手机锂电池快速充电电路
- 格式:doc
- 大小:76.50 KB
- 文档页数:4
锂电池恒流定压充电电路
闲来无事,设计了一个充电电路图,用外接直流供电(点烟器接口等等),充满后关断恒流回路,静止电压下降后又自动再充电。
R1确定充电电流,W1调定再充电压,W2调定停充电压,SW1手动充电启动,SW2手动停止充电,Q3、Q4互补组成模拟可关断可控硅(C2、R4的作用是增加Q3、Q4的稳定性)。
注意元件R、R1、Q1、D1的额定电流要达到设计的指标(充电电流I=(V LED-V Q1be)/R1,图中电流理论值为(2-0.7)/2=650mA)。
由于D1的隔离作用,电池平时理论上无放电消耗回路,可以长期不取下来。
LED为充电指示灯,同时为恒流源提供基准电压源。
R起限流作用。
细节加QQ:1191789075。
锂电池充电电路原理及应用锂离子电池以其优良的特性,被广泛应用于: 手机、摄录像机、笔记本电脑、无绳电话、电动工具、遥控或电动玩具、照相机等便携式电子设备中。
一、锂电池与镍镉、镍氢可充电池:锂离子电池的负极为石墨晶体,正极通常为二氧化锂。
充电时锂离子由正极向负极运动而嵌入石墨层中。
放电时,锂离子从石墨晶体内负极表面脱离移向正极。
所以,在该电池充放电过程中锂总是以锂离子形态出现,而不是以金属锂的形态出现。
因而这种电池叫做锂离子电池,简称锂电池。
锂电池具有:体积小、容量大、重量轻、无污染、单节电压高、自放电率低、电池循环次数多等优点,但价格较贵。
镍镉电池因容量低,自放电严重,且对环境有污染,正逐步被淘汰。
镍氢电池具有较高的性能价格比,且不污染环境,但单体电压只有1.2V,因而在使用范围上受到限制。
二、锂电池的特点:1、具有更高的重量能量比、体积能量比;2、电压高,单节锂电池电压为3.6V,等于3只镍镉或镍氢充电电池的串联电压;3、自放电小可长时间存放,这是该电池最突出的优越性;4、无记忆效应。
锂电池不存在镍镉电池的所谓记忆效应,所以锂电池充电前无需放电;5、寿命长。
正常工作条件下,锂电池充/放电循环次数远大于500次;6、可以快速充电。
锂电池通常可以采用0.5~1倍容量的电流充电,使充电时间缩短至1~2小时;7、可以随意并联使用;8、由于电池中不含镉、铅、汞等重金属元素,对环境无污染,是当代最先进的绿色电池;9、成本高。
与其它可充电池相比,锂电池价格较贵。
三、锂电池的内部结构:锂电池通常有两种外型:圆柱型和长方型。
电池内部采用螺旋绕制结构,用一种非常精细而渗透性很强的聚乙烯薄膜隔离材料在正、负极间间隔而成。
正极包括由锂和二氧化钴组成的锂离子收集极及由铝薄膜组成的电流收集极。
负极由片状碳材料组成的锂离子收集极和铜薄膜组成的电流收集极组成。
电池内充有有机电解质溶液。
另外还装有安全阀和PTC元件,以便电池在不正常状态及输出短路时保护电池不受损坏。
第三部分毕业设计正文锂电池充电器的设计[摘要] 本设计以单片机为控制核心,系统由指示灯电路、电源电压与环境温度采样电路、精确基准电压产生电路和开关控制电路组成。
实现了电池充电、LED指示、保护机制及异常处理等充电器所需要的基本功能。
本文对锂离子电池的参数特性、充电原理与充电方法进行了详尽的描述,并提出了充电器的设计思想和系统结构。
该电路具有安全快速充电功能,可以广泛应用于室内外单节锂离子电池的充电,如手机、数码产品电池等。
[关键词]锂离子电池,充电器,硬件电路,软件设计The design of lithium battery chargerSui Chaoyun0701 electricity techniqueAbstract:This design uses SCM system for the control of core, it includes the pilot lamp circuit on system, sampling circuit about voltage and temperature, the