凝胶过滤层析的分类
- 格式:ppt
- 大小:632.50 KB
- 文档页数:15
凝胶过滤层析原理凝胶过滤层析原理是一种生物化学技术,常用于对蛋白质、核酸等生物大分子的分离和纯化。
它基于凝胶的选择性,通过分子大小和形状的差异来实现生物大分子的分离。
凝胶是一种多孔结构的凝胶体,通常由聚丙烯酰胺或琼脂糖等高分子物质组成。
凝胶过滤层析的原理就是将待分离样品加入到一层固定在糖凝胶基质上的膜中,再通过注入缓冲液使其在凝胶中进行迁移。
不同大小和形状的分子会在凝胶中通过不同的速度、途径和距离进行移动和分离。
在凝胶层析中,分子的迁移受到凝胶孔隙大小的限制。
孔隙越小,分子迁移的速度就越慢,分子会在凝胶中停留更长的时间。
因此,分子的分离程度取决于其分子大小和凝胶孔隙大小之间的差异。
凝胶层析可以分为两种类型:凝胶过滤层析和凝胶渗透层析。
凝胶过滤层析是利用凝胶基质孔隙大小的差异实现不同分子的过滤和分离。
较大的分子被阻挡在凝胶中,而较小的分子可以通过凝胶基质的孔隙,从而实现分离。
凝胶渗透层析则是利用凝胶基质孔隙中水合盖层的形成来实现分离。
分子在凝胶中形成水合物,而较大的分子受到水合盖层的阻挡,不能通过凝胶孔隙,从而停留在凝胶中。
较小的分子则可以通过凝胶孔隙,由于不形成水合物,迅速透过凝胶,实现分离。
凝胶层析可以通过调节凝胶孔隙大小来实现对不同大小分子的选择分离。
通过改变凝胶基质的组成、交联程度和浓度,可以调节凝胶的孔隙结构。
此外,还可以根据分子的分子量进行凝胶层析的选择性分离。
在凝胶层析中,常用的缓冲液是通过控制pH和离子浓度来维持凝胶中分子的稳定迁移。
较小的分子通常迁移速度较快,而较大的分子迁移速度较慢。
根据样品的性质,可以调节缓冲液的pH和离子浓度,以改变分子的迁移速度,实现更好的分离效果。
总之,凝胶层析通过凝胶基质的孔隙大小和水合盖层的形成来实现对生物大分子的分离和纯化。
凝胶过滤层析和凝胶渗透层析是其中两种常用的方法。
通过调节凝胶基质的孔隙结构和缓冲液的组成,可以实现对不同大小分子的选择性分离。
凝胶层析的研究及其应用凝胶层析是一种常见的分离和纯化生物大分子的技术方法,广泛应用于生物化学、分子生物学、生物医学等领域。
本文将介绍凝胶层析的研究及其应用。
一、凝胶层析的原理和分类凝胶层析是利用凝胶作为分离介质,根据生物分子在凝胶中的分子大小、形状和电荷差异,通过毛细管效应和几何阻滞效应实现生物大分子的分离和纯化。
凝胶层析可分为凝胶过滤层析、凝胶吸附层析和凝胶电泳层析三种主要方法。
1.凝胶过滤层析:根据生物分子的大小和孔径大小的选择,将较大的生物分子滞留在凝胶中,而较小的生物分子则通过凝胶颗粒。
常用的凝胶过滤介质有琼脂糖、聚丙烯酰胺凝胶等。
2.凝胶吸附层析:根据生物分子与凝胶吸附剂(如离子交换剂、亲和吸附剂)之间的亲和性差异,实现生物分子的分离纯化。
常用的凝胶吸附介质有离子交换凝胶、亲和性凝胶等。
3.凝胶电泳层析:根据生物分子的电荷差异,在电场作用下,通过凝胶孔隙内的离子迁移实现生物分子的分离。
常用的凝胶电泳介质有聚丙烯酰胺凝胶、琼脂糖凝胶等。
二、凝胶层析的研究进展凝胶层析技术的研究中涉及到凝胶材料的制备与改性、凝胶层析流程的优化和成像技术的发展等方面。
1.凝胶材料的制备与改性:为了提高凝胶分离效果,研究人员常对凝胶材料进行制备和改性。
如调控凝胶孔隙大小、凝胶表面的亲和性等。
同时,还探索了新型的凝胶材料,如纳米凝胶和水凝胶。
2.凝胶层析流程的优化:凝胶层析的分离效果受到多种因素的影响,包括凝胶浓度、缓冲液pH值、离子浓度和柱床尺寸等。
因此,优化凝胶层析流程能够提高分离效率和纯化效果。
3.成像技术的发展:凝胶层析结合成像技术能够实时观察分离过程中的分子分布,提供有关分子大小、形状和电荷的信息。
如蛋白质凝胶电泳的银染色、荧光标记和质谱等技术的应用。
三、凝胶层析的应用凝胶层析在生物化学、分子生物学和生物医学等领域广泛应用于分离和纯化生物大分子。
1.蛋白质纯化:凝胶层析可以根据蛋白质的大小、电荷和亲和性等特性进行分离。
凝胶过滤层析技术原理讲解凝胶过滤层析技术原理讲解(附动画)原创作者;gfzhang凝胶过滤层析(Gel Filtration Chromatography,GFC)又称尺寸排阻层析(Size Exclusion Chromatography,SEC)凝胶渗透层析(Gel Permeation Chromatography,GPC)分子筛层析(Molecular Sieve Chromatography,MSC)注:在高效液相色谱分析中,用GFC或SEC表示凝胶过滤色谱或尺寸排阻色谱,流动相通常是水溶液;在有机高分子分析中,常用GPC表示凝胶渗透色谱,流动相通常是有机溶剂;在蛋白质分离纯化中用GFC或SEC表示凝胶过滤层析或尺寸排阻层析;本文以下内容均针对蛋白质分离,因此均以凝胶过滤层析(GFC)表示。
(1)分离机理GFC填料是由高分子交联而成、内部具有网状筛孔的固体颗粒,利用球状凝胶内的筛孔的大小,不同水力学半径的分子在通过填料时运行路径存在差异,利用该差异将不同大小的蛋白质进行分离。
蛋白质分子流过填充凝胶的管柱时,大分子无法进入凝胶筛孔,而只流经凝胶及管柱间的孔隙,因此总体运行路径较短,从层析柱入口到出口所需时间较短;较小的分子因为进入凝胶内的筛孔,总体运行路径较长,故在管柱内的停留时间较长;基于此原理可以区分大小不同的分子,亦可与已知大小的分子作比较而确定未知样品的分子量。
注1:球形蛋白与线性分子在凝胶过滤层析中的保留行为存在差异,因此使用球形蛋白制作的分子量标准曲线不能用于明胶多肽、淀粉或其它聚合物。
(2)应用范围A蛋白质分离,基于混合中不同蛋白质分子尺寸大小进行分离;B分子量测定,蛋白质分子量(球形)的对数与其在凝胶过滤层析时的保留时间呈线性关系; C样品脱盐或溶剂置换。
(3)填料要求一般状况下,用于制备凝胶过滤层析的填料应不吸附目标成份,所有欲分离物质均被洗脱出,这是凝胶层析法与其它层析法不同的地方。