船舶航行性能
- 格式:doc
- 大小:22.00 KB
- 文档页数:4
高性能船舶知识概要1绪论1.1什么是高性能船舶?基于不同的流体动力原理,高性能船有不同的类型和船型,可以是排水量船型,还可以是流体动力船型,还可以是不同原理的混合船型。
不管是哪一种船型,它们的共同点是具有高水平的综合航海性能,以及具有完善的满足其主要使用要求的船舶功能。
这样的船舶统称为高性能船舶。
1.2高性能船的特点有哪些?航速高,优良的耐波性能,载运能力较大,经济性好,优美的造型和舒适的舱室空间环境。
1.3什么是傅氏数和容积傅氏数,引入傅氏数的目的是什么?船傅氏数就是傅汝德数,傅氏数(L为船的设计水线长),容积傅氏数(▽为排水体积)。
引入傅氏数的目的:表达船舶相对速度。
1.4航速对船舶首尾吃水的影响规律?(1)当Fr▽<1时,此时航速较低,流体动力所占的比重极小,船体基本上由静浮力支持,船体的航态与静浮时变化不大。
(2)1.0<Fr▽<3.0时,此时随着航速的提高,航态较静浮状态有明显的变化,船首上抬较大,船尾下沉明显,整个船体呈现明显的尾倾现象。
(3)Fr▽<3.0时,此时航速很高,船体吃水变化很大,而且整个船体被托起并在水面上滑行,仅有一小部分船体表面与水接触。
1.5根据流体动支持力的大小船舶运动可分为哪几种运动航态?根据流体动支持力的大小船舶运动可分为排水航行状态,过渡(或半滑行)状态和滑行状态1.6高性能船舶有哪几种类型?高性能船舶主要包括:小水线面双体船,穿浪双体船,滑行船,水翼艇,气垫船,地效翼船,高性能排水式单体船。
1.7高性能船舶航行性能有哪几种研究方法,这些方法的特点是什么?高性能船舶航行性能有三种研究方法:理论计算研究,模型试验研究,实船试验研究,特点如下:理论计算研究特点,高性能船舶是现代高科技应用和发展的产物。
在每种高性能新船型开发研制工作一开始,以船舶水动力学为基础的各种分析计算方法即被引用于性能研究工作,而且收到了比单体船性能研究中使用理论计算方法更好的效果。
1、船舶的航海性能包括哪些性能?各自的含义分别是什么?1、浮性:船舶装载一定的载荷,仍能浮于一定水面位置而不沉没的能力。
2、稳性:船舶受外力作用离开平衡位置发生倾斜而不致于倾覆,当外力消除后仍能回复到原来平衡位置的能力。
3、抗沉性:船舶遭受海损事故舱室破损进水,仍能保持一定的浮性和稳性而不致于沉没或倾覆的能力。
4、快速性(或称速航性):船舶在其动力装置产生一定功率的情况下能达到规定航速的能力。
快速性包括两方面:1)船舶阻力:研究船舶航行时所遭受的阻力。
目的在于掌握阻力的变化规律,从而改善船型,降低阻力。
即阻力的成因、分类、计算、影响因素和降阻措施。
2)船舶推进:研究船舶推进器,推进器克服阻力发生推力。
目的在于设计出符合要求的高效推进器。
即推进器的水动力性能、设计高效推进器。
5、操纵性:船舶在航行是按照驾驶员的意图保持既定航向的能力或改变航行方向的能力。
包括:1)航向稳定性:保持原有航向的能力。
2)转首性:应舵转首的能力。
3)回转性:应舵作圆弧运动的能力。
6、耐波性(或称适航性):船舶在风浪海况下航行时的运动性能,即船舶在风浪中遭外力干扰而产生各种摇摆运动,以及砰击、上浪、失速和飞车等时,仍能维持一定航速在水面上安全航行的能力。
主要研究内容为船舶摇摆。
目的在于:掌握船舶摇摆规律,采取措施以减缓船舶摇摆。