causes about standard voltage and switch controls. The circuit achieves charging battery, LED instructions, the protection mechanism and exception handling, and other functions. This paper introduces the following things: parameters of lithium-battery, principles and methods on charge, design thinkings and system structure about charger, and it describes the functional mode of the charger in detail,moreover it proposes the thinking of plan and structure of a system.The circuit which be planed have functions of safety,rapid and so on. It can use in the charge of Lithium-ion battery that is only far-ranging,such as the battery ofcellphone,digital product and so on.Key words: Lithium-ion battery, Charger, Hardware circuit, Software design目录第一章绪论 (1)1.1 课题的背景及目的 (1)1.2 论文的构成及研究状况 (1)1.3 锂电池充电器的功能描述 (2)第二章锂电池充电器的介绍及系统设计框架 (3)2.1 锂离子的介绍 (3)2.1.1 锂离子电池的发展 (3)2.1.2 锂电池的工作原理及结构 (3)2.1.3 锂电池充电器的充电特性 (5)2.2 系统设计框架 (6)2.3 锂电池充电方法 (8)2.3.1 恒流充电(CC) (8)2.3.2 恒压充电(CV) (8)2.3.3 恒流恒压充电(CC/CV) (9)2.3.4 脉冲充电 (9)第三章锂电池充电器的设计 (10)3.1 锂电池充电器的工作原理 (10)3.1.1 89C51芯片简介 (11)3.1.2 系统指示灯电路 (12)3.1.3 电源电压与环境温度采样电路 (12)3.1.4 精确基准电源产生电路 (13)3.1.5 开关控制电路 (14)3.2 锂电池充电器的设计理念 (15)3.2.1 设计思路 (15)3.2.2 系统主流程 (15)3.2.3 充电流程设计 (17)3.2.4 程序设计 (18)结束语 (31)致谢 (32)参考文献 (33)第一章绪论1.1 课题的背景及目的电子信息时代使对移动电源的需求快速增长。
锂电池充电电路原理及应用锂电池充电电路原理及应用锂离子电池以其优良的特性,被广泛应用于: 手机、摄录像机、笔记本电脑、无绳电话、电动工具、遥控或电动玩具、照相机等便携式电子设备中。
一、池与镍镉、镍氢可充电池锂离子电池的负极为石墨晶体,正极通常为二氧化锂。
充电时锂离子由正极向负极运动而嵌入石墨层中。
放电时,锂离子从石墨晶体内负极表面脱离移向正极。
所以,在该电池充放电过程中锂总是以锂离子形态出现,而不是以金属锂的形态出现。
因而这种电池叫做锂离子电池,简称锂电池。
锂电池具有:体积小、容量大、重量轻、无污染、单节电压高、自放电率低、电池循环次数多等优点,但价格较贵。
镍镉电池因容量低,自放电严重,且对环境有污染,正逐步被淘汰。
镍氢电池具有较高的性能价格比,且不污染环境,但单体电压只有1.2V,因而在使用范围上受到限制。
