第五篇 第一二三章 斜拉桥与悬索桥简介
- 格式:pptx
- 大小:3.44 MB
- 文档页数:2
现代桥梁之斜拉桥与悬索桥区别与联系斜拉桥与悬索桥作为现代桥梁的主要建筑方式,二者之间又存在着怎样的区别与联系呢?下面我们通过结构力学的方法对其进行受力方面的定性分析,来解决一些现实中的现象.首先我们来了解一下他们的定义:斜拉桥又称斜张桥,是将主梁用许多拉索直接拉在桥塔上的一种桥梁,是由承压的塔、受拉的索和承弯的梁体组合起来的一种结构体系.其可看作是拉索代替支墩的多跨弹性支承连续梁.其可使梁体内弯矩减小,降低建筑高度,减轻了结构重量,节省了材料.斜拉桥由索塔、主梁、斜拉索组成.悬索桥,又名吊桥(suspension bridge)指的是以通过索塔悬挂并锚固于两岸(或桥两端)的缆索(或钢链)作为上部结构主要承重构件的桥梁.其缆索几何形状由力的平衡条件决定,一般接近抛物线.从缆索垂下许多吊杆,把桥面吊住,在桥面和吊杆之间常设置加劲梁,同缆索形成组合体系,以减小活载所引起的挠度变形.斜拉桥与悬索桥的结构简图如图a,b所示.下面对一些现实现象进行定性分析.1.为什么斜拉桥和悬索桥可以比其他桥梁的跨度大很多?通过斜拉桥和悬索桥的结构简图可以看出,斜拉桥和悬索桥都是通过钢索的拉力来代替了桥墩的支持力.因此可以减少桥墩的数量,实现桥梁的大跨度.2.为什么悬索桥可以比斜拉桥的跨度更大?通过斜拉桥和悬索桥的结构简图可以看出,斜拉桥的钢索是斜着的,以a图C点进行受力分析,为了在C点提供足够的竖直拉力Fcy随着AC距离的增加,Fc和Fcx将会不断增大,这样会不断增大钢索的拉力和桥面的轴向压力,这也是为什么斜拉桥的钢索大多集中在索塔的上端的原因.因此AC之间的距离不能太大,即斜拉桥的跨度不能太大 .而通过悬索桥的结构简图可以看出,悬索桥的钢索受力是竖直方向的,随着跨度的增加并不会增加钢索的受力.因此悬索桥的跨度可以比斜拉桥更大.3.为什么斜拉桥比悬索桥稳定?由斜拉桥的结构简图可以看出绷紧的钢索与索塔及桥面根据三钢片原则构成了不变体系,而有悬索桥的结构简图不难看出悬索桥的主索、细钢索、索塔及桥面之间构成的是可变体系.因此悬索桥的稳定性不如斜拉桥的稳定性好.4.既然增加索塔可以加大桥面的竖向拉力,减小桥面轴向应力鹤岗索拉力,为什么不把索塔建得很高呢?首先,增加索塔的高度会增加桥梁的用料,从而增加桥梁的经济成本高.其次,由于现实生活中桥面的受力情况特别复杂,无法保证索塔两边桥面受力情况完全相同,这会使得索塔两边钢索所受的拉力不同,如果索塔很长会使得索塔与桥面连接处以及桥墩与地面连接处弯矩过大,容易发生破坏.5.为什么斜拉桥的桥面可以比悬索桥的桥面宽很多?斜拉桥的桥面比悬索桥的桥面宽很多是有桥面的材料为混凝土和桥面的受力特点的决定的 .下面截取斜拉桥和悬索桥的桥面的一个横截面来简化力学模型,并对其进行受力分析.假设桥面受大小为q的均布力,斜拉桥的受力如图c,悬索桥的受力如图d.在斜拉桥的横截面受力图中,桥面横截面受斜向上的钢索拉力,因为斜拉桥的索塔为A型或椡Y型;而在悬索桥的受力图中,桥面横截面只受到竖直向上的拉力,因为悬索桥的索塔为H型.假设斜拉桥和悬索桥桥面长度为l,厚度为2h,则斜拉桥受到的最大拉应力为:米y/Iz-Tt/2lh=0.5ql*lh/Iz-Tt/2lh;悬索桥的最大拉应力为:米y/Iz=0.5ql*l/Iz.由此可见在受力和桥面横截面形状相同的情况下,斜拉桥的最大拉应力比悬索桥小Tt/2lh,又因为桥面材料为混凝土,抗压不抗拉,因此斜拉桥的桥面可以比悬索桥的桥面更宽一些.下面,假设桥面受大小为q的均布力(因为桥面主要受到自身的重力,而桥面自身的重力是均布力),而这也是桥面的,设有n根钢索且每根钢索所受的拉力相等为T=ql/(n+2),并且假设桥面只发生小变形,对力学模型进一步简化后.对斜拉桥和悬索桥进行分析,做出斜拉桥与悬索桥的受力图g,剪力图e,弯矩图f.从斜拉桥和悬索桥加钢索和没加钢索的剪力图可以看出:钢索的增加能有效的减小剪力的不断的增加,将剪力变成一种周期性的力.同时可以看出钢索越多剪力图像中的峰值在斜率不变,钢索的只能更加会使图像的周期减小,因此能有效地减小剪力图像中的峰值(F Q=ql/(n+2)),由米(X)= F Q(X)dx得到斜拉桥和悬索桥的弯矩图.同时从斜拉桥和悬索桥的弯矩图中可以看出来其图像也为周期函数图象.同样其图像的峰值与钢索的数量加2后的平方成反比(米=ql*l/(n+2)*(n+2)).