船舶摇摆的含义:1)船舶转动:横摇、纵摇和首摇―――摇;2)船舶直线运动:横荡、纵荡和垂荡―――摆。
2、船型系数有哪些?各自的含义是什么?会进行船体系数的相关计算。
1)水线面系数的大小表示水线面的肥瘦程度。
2)中横剖面系数的大小表示水线以下的中横剖面的肥瘦程度。
3)方形系数的大小表示船体水下体积的肥瘦程度。
4)棱形系数的大小表示船体水下排水体积沿船长方向的分布情况。
5)纵向棱形系数的大小表示船体水下排水体积沿吃水方向的分布情况。
3、了解梯形法的基本原理,掌握用梯形法列表进行船体计算的方法,掌握“成对和”和“自上而下和”的含义。
1. 船是一个狭长和左右对称的几何体,它的上部、下部和两边分别为上甲板、船底和左右舷所包围。
2. 船体的几何要素包括船的大小和形状。
3. 中线面:通过船宽中点的纵向垂直平面,它把船体分为相互对称的左右舷,因此中线面是船体的对称面。
4. 舯站面:通过船长中点垂直于中线面的横向垂直平面,把船体分为首尾两部分。
5. 基平面:通过船长中点龙骨上缘的水平面,与中线面、舯站面相互垂直,三者组成主坐标平面。
6. 也有的用设计水线面代替基平面,它是通过设计水线处的水平面,把船体分为水上和水下两部分。
7. 船体型表面在三个基本投影面上的截面分别称为中纵剖面、舯剖面和水线面。
8. 甲板边线:甲板型表面在舷边的曲线。
9. 甲板中线:甲板型表面与中线面的交线。
10. 舷弧:甲板边线的纵向曲度。
11. 首舷弧:首垂线处的甲板边线比船舯处的甲板边线高处的距离。
12. 尾舷弧:尾垂线处的甲板边线比船舯处的甲板边线高处的距离。
13. 脊弧:甲板中线的纵向曲度。
14. 梁拱:为了排除积水,船的甲板是从中线向两舷逐渐下降,下降度FH 称为梁拱。
15. 船体可分为两部分,在最上层连续甲板以下的称为主船体,以上的称为上层建筑. 16. 船长(L)----通常选用的船长有三种,即总长、垂线间长和设计水线长。
17. 总长(L OA ):自船首最前端至船尾最后端平行于设计水线的最大距离。
18. 垂线间长(Lpp ):首垂线(F.P)与尾垂线(A.P)之间的水平距离。
19. 水线长(L WL ):平行于设计水线的任一水线与船体型表面首尾端交点间的水平距离。
20. 型宽(B )----指船舶型表面之间垂直于中线面方向度量的最大距离,一般指船长中点处的宽度。
21. 型深(D )----在船舶型表面的甲板边线最低点处,自龙骨板上表面至上甲板边板的下表面的垂直高度。
22. 吃水(d )----龙骨基线至设计水线的垂直高度。
23. 干舷(F )----自设计水线至上甲板边板上表面的垂直距离。
船舶结构与性能分析船舶是如今重要的交通运输工具,具有载货和运输人员的功能。
船舶的设计和构造需要考虑到诸多方面,如结构、性能、经济性、安全性、环境保护等因素。
船舶结构是船舶设计的关键环节,决定着船舶的安全性和可靠性。
通常,船舶结构分为上层结构和下层结构。
上层结构包括船体外壳、甲板、船舱、驾驶台、推进装置等组成部分,而下层结构则是船舶的骨架,包括龙骨、船板、框架、舾装等结构。
船舶结构的稳定性、强度和耐久性是船舶性能的重要组成部分。
船舶的根本性能指标是速度、航程和载重能力。
船舶具有几何阻力、摩擦阻力、波浪阻力和空气阻力等多种阻力,需要在设计中充分考虑,以使得船舶性能优化。
同时,需要考虑到操控性、稳定性和航行平稳性等因素。
在船舶设计中,材料的选择是非常重要的。
船舶常用的材料包括钢、铝、复合材料、木材等。