二、锂电池的特点1、具有更高的重量能量比、体积能量比;2、电压高,单节锂电池电压为3.6V,等于3只镍镉或镍氢充电电池的串联电压;3、自放电小可长时间存放,这是该电池最突出的优越性;4、无记忆效应。
锂电池不存在镍镉电池的所谓记忆效应,所以锂电池充电前无需放电;5、寿命长。
正常工作条件下,锂电池充/放电循环次数远大于500次;6、可以快速充电。
锂电池通常可以采用0.5~1倍容量的电流充电,使充电时间缩短至1~2小时;7、可以随意并联使用;8、由于电池中不含镉、铅、汞等重金属元素,对环境无污染,是当代最先进的绿色电池;9、成本高。
与其它可充电池相比,锂电池价格较贵。
三、电池的内部结构锂电池通常有两种外型:圆柱型和长方型。
电池内部采用螺旋绕制结构,用一种非常精细而渗透性很强的聚乙烯薄膜隔离材料在正、负极间间隔而成。
正极包括由锂和二氧化钴组成的锂离子收集极及由铝薄膜组成的电流收集极。
负极由片状碳材料组成的锂离子收集极和铜薄膜组成的电流收集极组成。
电池内充有有机电解质溶液。
另外还装有安全阀和PTC元件,以便电池在不正常状态及输出短路时保护电池不受损坏。
锂电池充电电路图2009-03-08 18:26锂电池是继镍镉、镍氢电池之后,可充电电池家族中的佼佼者.锂离子电池以其优良的特性,被广泛应用于: 手机、摄录像机、笔记本电脑、无绳电话、电动工具、遥控或电动玩具、照相机等便携式电子设备中。
一、锂电池与镍镉、镍氢可充电池:锂离子电池的负极为石墨晶体,正极通常为二氧化锂。
充电时锂离子由正极向负极运动而嵌入石墨层中。
放电时,锂离子从石墨晶体内负极表面脱离移向正极。
所以,在该电池充放电过程中锂总是以锂离子形态出现,而不是以金属锂的形态出现。
因而这种电池叫做锂离子电池,简称锂电池。
锂电池具有:体积小、容量大、重量轻、无污染、单节电压高、自放电率低、电池循环次数多等优点,但价格较贵。
镍镉电池因容量低,自放电严重,且对环境有污染,正逐步被淘汰。
镍氢电池具有较高的性能价格比,且不污染环境,但单体电压只有1.2V,因而在使用范围上受到限制。
二、锂电池的特点:1、具有更高的重量能量比、体积能量比;2、电压高,单节锂电池电压为3.6V,等于3只镍镉或镍氢充电电池的串联电压;3、自放电小可长时间存放,这是该电池最突出的优越性;4、无记忆效应。
锂电池不存在镍镉电池的所谓记忆效应,所以锂电池充电前无需放电;5、寿命长。
正常工作条件下,锂电池充/放电循环次数远大于500次;6、可以快速充电。
锂电池通常可以采用0.5~1倍容量的电流充电,使充电时间缩短至1~2小时;7、可以随意并联使用;8、由于电池中不含镉、铅、汞等重金属元素,对环境无污染,是当代最先进的绿色电池;9、成本高。
与其它可充电池相比,锂电池价格较贵。
三、锂电池的内部结构:锂电池通常有两种外型:圆柱型和长方型。
电池内部采用螺旋绕制结构,用一种非常精细而渗透性很强的聚乙烯薄膜隔离材料在正、负极间间隔而成。
正极包括由锂和二氧化钴组成的锂离子收集极及由铝薄膜组成的电流收集极。
负极由片状碳材料组成的锂离子收集极和铜薄膜组成的电流收集极组成。
快充技术原理与典型应用电路图详解
智能手机的兴起使得手机耗电量急速上升,而成本、电池技术都限制了电池续航时间,在没有办法解决电池续航问题的时候,为用户提供更快的充电速度似乎成了解决手机待机问题理所当然的方法,在这个大背景下,现在的手机快充技术越来越多的被手机厂商们使用和青睐。
一:快充技术原理-快速充电原理电池核心仍是锂离子,大多数厂商走的,基本是开源和节流两条路电池厂商努力提升能量密度加大容量,芯片厂商则在寻求低功耗方案,但这两者都是有上限的:前者手机便携性所限,后者是是技术限制。
既然开源节流效果都不明显,厂商就开始采用曲线救国的方案:提高手机的充电速度,从常规的1-2小时变得更短,以此降低充电的时间成本,换取便捷性。
电池充电的基本条件是:充电器电压要比电池电压高,才能克服电池的电压使它产生充电电流,完成电荷转移过程。
