 的最小值是( ) A .3B .5C .D .4.如图,已知正方形ABCD 的边长为4,点E 是边AB 的中点,点P 是对角线BD 上的动点,则AP +PE 的最小值是( ) A .B .C .D .5.如图,在△ABC 中,AD 是△ABC 的角平分线,点E 、F 分别是AD 、AB 上的动点,若∠BAC =50°,当BE +EF 的值最小时,∠AEB 的度数为( ) A .105°B .115°C .120°D .130°6.如图,钝角三角形△ABC 的面积是20,最长边BC =10,CD 平分∠ACB ,点P ,Q 分别是CD ,AC 上的动点,则AP +PQ 的最小值为( ) A .2B .3C .4D .5A`7.如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,CE=5,AD=7,P是AD上一个动点,则BP+EP的最小值是()A.7B.C.5D.8.如图,∠AOB=30°,点P是∠AOB内的定点且OP=3,若点M、N分别是射线OA、OB上异于点O 的动点,则△PMN周长的最小值是()A.3B.C.D.69.如图,牧童在A处牧马,牧童的家在B处,A,B处到河岸的距离分别是AC=300m,BD=500m,且C,D两地之间的距离为600m.牧童从A处将马牵到河边去饮水,再牵回家,他至少要走的路程是()A.1400m B.(500+300)mC.1000m D.(300+100)m10.如图,∠AOB=30°,点P在OB上且OP=2,点M、N分别是OA、OB上的动点,则PM+MN的最小值是()A.2B.4C.D.11.如图,边长为a的等边△ABC中,BF是AC上中线且BF=b,点D在BF上,连接AD,在AD的右侧作等边△ADE,连接EF,则△AEF周长的最小值是()A.B.C.a+b D.a12.如图,点M在等边△ABC的边BC上,BM=8,射线CD⊥BC垂足为点C,点P是射线CD上一动点,点N是线段AB上一动点,当MP+NP的值最小时,BN=9,则AC的长为()A.13B.15C.16D.1713.如图,在△ABC中,AC=BC=4,∠ACB=120°,点M在边BC上,且BM=1,点N是直线AC上一动点,点P是边AB上一动点,则PM+PN的最小值为()A.B.C.D.414.如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,点P是边BC上一动点,点D在边AB上,且BD=AB,则P A+PD的最小值为.15.如图,在等腰△ABC中,AB=AC=20,BC=32,△ABD是等边三角形,P是∠BAC的平分线上一动点,连接PC,PD,则PC+PD的最小值为.16.如图,在四边形ABCD中,∠B=∠D=90°,∠BAD=120°,AB=2,AD=4,P、Q分别是边BC、CD上的动点,连接AP,AQ,PQ,则△APQ周长的最小值为.17.如图,在边长为1的小正方形所组成的网格上,每个小正方形的顶点都称为“格点”,△ABC的顶点都在格点上,用直尺完成下列作图:(1)作出△ABC关于直线MN的对称图形;(2)求△ABC的面积;(3)在直线MN上取一点P,使得AP+CP最小(保留作图痕迹).18.古希腊有一个著名的“将军饮马问题”,大致内容如下:古希腊一位将军,每天都要巡查河岸同侧的两个军营A,B.他总是先去A营,再到河边饮马,之后,再巡查B营.他时常想,怎么走,才能使他每天走的路程之和最短呢?大数学家海伦曾用轴对称的方法巧妙地解决了这个问题.如图2,作B关于直线l的对称点B',连结AB'与直线/交于点C,点C就是所求的位置.请你在下列阅读、应用的过程中,完成解答:(1)证明:如图3,在直线l上另取任一点C',连结AC',BC',B'C',∵直线l是点B,B'的对称轴,点C,C'在l上,∴CB=,C'B=,∴AC+CB=AC+CB'=.