钢材是常用的船舶结构材料,具有良好的强度和韧性。
铝材则具有较小的密度和较高的强度,并具有抗腐蚀和良好的制造性能。
复合材料则是一类新型材料,具有重量轻、强度高、耐腐蚀等优点,并逐渐被应用于船舶结构中。
船舶的性能与环境密切相关。
为了降低船舶对环境的影响,需要在设计中考虑到环保因素。
通常采用的方法包括降低船舶的废气排放、优化能源利用和采用环保材料等,以减少船舶对环境的负面影响。
随着科技的不断进步,船舶的设计和构造已经实现了大幅度的改进。
船舶设计师可以使用计算机辅助设计(CAD)、计算机辅助制造(CAM)等技术对船舶进行模拟和优化。
同时,还可以采用先进的防污涂层、节能设备、系统集成等技术,以提高船舶的性能和经济性。
总之,船舶结构和性能是船舶设计中非常重要的一部分,如何实现船舶的优化和提高其性能,需要设计师综合考虑各种因素,制定出全面的设计方案。
未来,随着科技的不断发展,我们相信船舶的性能和经济性将继续得到提高。
不同船型船舶的航行性能比较分析船舶是海洋交通载体的重要组成部分,在各种船型中,不同的造型和功能将对航行性能产生显著影响。
在这篇文章中,我们将从各个方面比较分析一些常见的船型船舶的航行性能,以期更好地了解它们的优缺点和适用范围。
1.散货船散货船通常具有大的载重量和舱容,大多用于运输散装货物。
在航行性能方面,散货船更受到其船体尺寸和吨位的限制。
由于散货船常常需要在狂暴的海浪中航行,因此它们需要具有较强的结构强度和稳定性。
通常情况下,它们的船身设计比较宽而平坦,以适应重载和强波浪的情况。
由于散货船的速度相对较慢,故其主机功率相对较低,通常在6000马力左右。
2.集装箱船集装箱船是货物集装箱化的主要运输方式之一,在现代商业中它们占据着非常重要的位置。
与散货船不同,集装箱船通常被限制在其标准化的尺寸内。
在其航行性能方面,集装箱船通常具有较高的速度和良好的机动性能,并且其设计相对更加细长,以保证在海浪中更好的适应性。
集装箱船的主机功率通常在20000到30000马力之间。
3.油轮油轮是石油产品的主要运输方式,也是工业品的重要载体。
油轮通常比散货船和集装箱船更宽,并且其背部更加圆润。
这主要是由于燃油的安全和限制因素所决定,而在船身宽度方面则主要由于其不可压缩液体的运输所决定。
油轮的速度与散货船接近,但比集装箱船更慢,并且其主机功率在10000到20000马力之间。
4.海上作业船海上作业船的主要任务是在海上进行各种维修、加固和打捞工作。
它们通常具有较大的吊装能力和操作灵活性,因而其设计比较独特,如救助拖船、钻井船以及满载航行深度达到大约100米的潜艇救援船等,都是海上作业船的典型代表。
它们的速度和功率因任务而异,但通常比散货船、集装箱船和油轮要慢和低。
总体来说,以上介绍的船型船舶各具大小,设计和功能不同,对于其航行性能的要求也不尽相同。
在以选择适合的船型船舶时,需要根据实际需要,对其船型结构、特点和技术指标等方面进行综合比较,来实现最佳的传输效益。
船舶航行性能为了确保船舶在各种条件下的安全和正常航行,要求船舶具有良好的航行性能,这些航行性能包括浮力、稳性、抗沉性、快速性、摇摆性和操作性。
船舶浮性船舶在一定装载情况下的漂浮能力叫做船舶浮性(buoyancy)船舶是浮体,决定船舶沉浮的力主要是重力和浮力。
其漂浮条是:重力和浮力大小相等方向相反,而且两力应作用在同一铅垂线上。
船舶重力即船舶的总重量。