初中物理都学过,功率(P)=电压(U)x电流(I),在电池电量一定的情况,功率标志着充电速度,可以通过下列三种方式来缩短充电时间:
1、电流不变,提升电压
2、电压不变,提高电流
3、电压、电流两者都提高
把充电比喻成水池蓄水,提升电压,会对池壁带来更大压力,带来安全隐患。
所以单纯采用提升电压这种方式的还不多。
从物理计算公式上来说,功率(P)=电压(U)x电流(I),在电池电量一定的情况,功率标志着充电速度,我们可以通过下列三种方式来缩短充电时间。
1、高电压恒定电流模式:一般手机的充电过程是,先将220V电压降至5V充电器电压,5V充电器电压再降到4.2V电池电压。
整个充电过程中,如果增大电压,产生热能,所以充电时,充电器会发热,手机也会发热。
而且这样功耗越大,对电池损害也是越大的。
锂电池充电电路简介锂电池是一种常用的充电电池,其具有高能量密度、长寿命和轻巧便携等优点,因此广泛应用于移动电源、电子设备和无线传感器等领域。
为了正确、高效地充电锂电池,并确保其安全性和寿命,我们需要设计合适的锂电池充电电路。
本文将介绍锂电池充电电路的基本原理和实现方法。
基本原理锂电池充电电路的基本原理是通过控制充电电流和充电电压,将电能转化为化学能储存到锂电池中。
充电电流通常分为恒流充电和恒压充电两种方式。
恒流充电恒流充电是指在一定的充电时间内,通过控制充电电流的大小来给锂电池供电。
通常情况下,初始阶段会以较高的电流给锂电池充电,以使其快速充满至一定程度,然后逐渐降低充电电流,直到锂电池充电完成。
恒流充电的优点是充电速度快,缺点是在充电完成前需要精确计算充电时间,否则可能导致过冲。
恒压充电是指在一定的充电电压下,通过控制充电电流的大小来给锂电池供电。
充电过程中,充电电流会逐渐减小直到达到设定的充电电压。
恒压充电的优点是充电完成后不会有过冲现象,但充电速度较恒流充电略慢。
充电电路设计在设计锂电池充电电路时,需要考虑以下因素:充电电流充电电流的选择对锂电池的安全性和寿命有重要影响。
过大的充电电流会导致电池温升过快,从而影响电池寿命甚至引发安全事故;过小的充电电流则会导致充电时间过长。
因此,我们需要根据锂电池的额定电流和充电要求选择合适的充电电流。
充电电压充电电压是控制锂电池充电过程的重要参数。
在充电过程中,充电电压应逐渐增加到设定的充电电压,直到锂电池充电完成。
过高或过低的充电电压都会对锂电池的安全性和寿命产生负面影响。
在锂电池充电过程中,需要设置相应的保护机制,以保证充电过程的安全性。
常见的充电保护措施包括过流保护、过压保护、过热保护等。
这些保护机制可以通过使用保护芯片和传感器来实现。
充电指示为了方便用户了解充电过程和状态,可以在充电电路中设计充电指示灯或显示屏。
充电指示功能可以告诉用户锂电池充电是否正常进行,以及充电是否完成。
4A 单节锂电池充电电路(特别适合大容量移动电源快速
充电)- CN3001
CN3001 是PWM 降压模式单节锂电池充电管理集成电路,独立对单节锂电池充电进行管理,具有封装外形小,外围元器件少和使用简单等优点。
CN3001 具有涓流,恒流和恒压充电模式,非常适合锂电池充电管理。
在恒压充电模式,CN3001 将电池电压调制在4.2V,也可以通过一个外部电阻向上调整;在恒流充电模式,充电电流通过一个外部电阻设置。
对于深度放电的锂电池,当电池电压低于恒压充电电压的66.5%(典型值)时,CN3001 用所设置的恒流充电电流的17.5%对电池进行涓流充电。
在恒压充电阶段,充电电流逐渐减小,当充电电流降低到恒流充电电流的16%时,充电结束。
在充电结束状态,如果电池电压下降到恒压充电电压的95.5%,自动开始新的充电周期。
特点:
宽输入电压范围:4.5V 到28V
对单节锂电池完整的充电管理
充电电流可达4A
PWM 开关频率:300KHz
恒压充电电压可用电阻向上调整
恒压充电电压精度:±1%
恒流充电电流由外部电阻设置
对深度放电的电池进行涓流充电
自动再充电功能
充电状态和充电结束状态指示。