在△AC'B'中,∵AB'<AC'+C'B',∴AC+CB<AC'+C'B'.∴AC+CB<AC'+C'B',即AC+CB最小.本问题实际上是利用轴对称变换的思想,把A,B在直线同侧的问题转化为在直线的两侧,从而可利用“两点之间线段最短”,即“三角形两边之和大于第三边”的问题加以解决(在连接A,B'两点的线中,线段AB'最短).本问题可归纳为求定直线上一动点与直线外两定点的距离和的最小值的问题的数学模型.(2)问题解决如图4,将军牵马从军营P处出发,到河流OA饮马,再到草地OB吃草,最后回到P处,试分别在边OA和OB上各找一点E、F,使得走过的路程,即△PEF的周长最小.(保留画图痕迹,辅助线用虚线,最短路径用实线)19.(1)如图,河道上A,B两点(看作直线上的两点)相距200米,C,D为两个菜园(看作两个点),AD⊥AB,BC⊥AB,垂足分别为A,B,AD=80米,BC=70米,现在菜农要在AB上确定一个抽水点P,使得抽水点P到两个菜园C,D的距离和最短.请在图中作出点P,保留作图痕迹,并求出PC+PD的最小值.(2)借助上面的思考过程,请直接写出当0<x<15时,代数式+的最小值=.20.如图,已知∠ABC=∠ADC=90°,BC=CD,CA=CE.(1)求证:∠ACB=∠ACD;(2)过点E作ME∥AB,交AC的延长线于点M,过点M作MP⊥DC,交DC的延长线于点P.①连接PE,交AM于点N,证明AM垂直平分PE;②点O是直线AE上的动点,当MO+PO的值最小时,证明点O与点E重合.。
专题13.10最短路径(将军饮马)问题(知识梳理与考点分类讲解)第一部分【知识点归纳】【模型一:两定交点型】如图1,直线l和l的异侧两点A.B,在直线l上求作一点P,使PA+PB 最小;图1【模型二:两定一动型】如图2,直线l和l的同侧两点A.B,在直线l上求作一点P,使PA+PB 最小(同侧转化为异侧);图2【模型三:一定两动型】如图3,点P是∠MON内的一点,分别在OM,ON上作点A,B。
使△PAB的周长最小。
图3【模型四:两定两动型】如图4,点P,Q为∠MON内的两点,分别在OM,ON上作点A,B。
使四边形PAQB的周长最小。
图4【模型五:一定两动(垂线段最短)型】如图5,点A是∠MON外的一点,在射线ON上作点P,使PA与点P到射线OM的距离之和最小。
图5【模型六:一定两动,找(作)对称点转化型】如图6,点A是∠MON内的一点,在射线ON 上作点P,使PA与点P到射线OM的距离之和最小。
图6【考点1】两定一动型;【考点2】一定两动(两点之间线段最短)型;【考点3】一定两动(垂线段最短)型;【考点4】两定两动型;【考点5】一定两动(等线段)转化型;.第二部分【题型展示与方法点拨】【考点1】两定一动型;【例1】(23-24八年级上·全国·课后作业)如图,在ABC ∆中,3,4AB AC ==,EF 垂直平分BC ,交AC 于点D ,则ABP 周长的最小值是()A .12B .6C .7D .8【答案】C 【分析】本题主要考查了,轴对称﹣最短路线问题的应用,解此题的关键是找出P 的位置.凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,根据题意知点B 关于直线EF 的对称点为点C ,故当点P 与点D 重合时,AP BP +的值最小,即可得到ABP 周长最小.解:∵EF 垂直平分BC ,∴点B ,C 关于EF 对称.∴当点P 和点D 重合时,AP BP +的值最小.此时AP BP AC +=,∵3,4AB AC ==,ABP ∴ 周长的最小值是347AP BP AB AB AC ++=+=+=,故选:C .【变式】(23-24八年级上·广东广州·期中)如图,在ABC V 中,1216AB AC ==,,20BC =.将ABC V 沿射线BM 折叠,使点A 与BC 边上的点D 重合,E 为射线BM 上的一个动点,则CDE 周长的最小值.