选修11第一章常用逻辑用语1.4逻辑联结词“且”或“非”
- 格式:doc
- 大小:50.18 KB
- 文档页数:4
1.4.2 逻辑联结词“非”一、选择题1.已知p:2+2=5,q:3>2,则下列判断中,错误的是( )A.p∨q为真,¬q为真B.p∧q为假,¬p为真C.p∧q为假,¬q为假D.p∧q为假,p∨q为真解析:由于p是假命题,q是真命题,所以p∨q为真,p∧q为假,¬p真,¬q假,由此可知,A不正确,故选A.答案:A2.[2014·北京四中月考]若(¬p)∨q是假命题,则( )A. p∧q是假命题B. p∨q是假命题C. p是假命题D. ¬q是假命题解析:本题主要考查含有逻辑联结词的命题的真假性判断.由于(¬p)∨q是假命题,则¬p与q均是假命题,所以p是真命题,¬q是真命题,所以p∧q是假命题,p∨q是真命题,故选A.答案:A3.在一次射击比赛中,甲、乙两位运动员各射击一次,设命题p:“甲的成绩超过9环”,命题q:“乙的成绩超过8环”,则命题“p∨(¬q)”表示( )A. 甲的成绩超过9环或乙的成绩超过8环B. 甲的成绩超过9环或乙的成绩没有超过8环C. 甲的成绩超过9环且乙的成绩超过8环D. 甲的成绩超过9环且乙的成绩没有超过8环解析:本题主要考查含有逻辑联结词的命题的意义以及在生活中的应用.¬q表示乙的成绩没有超过8环,所以命题“p∨(¬q)”表示甲的成绩超过9环或乙的成绩没有超过8环,故选B.答案:B4.已知全集U=R,A⊆U,B⊆U,若命题p:a∈(A∩B),则命题“¬p”是( )A.a∈AB.a∈∁U BC.a∈(A∪B)D.a∈(∁U A)∪(∁U B)解析:∵p:a∈(A∩B),∴¬p:a∉(A∩B),即a∈∁U(A∩B).而∁U(A∩B)=(∁U A)∪(∁U B),故选D.答案:D二、填空题5.[2014·江西省临川一中月考]“末位数字是1或3的整数不能被8整除”的否定形式是________,否命题是________.解析:本题主要考查命题的否定与其否命题的区别.命题的否定仅否定结论,所以该命题的否定形式是:末位数字是1或3的整数能被8整除;而否命题要同时否定原命题的条件和结论,所以否命题是:末位数字不是1且不是3的整数能被8整除.答案:末位数字是1或3的整数能被8整除末位数字不是1且不是3的整数能被8整除6.命题p:{2}∈{1,2,3},q:{2}⊆{1,2,3},则对复合命题的下述判断:①p∨q为真;②p∨q为假;③p∧q为真;④p∧q为假;⑤¬p为真;⑥¬q为假.其中判断正确的序号是__________.(填上你认为正确的所有序号)解析:由已知得p为假命题,q为真命题,所以可判断①④⑤⑥为真命题.答案:①④⑤⑥7.若命题p:函数f(x)=x2+2(a-1)x+2在区间(-∞,4]上是减函数,若¬p是假命题,则a的取值范围是__________.解析:¬p是假命题,则p是真命题,因此问题就是求p真时a的取值范围.要使函数f(x)=x2+2(a-1)x+2在(-∞,4]上单调递减,只需对称轴1-a≥4,∴a≤-3.答案:(-∞,-3]三、解答题8.已知p:x2-x≥6,q:x∈Z,若p∧q和¬q都是假命题,求x的值.解:由x2-x≥6得x2-x-6≥0,解之得x≥3或x≤-2,即p:x≤-2或x≥3,q:x∈Z,若¬q假,则q真,又p∧q假,则p假.当p假,q真时,有-2<x<3,且x∈Z,∴x=-1,0,1,2.9.已知:p:方程x2+mx+1=0有两个不等的负实根;q:方程4x2+4(m-2)x+1=0无实根.若p且q为假,¬p为假,求m的取值范围.解:p :⎩⎪⎨⎪⎧ Δ=m 2-4>0,m >0,解得m >2.q :Δ=16(m -2)2-16=16(m 2-4m +3)<0. 解得1<m <3.∵p 且q 为假,¬p 为假.∴p 为真,q 为假,即⎩⎪⎨⎪⎧ m >2,m ≤1或m ≥3,解得m ≥3,∴m 的取值范围为[3,+∞).。
第一章常用逻辑用语第4.1节逻辑联结词“且”第4.2节逻辑联结词“或”第4.3节逻辑联结词“非”一、创设情境前面我们学习了命题的概念、命题的构成和命题的形式等简单命题的基本框架。
本节内容,我们将学习一些简单命题的组合,并学会判断这些命题的真假。
问题1:下列语句是命题吗?如果不是,请你将它改为命题的形式①11>5 ②3是15的约数吗?③0.7是整数④x>8二、活动尝试①是命题,且为真;②不是陈述句,不是命题,改为3是15的约数,则为真;③是假命题④是陈述句的形式,但不能判断正确与否。
改为x2≥0,则为真;例如,x<2,x-5=3,(x+y)(x-y)=0.这些语句中含有变量x或y,在没有给定这些变量的值之前,是无法确定语句真假的.这种含有变量的语句叫做开语句(有的逻辑书也称之为条件命题)。
我们不要在判断一个语句是不是命题上下功夫,因为这个工作过于复杂,只要能从正面的例子了解命题的概念就可以了。