锂电池充电电路图2009-03-08 18:26锂电池是继镍镉、镍氢电池之后,可充电电池家族中的佼佼者.锂离子电池以其优良的特性,被广泛应用于: 手机、摄录像机、笔记本电脑、无绳电话、电动工具、遥控或电动玩具、照相机等便携式电子设备中。
一、锂电池与镍镉、镍氢可充电池:锂离子电池的负极为石墨晶体,正极通常为二氧化锂。
充电时锂离子由正极向负极运动而嵌入石墨层中。
放电时,锂离子从石墨晶体内负极表面脱离移向正极。
所以,在该电池充放电过程中锂总是以锂离子形态出现,而不是以金属锂的形态出现。
因而这种电池叫做锂离子电池,简称锂电池。
锂电池具有:体积小、容量大、重量轻、无污染、单节电压高、自放电率低、电池循环次数多等优点,但价格较贵。
镍镉电池因容量低,自放电严重,且对环境有污染,正逐步被淘汰。
镍氢电池具有较高的性能价格比,且不污染环境,但单体电压只有1.2V,因而在使用范围上受到限制。
二、锂电池的特点:1、具有更高的重量能量比、体积能量比;2、电压高,单节锂电池电压为3.6V,等于3只镍镉或镍氢充电电池的串联电压;3、自放电小可长时间存放,这是该电池最突出的优越性;4、无记忆效应。
锂电池不存在镍镉电池的所谓记忆效应,所以锂电池充电前无需放电;5、寿命长。
正常工作条件下,锂电池充/放电循环次数远大于500次;6、可以快速充电。
锂电池通常可以采用0.5~1倍容量的电流充电,使充电时间缩短至1~2小时;7、可以随意并联使用;8、由于电池中不含镉、铅、汞等重金属元素,对环境无污染,是当代最先进的绿色电池;9、成本高。
与其它可充电池相比,锂电池价格较贵。
三、锂电池的内部结构:锂电池通常有两种外型:圆柱型和长方型。
电池内部采用螺旋绕制结构,用一种非常精细而渗透性很强的聚乙烯薄膜隔离材料在正、负极间间隔而成。
正极包括由锂和二氧化钴组成的锂离子收集极及由铝薄膜组成的电流收集极。
负极由片状碳材料组成的锂离子收集极和铜薄膜组成的电流收集极组成。
手机锂电池快速充电电路
射频识别技术(Radio Frequency Identification, RFID)作为快速、实时、准确采集与处理信息的高新技术和信息标准化的基础,已经被世界公认为本世纪十大重要技术之一,在生产、零售、物流、交通等各个行业有着广阔的应用前景。
射频识别技术已逐渐成为企业提高物流供应链管理水平、降低成本、企业管理信息化、参与国际经济大循环、增强竞争能力不可缺少的技术工具和手段。
基于RFID 技术的物流供应链管理系统的实施, 需要各种RFID 读写设备。
手持式RFID 读写设备由于其携带方便、便于使用的特点,在物流应用中占有较大的市场。
但是现在市场上大部分手持式RFID 读写设备的功耗较高, 为了延长其工作时间,需要采用大容量的锂电池供电, 如何提供一个锂电池快速充电的一种方法,这是本文需要探讨的一个问题。
本文就来设计满足RFID 手持机功耗要求的DC-DC 变换电路, 以及相应的锂电池快速充电电路。
2 升压电路
单节锂电池的供电电压为3.7V,RFID 读写设备的工作电压为5V,这样对于RFID 手持机就需要一个升压电路。
2.1 升压电路的基本原理
常用Boost 升压电路的原理如文献所示。
该电路实现升压的工作过程可以分为两个阶段:充电过程和放电过程。
第一个阶段是充电过程:当三极管Q1 导通时,电感充电,等效电路如图1(a)所示。
电源对电感充电,二极管防止电容对地放电。
由于输入是直流电,所以电感上的电流首先以一定的比率线性增加,这个比率与电感大小有关。
随着电感电流增加,电感中储存了大量能量。
第二阶段是放电过程:当三极管Q1 截止时,电感放电,等效电路如图2(b)所示。
当三极管Q1 由导通变为截止时,由于电感的电流保持特性,流经电感的电流不会在瞬间变为0,而是缓慢的由充电完毕时的值变为0。
而原来的通路已断开,于是电感只能通过新电路放电,即电感开始给电容充电,电容两端电压升高,此时电容电压可达到高于输入电压的值。
2.2 升压电路的设计