【答案】24【详解】设BM 与AC 的交点为点F ,连接AE ,DF 先根据折叠的性质可得12BD AB ==,DF AF =,DE AE =,BDF BAF ∠=∠,再根据两点之间线段最短可得当点E 与点F 重合时,CDE 周长最小,进而求解即可.解:如图,设BM 与AC 的交点为点F ,连接AE ,DF ,由折叠的性质得:12BD AB ==,DF AF =,DE AE =,BDF BAF ∠=∠,20128CD BC BD ∴=-=-=,CDE ∴ 周长8CD DE CE AE CE =++=++,要使CDE 周长最小,只需AE CE +最小,由两点之间线段最短可知,当点E 与点F 重合时,最小值为AC ,∴CDE 周长为:681624AC +=+=.故答案为:24.【点拨】本题考查了折叠的性质等知识点,熟练掌握折叠的性质是解题关键.【考点2】一定两动(两点之间线段最短)型;【例2】(23-24八年级上·湖北省直辖县级单位·期末)如图,45MON ∠=︒,P 为MON ∠内一点,A 为OM 上一点,B 为ON 上一点,当PAB 的周长取最小值时,APB ∠的度数为()A .45︒B .90︒C .100︒D .135︒【答案】B 【分析】本题主要考查了最短路线问题、四边形的内角和定理、轴对称的性质等知识点,掌握两点之间线段最短的知识画出图形是解题的关键.如图:作P 点关于OM ON 、的对称点A B ''、,连接A B '',此时PAB 的周长最小为A B '',求出A B ''即可.解:如图:作P 点关于OM ON 、的对称点A B ''、,然后连接A B '',∵点A '与点P 关于直线OM 对称,点B '与点P 关于ON 对称,∴A P OM B P ON A A AP B B BP ''''⊥⊥==,,,,∴A APA B BPB ''''∠=∠∠=∠,,∵A P OM B P ON ''⊥⊥,,∴180MON A PB ''∠+∠=︒,∴18045135A PB ''∠=︒-︒=︒,在A B P ''△中,由三角形的内角和定理可知:18013545A B ''∠+∠=︒-︒=︒,∴45A PA BPB ''∠+∠=︒,∴1354590APB ∠=︒-︒=︒.故选:B .【变式】(23-24八年级上·江苏无锡·期中)如图,45AOB ∠=︒,点M N 、分别在射线OA OB 、上,5MN =,15OMN S = ,点P 是直线MN 上的一个动点,点P 关于OA 的对称点为1P ,点P 关于OB 的对称点为2P ,连接1OP 、2OP 、12PP ,当点P 在直线MN 上运动时,则12OPP 面积的最小值是.【考点3】一定两动型(垂线段最短);【例3】(22-23八年级上·湖北武汉·期末)如图,在ABC V 中,3AB =,4BC =,5AC =,AB BC ⊥,点P 、Q 分别是边BC 、AC 上的动点,则AP PQ +的最小值等于()A .4B .245C .5D .275【答案】B 【分析】作A 过于BC 的对称点A ',过点A '作A Q AC '⊥,交AC 于点Q ,交BC 于点P ,根据对称可得:AP PQ A P PQ A Q ''+=+≥,得到当,,A P Q '三点共线时,AP PQ +最小,再根据垂线段最短,得到A Q AC '⊥时,A Q '最小,进行求解即可.解:作A 过于BC 的对称点A ',过点A '作A Q AC '⊥,交AC 于点Q ,交BC 于点P ,【变式】(23-24七年级下·陕西西安·阶段练习)如图,在Rt ABC △中,90ACB ∠=︒,3AC =,4BC =,5AB =,AD 是ABC V 的角平分线,若P Q 、分别是AD 和AC 边上的动点,则PC PQ +的最小值是.AD 是BAC ∠的平分线,1QAD Q AD∴∠=∠在AQD 与1AQ D 中【考点4】两定两动型;【例4】如图,已知24AOB ∠=︒,OP 平分AOB ∠,1OP =,C 在OA 上,D 在OB 上,E 在OP 上.