三、师生探究问题2:(1)6可以被2或3整除;(2)6是2的倍数且6是3的倍数;(3上述三个命题前面的命题在结构上有什么区别?比前面的命题复杂了,且(1)和(2)明显是由两个简单的命题组合成的新的比较复杂的命题。
命题(1)中的“或”与集合中并集的定义:A∪B={x|x∈A或x∈B}的“或”意义相同.命题(2)中的“且”与集合中交集的定义:A∩B={x|x∈A且x∈B}的“且”意义相同.命题(3否定而得出的新命题.四、数学理论1.逻辑连接词命题中的“或”、“且”、“非”这些词叫做逻辑联结词2. 复合命题的构成简单命题:不含有逻辑联结词的命题叫做简单命题复合命题:由简单命题再加上一些逻辑联结词构成的命题叫复合命题3.复合命题构成形式的表示常用小写拉丁字母p、q、r、s……表示简单命题.复合命题的构成形式是:p或q;p且q;非p.即:p或q 记作p∨q p且q 记作p∧q 非p (命题的否定) 记作⌝p释义:“p 或q ”是指p,q 中的任何一个或两者.例如,“x ∈A 或x ∈B ”,是指x 可能属于A 但不属于B (这里的“但”等价于“且”),x 也可能不属于A 但属于B ,x 还可能既属于A 又属于B (即x ∈A ∪B );又如在“p 真或q 真”中,可能只有p 真,也可能只有q 真,还可能p,q 都为真.“p 且q ”是指p,q 中的两者.例如,“x ∈A 且x ∈B ”,是指x 属于A ,同时x 也属于B (即x ∈A I B ). “非p ”是指p 的否定,即不是p. 例如,p 是“x ∈A ”,则“非p ”表示x 不是集合A 的元素(即x ∈U A ð).五、巩固运用例1:指出下列复合命题的形式及构成它的简单命题:(1)24既是8的倍数,也是6的倍数;(2)李强是篮球运动员或跳高运动员;(3)平行线不相交解:(1)中的命题是p 且q 的形式,其中p :24是8的倍数;q :24是6的倍数.(2)的命题是p 或q 的形式,其中p :李强是篮球运动员;q :李强是跳高运动员.(3)命题是非p 的形式,其中p :平行线相交。
选修11第一章常用逻辑用语1.4逻辑联结词“且”或“非”
测试题 2019.9
1,当掷五枚硬币时,已知至少出现两个正面向上,则正好出现3个正面
向上的概率为
2,某射手每次射击击中目标的概率为0.8,此人每次射击相互没有影响,在此人10次射击中,击中目标的次数为X ,那么此人最有可能击中目标
的次数为
3,命题: 和是椭圆的两焦点,为椭圆上的点,过作∠的外角
平分线的垂线,垂足为, 则到椭圆中心的距离为该椭圆长轴长的一半.
经证明该命题正确.请你依照该命题研究双曲线中的情形,写出类似的正确命题: .
4,已知数列中,,且(n ≥2),
求这个数列的第m 项的值(m ≥2).现给出此算法流程图的一部分如
图
(1)请将空格部分(两个)填上适当的内容;
(2)用“For ”循环语句写出对应的算法;
1F 2F P 2F 12F PF T T {}n a 12a =1n n a n a -=+m a
m
(3)若输出S=16,则输入的的值是多少?
5,命题“线段垂直平分线上的点到线段两端的距离相等”与它的逆命题、否命题、逆否命题中,真命题有()
A. 4个
B. 3个
C. 2个
D. 1个
6,“p或q是假命题”是“非p为真命题”的()
A. 充分而不必要条件
B. 必要而不充分条件
C. 充要条件
D. 既不充分也不必要条件
7,下列命题
①“等边三角形的三内角均为60°”的逆命题
②若k>0,则方程x2+2x-k=0有实根“的逆命题
③“全等三角形的面积相等”的否命题
④“若ab≠0,则a≠0”的逆否命题,其中真命题的个数是()A.0个 B.1个 C.2个 D.3个
8,如图电路中,规定“开关A的闭合”为条件M,“灯泡B亮”为结论N,观察以下图1和图2,可得出的正确结论分别是
()
A.M是N的充分而不必要条件. B。
M是N的必要而不充分条件.
C.M是N的充要条件. D。
M是N的既不充分也必要不条件.
9,已知函数f(x)=347
2+++kx kx kx ,若R x ∈∀,则k 的取值范围是 ( )
A .0≤k<43
B .0<k<43
C .k<0或k>43
D .0<k ≤43
10,在ΔABC 中,条件甲:A<B ,条件乙:cos 2A> cos 2B,则甲是乙的( )
A 、充分非必要条件
B 、必要非充分条件
C 、既非充分又非必要条件
D 、充要条件
测试题答案
1, 5/13
2, 8
3, 和为双曲线的两焦点,P 为双曲线上的点,过作∠的平分线的垂线,垂足为 则到双曲线中心的距离为该双曲线的实轴长的一半. 4, 解:(1)2,m+1;
(2)
(3)m=5
5, A
6, A
7, C
8, A
9, A
10, D
1F 2F 2F 12F PF T
T。