船舶浮力是指水对船体的上托力根据阿基米德定理,船舶浮力大小等于船体所排开同体积水的重量。
船舶重力,通常用W表示,它经过船舶重量的中心,也叫重心(G),其方向垂直向下,船舶重心G的位置是随货物移动而改变;船舶浮力,通常用B表示,它经过船舶水下体积的几何中心,也叫浮心(G),其方向垂直向上,船舶浮心G的位置是随水线下船体体积的变化而变化,如图1-23所示。
船舶重力(W)和浮力(B)大小相等、方向相反且重力与浮力又是作用在同一铅垂线上,这时船舶就平衡漂浮在水面上。
如果增加载货,重力增大船舶就会下沉,使吃水增加,浮力也就增大,直到浮力和重力又相等,船舶就达到新的平衡位置;同样,若重力减少,船舶上浮,也会到达另一新的平衡点。
船舶的平衡漂浮状态,简称船舶浮态。
船舶浮态可分为四种。
1.正浮状态是指船舶首、尾、中的左右吃水都相等的情况。
2.纵倾状态是指左右吃水相等而首尾吃水不等的情况。
船首吃水大于船尾水叫首倾;船尾吃水大于船首吃水叫尾倾。
为保持螺旋桨一定的水深,提高螺旋桨效率,一航未满载的船舶都应有一定的尾倾。
3、横倾状态是指船首尾吃水相等而左右吃水不等的情况,航行中不允许出现横倾状态。
4、任意状态是指既有横倾又有纵横倾的状态。
船舶在海上航行,经常会遇到海浪打上甲板,冬季还会结成很厚的冰,这就等于给船舶增加了重量。
为了保障船舶安全,船舶必须留有一定的储备浮力(也叫保留浮力)。
储备浮力是指船舶主甲板以下至水线之间水密空间产生的浮力,如下图所示。
载货越少,船舶干舷越高,储备浮力越大,浮性越好,越有利于航行安全。
所以,为了既保证船舶安全,又能充分利用船舶的载重能力,就必须根据不同季节和航区进行合理配载,使最大吃水不超过载重线标志上规定的满载吃水线。
船舶稳性稳性(stability)是指船舶在外力矩(如风、浪等)的作用下发生倾斜,当外力矩消除后能自行恢复到原来平衡位置的能力。
船舶稳性,按倾斜方向可分为横稳性和纵稳性;按倾斜角度大小可分为初稳性(倾角100以下)和大倾角稳性;按外力矩性质可分为静稳性和动稳性。
对于船舶来说,发生首尾方向倾覆的可能性极小,所以一般都着重讨论横稳性。
当船舶在平衡位置时,由于船舶构造上是左右对称的,船上重量分布也要求左右对称,所以重心(G)是在船舶中线上。
如前所述,重力(W)是从重心(G)垂直向下。
船舶浮心(C)是船舶水下体积的几何中心,当船舶正浮时,也在船舶中心线上,浮力(B)是从浮心(C)垂直向上,如图1-25所示。
当外力矩迫使船舶倾斜,若货物不移位,则重心位置不变。
但由于水下体积形状发生变化,而浮心则由C点移到C1点。
此时重力和浮力组成一个反抗倾斜的力偶,如图1-26所示。
当外力矩消失后,船舶在上述力偶所产生的力矩作用下恢复到初始位置。
此力矩称为复原力矩。
当船舶处于稳定平衡状态时,称船舶具有稳性。
如果船舶的重心过高,或船宽较窄,当船舶受外力矩作用横倾时,由于船宽较窄的船舶浮心横移的距离较小,因而重力和浮力组成的力偶所产生的力矩,反而使船舶继续倾斜,以至于倾覆,此力矩称为倾覆力矩,如图1-26所示。
当船舶处于不稳定平衡状态时,称船舶没有稳性。
从上述两种情况可以看出:在图1-26中,M点(船舶倾斜后新的浮力作用线与船舶中心线的交点)是在重心G点之上,船舶具有稳性,M点叫做稳心。
在图1-27中,M点是在G点之下,船舶不具有稳性。