当CP CD DE ++取最小值时,此时PCD ∠的度数为()A .36︒B .48︒C .60︒D .72︒【答案】D 【分析】作点P 关于OA 的对称点P',作点E 关于OB 的对称点'E ,连接'OP 、'PP 、'OE 、'EE 、''P E ,则由轴对称知识可知=''CP CD DE CP CD DE ++++,所以依据垂线段最短知:当''P C D E 、、、在一条直线上,且'''P E OE ⊥时,CP CD DE ++取最小值,根据直角三角形的两锐角互余及三角形外角的性质可以'P C PC =,'E D ED =,'1OP OP ==,=''CP CD DE CP CD DE ++++,'P OE ∠''P C D E 、、、在一条直线上,且''P E ''=9048=42OP E ∠︒-︒︒,'='''=7842CP P OP P OP E ∠∠-∠︒-︒=【答案】44βα-=︒【分析】本题考查轴对称—最短问题、三角形的内角和定理.三角形的外角的性质等知识,解题的关键是灵活运用所学知识解决问题.OQM OQM NQP '∴∠=∠=∠,OPQ ∠∴1(180)2PQN AOB α∠=︒-=∠+∠44βα∴-=︒,故答案为:44βα-=︒.【考点5】一定两动(等线段)转化型;【例5】(20-21八年级上·湖北鄂州·期中)如图,AD 为等腰△ABC 的高,其中∠ACB =50°,AC =BC ,E ,F 分别为线段AD ,AC 上的动点,且AE =CF ,当BF +CE 取最小值时,∠AFB 的度数为()A .75°B .90°C .95°D .105°【答案】C 【分析】先构造△CFH 全等于△AEC ,得到△BCH 是等腰直角三角形且FH=CE ,当FH+BF 最小时,即是BF+CE 最小时,此时求出∠AFB 的度数即可.解:如图,作CH ⊥BC ,且CH=BC ,连接HB ,交AC 于F ,此时△BCH 是等腰直角三角形且FH+BF 最小,∵AC=BC ,∴CH=AC ,∵∠HCB=90°,AD ⊥BC ,∴AD//CH ,∵∠ACB=50°,∴∠ACH=∠CAE=40°,∴△CFH ≌△AEC ,∴FH=CE ,∴FH+BF=CE+BF 最小,此时∠AFB=∠ACB+∠HBC=50°+45°=95°.故选:C .【点拨】本题考查全等三角形的性质和判定、等腰三角形的性质、最短路径问题,关键是作出辅助线,有一定难度.【变式】(23-24七年级下·四川宜宾·期末)在ABC V 中,80CAB ∠=︒,2AB =,3AC =,点E 是边AB 的中点,CAB ∠的角平分线交BC 于点D .作直线AD ,在直线AD 上有一点P ,连结PC 、PE ,则PC PE -的最大值是.∵CAB ∠的角平分线交∴FAP ∠∠=∵AP AP =,∴APF APE ≌∴PF PE =,第三部分【中考链接与拓展延伸】1、直通中考【例1】(2020·湖北·中考真题)如图,D 是等边三角形ABC 外一点.若8,6BD CD ==,连接AD ,则AD 的最大值与最小值的差为.【答案】12【分析】以CD 为边向外作等边三角形CDE ,连接BE ,可证得△ECB ≌△DCA 从而得到BE=AD ,再根据三角形的三边关系即可得出结论.解:如图1,以CD 为边向外作等边三角形CDE ,连接BE ,∵CE=CD ,CB=CA ,∠ECD=∠BCA=60°,∴∠ECB=∠DCA ,∴△ECB ≌△DCA (SAS ),∴BE=AD ,∵DE=CD=6,BD=8,∴8-6<BE<8+6,∴2<BE<14,∴2<AD<14.∴则AD 的最大值与最小值的差为12.故答案为:12【点拨】本题考查三角形全等与三角形的三边关系,解题关键在于添加辅助线构建全等三角形把AD 转化为BE 从而求解,是一道较好的中考题.