升压电路采用立锜科技的RT9266B 高效率DC-DC 升压芯片,RT9266B 具有功耗低、静态电流小、转换效率高、外围电路简单等特点。
芯片内带有自适应的PWM 控制环、误差放大器、比较器等,通过外接反馈电路,能够将输出电压设置为需要的任何幅值,具有很高的电压精度。
电路图如图2 所示。
从图2 可知升压电路通过外接10uH 电感储能, 利用反馈电阻R1 与R2 控制升压电路的输出电压, 利用RT9266B 内部自待的PWM 控制器控制NMOS 管的导通与截止, 来控制升压电路的输出电流。
由于该芯片内部具有自适应的PWM 控制器,能够适应较大的负载变化范围。
用该升压电路将3.7V 2000mAh 聚合物锂电池升压至5V时,输出电压纹波只有40mV,最大输出电流可达500mA。
3 充电电路
3.1 锂电池充电电路的基本原理
锂电池的充电过程可分为三个阶段:预充电、恒流充电和恒压充电。
当锂电池的电压低于最小充电电压,则首先进入预充电阶段,以微小电流(通常取标准电流的10%)给电池充电,直至电池电压达到最小充电电压。
此阶段的预充电能够防止锂电池在过放后直接以大电流恒流充电造成的损坏。
当电池电压高于最小充电电压时,充电进入恒流充电阶段。
通常恒流充电电流取为0.5C(C 为锂电池的容量)。
当锂电池的电压达到标准电压时,进入恒压充电状态, 充电电流不断减小, 直至电流减小至100mA
从图2 可知升压电路通过外接10uH 电感储能, 利用反馈电阻R1 与R2 控制升压电路的输出电压, 利用RT9266B 内部自待的PWM 控制器控制NMOS 管的导通与截止, 来控制升压电路的输出电流。
由于该芯片内部具有自适应的PWM 控制器,能够适应较大的负载变化范围。
用该升压电路将3.7V 2000mAh 聚合物锂电池升压至5V时,输出电压纹波只有40mV,最大输出电流可达500mA。
3 充电电路
3.1 锂电池充电电路的基本原理
锂电池的充电过程可分为三个阶段:预充电、恒流充电和恒压充电。
当锂电池的电压低于最小充电电压,则首先进入预充电阶段,以微小电流(通常取标准电流的10%)给电池充电,直至电池电压达到最小充电电压。
此阶段的预充电能够防止锂电池在过放后直接以大电流恒流充电造成的损坏。
当电池电压高于最小充电电压时,充电进入恒流充电阶段。
通常恒流充电电流取为0.5C(C 为锂电池的容量)。
当锂电池的电压达到标准电压时,进入恒压充电状态, 充电电流不断减小, 直至电流减小至100mA左右,充电完成。
3.2 锂电池充电电路的设计
锂电池充电电路的原理图如图3 所示, 采用TI 公司的bq2057 实现。
bq2057 系列是一款先进的锂电池充电管理芯片,适合于单节(4.1V 或4.2V)或双节
(8.2V 或8.4V)锂离子和锂聚合物电池的充电需要。
BQ2057 可以动态补偿锂电池组的内阻以减少充电时间;带有可选的电池温度监测,利用电池组温度传感器连续检测电池温度, 当电池温度超出设定范围时BQ2057 关闭对电池充电;内部集成的恒压恒流器带有高/低边电流感测和可编程充电电流,充电状态识别可由输出的LED 指示灯或与主控器接口实现,具有自动重新充电、最小电流终止充电、低功耗睡眠、电压精度高(优于±1%)等特性。
利用该芯片设计的充电器外围电路比较简单,非常适合便携式电子产品的紧凑设计需要。
该电路通过SNS 与COMP 两端的感应电阻R5 调节CC 端输出PWM 波的频率来控制Q1 三极管的导通与截止,从而实现对最大充电电流的控制。
该电路经过实际测试, 对3.7V 2000mAh 的锂聚合物电池充电,最大充电电流可达810mA,3 小时可以将电池充满。
充电数据如表1 所示:
从上表可以看出,当充电电路显示充满时,实测电池电压为4.12V,与标准电压
4.2V 相差0.5V。
出现误差的原因在于,在充电过程中,锂电池的充电电流存在波动,当电流在瞬间低于某一阈值时,bq2057 认为充电完毕,关断充电电路。