经分析研究,船舶是否具有稳性以及稳性好坏,决定于G点与M点的相对位置和G和M间距离的大小,即GM值是衡量船舶稳性好坏的标准,称GM 值为初稳性高度。
它与稳性的关系是:当M点在G点之上时,GM>0,船舶具有稳性,GM 值越大,稳性越好,但船舶摇摆就会加剧;当M点在G点之下时,GM<0,船舶不具有稳性,一旦受到外力矩作用很容易使船倾覆;当M点和G点重合一点时,GM=0,船舶也不具有稳性,因为一旦受到外力矩作用,船舶处于随遇平衡状态,对船舶也极不安全。
船舶抗沉性抗沉性(insubmersibility)是指船舶在一个舱或几个舱进水的情况下,仍能保持不致于沉没和倾覆的能力。
为了保证抗沉性,船舶除了具备足够的储备浮力外,一般有效的措施是设置双层底和一定数量的水密舱壁。
一旦发生碰撞或搁浅等致使某一舱进水而失去其浮力时,水密舱壁可将进水尽量限制在较小的范围内,阻止进水向其他舱室漫延,而不致使浮力损失过多。
这样,就能以储备浮力来补偿进水所失去的浮力,保证了船舶的不沉,也为堵漏施救创造了有利条件。
对于不同用途、不同大小和不同航区的船舶,抗沉性的要求不同。
它分“一舱制”船、“二舱制”船、“三舱制”船等。
“一舱制”船是指该船上任何一舱破损进水而不致造成沉没的船舶。
一般远洋货船属于“一舱制”船。
“二舱制”船是指该船任何相邻的两个舱破损进水而不致造成沉没的船舶。
“三舱制”船以此类推。
一般化学品船和液体散装船属于“二舱制”船或“三舱制”船。
对“一舱制”船也不是在任何装载情况下一舱进水都不会沉没,因为按抗沉性原理设计舱室时是按照舱室在平均渗透率下的进水量来计算的。
所谓渗透率是指某舱的进水容积与该舱的舱空的比值。
所以满载钢材的杂货船,货舱进水时其进水量就会较大地超过储备浮力,就不一定保证船舶不沉。
还应指出,船舶在破损进水后是否会倾覆或沉没,在一定程度上还与船上人员采取的抗沉性措施有关。
船舶破损进水后的措施有很多,如抽水、灌水、堵漏、加固、抛弃船上载荷、移动载荷或调驳压载水等。
抽水、灌水、堵漏、加固、抛弃船上载荷、移动载荷是为了保证船舶浮力,有时为了减少船舶倾斜、改善船舶浮态和稳性,常常通过采用灌水或调驳到相应的舱室的办法来达到。
船舶快速性船舶在主机输出功率一定的条件下,尽量提高船速的能力叫船舶快速性(speedability)。
快速性包含节能和速度两层意义,所以提高船舶快速性也应从这两方面入手,即尽量提高推进器的推力和减小船舶航行的阻力。
船舶阻力包括水阻力和空气阻力。
由于水的密度比空气大800多倍,所以船舶在海上航行时,主要考虑船体水阻力。
船体水阻力为摩擦阻力、涡流阻力(形状阻力)和兴波阻力三个部分。
它们的总和就船体的总的水阻力。
即:摩擦阻力是由水粘性引起,船在水中运动时,总有一层水粘附在船体表面,并跟着船体一起运动。
船舶运动带动水分子运动所消耗的能量,即为船舶克服摩擦阻力所消耗的能量。
摩擦阻力的大小与船体浸水表面积、船体表面滑度、航速高低有关。
因此,船舶定期进坞清除污底,是减少摩擦阻力的重要措施。
船体运动时除产生摩擦阻力之外,还同时产生涡流阻力,当船体向前运动时,产生一相对水流,由于水具有粘性,靠近船体表面处的相对水流速度就小,到达船尾时,断面扩大,流速很快下降,可达到零或者倒流,就造成船尾部的涡流运动,使船尾压力下降,对船舶就形成一个压力差阻力,就叫涡流阻力,或叫形状阻力。
在船体弯曲度较大部分就容易产生涡流,尾部横剖面作急剧收缩的船舶所引起的涡流阻力较为严重,而流线型船体就不产生涡流阻力或只产生极小的涡流阻力。