【例2】(2020·新疆·中考真题)如图,在ABC V 中,90,60,4A B AB ∠=∠=︒=︒,若D 是BC 边上的动点,则2AD DC +的最小值为.在Rt DFC △中,30DCF ∠=︒,12DF DC ∴=,122()2AD DC AD DC +=+2()AD DF =+,∴当A ,D ,F 在同一直线上,即此时,60B ADB ∠=∠=︒,2、拓展延伸【例1】(23-24八年级上·江苏镇江·阶段练习)如图,AC 、BD 在AB 的同侧,点M 为线段AB 中点,2AC =,8BD =,8AB =,若120CMD ∠=︒,则CD 的最大值为()A .18B .16C .14D .12【答案】C 【分析】本题考查等边三角形的判定和性质,两点之间线段最短,解题的关键是学会添加常用辅助线,学会利用两点之间线段最短解决最值问题.如图,作点A 关于CM 的对称点A ',点B 关于DM 的对称点B ',证明'' A MB 为等边三角形,即可解决问题.解:如图,作点A 关于CM 的对称点A ',点B 关于DM 的对称点B ',∵120CMD ∠=︒,∴60∠+∠=︒AMC DMB ,∴60''∠+∠=︒CMA DMB ,∴60''∠=︒A MB ,∵MA MB MA MB ''===,∴'' A MB 为等边三角形∵14CD CA A B B D CA AM BD ''''<++=++=,∴CD 的最大值为14,故选:C .【例2】(22-23八年级上·湖北武汉·期末)如图,锐角ABC V 中,302A BC ∠=︒=,,ABC V 的面积是6,D 、E 、F 分别是三边上的动点,则DEF 周长的最小值是()A .3B .4C .6D .7∴AM AE AN ==,MF =∵BAC BAD DAC ∠=∠+∠∴MAN MAB BAD ∠=∠+∠∴(2MAN BAE EAC ∠=∠+∠。
考点聚焦“将军饮马问题最短路径问题”支架式教学策略的探讨——从一道中考压轴题说起■禤泳棋摘要:“将军饮马问题”有着强大的现实生活联系性、多变性,其对学生理解和应用的要求较高。
本文首先分析一道有关“将军饮马问题”的中考压轴题,突出强调“将军饮马问题”的特点,引出笔者的观点:教师在教授“将军饮马问题”时,应当采用以学生为中心的支架式教学策略。
接着,笔者针对“将军饮马问题”探讨了践行支架式教学策略的思路:第一步,引导学生数学化问题;第二步,引导学生尝试转新为旧;第三步,引导学生严谨证明。
为学生提供适当、小步调的提示(支架),让学生通过支架一步步攀升,逐渐发现和解决问题,转化和证明问题,提高独立解决问题的能力。
关键词:将军饮马问题;最短路径问题;支架式教学策略“将军饮马问题”是人教版数学八年级上轴对称一章的最后一节《课题学习最短路径问题》。
“将军饮马问题”背后有一个著名的古罗马将军饮马小故事,最早解决这个问题的是著名数学家海伦。
“将军饮马问题”是轴对称知识的应用与推广,与现实生活联系密切,同时对学生思维能力要求较高,因此在教学时对教师的引导作用有一定要求。
本文将从一道中考压轴提说起,探讨“将军饮马问题最短路径问题”贯彻支架式教学策略。
此处给出一道广西北部湾的中考真题:(2018北部湾)如图,抛物线y =ax (^2)-5ax+c 与坐标轴分别交于A 、B 、E 三点,其中A (-3,0),C (0,4),点B 在x轴上,AC=BC ,过点B 作BD ⊥x 轴,交抛物线于点D ,点M 、N 分别是CO 、BC 上的动点,且CM=BN ,连接MN 、AM 、AN 。
(1)求抛物线的表达式及点D 的坐标;(2)当△CMN 是直角三角形时,求点M 的坐标;(3)试求出AM+AN 的最小值。
首先来分析此道压轴题,对于第一问:考查用待定系数求二次函数解析式和等腰三角形对称性。
第二问考查的是分类讨论的思想、相似三角形的判定及性质,有一定难度。