因此,改善水下船体的线型,对船舶快速性影响很大。
兴波阻力是由于船舶航行中掀起的船行波,产生与船舶前进方向相反的阻力。
船行波分船首波和船尾波,在船行波传播中,如果船首波与船尾波在船尾处互相迭加,兴波阻力就大;如果船首波和船尾波在船尾处互相抵消,兴波阻力就小。
所以兴波阻就大小。
,主要与航速和船长有关。
航速越快,兴波阻力越大,在一定的设计航速下,适当选择船长,可以减少兴波阻力。
远洋船多采用球鼻船首型,就是为了调整船长,以达到减少兴波阻力的目的。
至于提高推进器推力,由于目前海船的推进器主要是采用螺旋桨,在主机输出功率和转速一定的条件下,正确设计或选择螺旋桨的几何形状,对产生推力大小有很大关系。
因此营运中的船舶应:可调螺距的螺旋桨适当地选择螺旋桨的螺距,调整合适的吃水和吃水差,航行中保持螺旋桨在水下有足够的深度。
船舶摇摆性船舶在外力的影响下,作周期性的横纵向摇摆和偏荡运动的性能叫船舶摇摆性(yawing)。
这是一种有害的性能,剧烈的摇荡会降低航速,造成货损,损坏船体和机器,使旅客晕船,影响船员生活和工作等。
船舶的摇摆,可以分为横摇、纵摇、立摇和垂直升降四种运动形式。
横摇是船舶环绕纵轴的摇摆运动;纵摇是船舶环绕横轴的摇摆运动;立摇是船舶环绕垂直轴偏荡运动;垂直升降是船舶随波作上下升降运动。
船舶在海上遇到风浪时,往往是以上四种摇摆的复合运动。
由于横摇比较明显,影响也较大,所以我们仅着介绍横摇,了解其规律性。
船舶横摇的剧烈程度从外部条件来讲,与风浪大小有关,但从船舶本身条件来讲,又与稳性大小有关。
船舶在外力作用下,离开原来平衡位置向一侧横倾,当外力停止后,由于船舶具有稳性,会产生复原力矩使船向原来平衡位置方向运动。
当船回到平衡位置时,由于惯性的作用使船继续向另一侧横倾,当惯性力被相应的复原力矩相互抵消时,船舶又在复原力矩作用下,向原来平衡位置运动。
船舶就按照这样的运动规律,左右反复地摇摆,只有当船舶所受的外力全部为水阻力耗尽后,船舶才可能停止在原来的平衡位置上,在静水中这种摇摆运动叫“自由摇摆”。
船舶从倾斜一侧,经过左右完整的一次摇摆周期时,船舶摇摆就剧烈;当船舶自由摇摆周期长时,船舶摇摆就缓慢。
而自由摇摆的长短,与船舶的稳性高度GM值有关,如果船舶的GM值太大,复原力矩很强。
回复速度很快,摇摆周期就短,形成剧烈的摇摆;反之,摇摆周期长,船舶摇摆缓慢。
当船舶在波浪中航行时,还要加波浪引起的强迫摇摆。
波浪的波峰移动一个波长距离所需要的时间叫“波浪周期”。
对于运动的船舶,当第一个波峰打到船上至第二个波峰打到船上所经历的时间叫“波浪视周期”。
波浪视周期的大小,决定于波浪周期和船舶的航向、航速。
当船舶自由摇摆周期大于波浪视周期时,船舶在波浪中摇摆会减弱;当自由摇摆周期小于波浪视周期时,摇摆会增强。
如果船舶自由摇摆周期与波浪视周期相似,船舶摆幅会急剧增大,这种现象叫“谐摇”。
谐摇是一种对船舶有危险的现象,对船员、旅客、货物、船体结构和机器都会产生不良影响,严重时将会危急船舶的安全。
如果发现船舶处在谐摇时,应当立即采取改变谐摇现象的措施。
可改变航向和航速,使航向与波浪之间夹角发生变化或使波浪视运动速度改变,从而达到避免谐摇的目的。
为了减轻船舶横摇,一般船舶在船体外的舭部安装舭龙骨,其结构简单,不占船体内部位置,且有较明显的减摇效果,实践表明舭龙骨约能减小摆幅20%~25%,舭龙骨的缺点是增加水阻力,影响航速。