由此可见增加钢索的数量不仅可以减小斜拉桥和悬索桥桥面的剪力和弯矩,同时也可以减小每根钢索的拉力.由此可见准确的估计每一段的受力情况,以此来设置钢索中的预应力是十分重要的,对减小桥面中的剪力和弯矩起着决定性的作用.虽然钢索中的预应力设置不当也可以起到阻止弯矩增大作用,但效果将大打折扣.由此可见对斜拉桥和悬索桥进行准确的受力分析是十分重要的.以上只是在理想化的条件下进行的粗糙的理论分析,现实中总是有着这样或那样的不可控条件.首先,桥面不可能受均布力:其次,大跨度的桥梁并非只发生小变形,而是会发生大变形;最后,斜拉桥的桥面存在着弯矩和轴力混合作用的效应.当然还有其他的一些因素对理论分析的影响没有列举出来,我们就先不讨论了.下面我们来分析一下以上三个方面对我们的分析造成的影响.1.由于桥面的受力并非均布力,虽然桥面自身的重力仍是均布力,但两者相加之后,剪力图e中的剪力就不是线性变化的,这会对钢索预应力的估计造成困难.2.由于大跨度桥梁发生的并非小变形,而是会发生大变形.以上的线弹性的分析方法就不再适用了,应该运用几何非线性的分析方法进行分析.几何非线性问题是指大位移问题,几何运动方程为非线性.在绝大多数大位移问题中,结构内部的应变是微小的 .因为应变是微小的,对线性问题一般是根据变形前的位置来建立平衡方程.但对几何非线性问题,由于位移变化产生的二次内力不能忽略,荷载一变形关系为非线性,此时叠加原理不再适用,整个结构的平衡方程应按变形以后的位置来建立.3. 斜拉桥的斜拉索拉力使其它构件处于弯矩和轴向力组合作用下,这些构件即使在材料满足虎克定律的情况下也会呈现非线性特性.构件在轴向力作用下的横向挠度会引起附加弯矩,而弯矩又影响轴向刚度的大小,此时叠加原理不再适用.但如果构件承受着一系列横向荷载和位移的作用,而轴向力假定保持不变,那么这些横向荷载和位移还是可以叠加的.因此,轴向力可以被看作为影响横向刚度的一个参数,一旦该参数对横向的影响确定下来,就可以采用线性分析的方法进行近似计算.有两种方法可以处理这种由压一弯共同作用引起的非线性问题:一是引入稳定函数,得到梁体单元刚度矩阵元素的修正系数,然后用修正系数在迭代中不断地对小位移线弹性刚度矩阵进行修正;或者在计算单元刚度矩阵时考虑几何刚度矩阵的影响.二是从实际的应变出发列出压弯共同作用的总应变方程,通过虚功原理,得到梁体单元的整体刚度矩阵.。
中班科学活动:《悬索桥和斜拉桥》哎呀,今天我们要来聊聊一个特别有趣的话题,那就是悬索桥和斜拉桥。
你们知道吗?这两种桥可是咱们生活中最常见的哦!让我们来聊聊悬索桥吧。
悬索桥,顾名思义,就是那种横跨在两个地方之间的桥,它的主要支撑结构是由一根根粗大的钢缆组成的。
这些钢缆就像一根根大绳子一样,把整座桥紧紧地挂在了空中。
你们说,这种桥是不是看起来就很神奇呢?悬索桥的建造可不容易哦!首先要找到一个合适的地点,然后在两座山峰之间搭建起一座桥墩。
就要开始铺设钢缆了。
这个过程可是非常考验技术的哦!因为如果钢缆铺设得不够牢固,那么整座桥就会摇摇欲坠。
工程师们可是要费尽心思才能把这座桥建好的。
现在我们来说说斜拉桥吧。
斜拉桥,顾名思义,就是那种倾斜着修建的桥。
它的支撑结构主要是由一系列的斜向钢缆组成的。
这些钢缆就像一根根细长的手指一样,把整座桥牢牢地固定在了地面上。
你们说,这种桥是不是看起来就很稳重呢?斜拉桥的建造也是非常复杂的哦!首先要找到一个合适的地点,然后在两座山峰之间搭建起一座桥墩。
就要开始铺设斜向钢缆了。
这个过程同样也是非常考验技术的哦!因为如果钢缆铺设得不够牢固,那么整座桥就会摇摇欲坠。
工程师们可是要费尽心思才能把这座桥建好的。
悬索桥和斜拉桥有什么区别呢?其实,它们的区别主要就在于支撑结构的不同。
悬索桥是用一根根粗大的钢缆来支撑的,而斜拉桥则是用一系列的斜向钢缆来支撑的。
这两种桥梁各有各的特点,但是它们都是为了帮助我们更好地连接起两岸而存在的。
悬索桥和斜拉桥虽然看起来很不一样,但是它们都是我们生活中非常重要的一部分。
它们不仅帮助我们方便地出行,还让我们的生活变得更加美好。
让我们一起感谢那些为我们建设这些桥梁的人们吧!。
斜拉桥与悬索桥计算理论简析斜拉桥与悬索桥是桥梁结构中跨越能力最大的两种桥型,随着桥梁建造向大跨径方向发展,它们越来越成为人们研究的热点。
通过大跨径桥梁理论的学习,我对斜拉桥与悬索桥的计算理论有了较为系统的了解。
在本文中,我想从一个设计者的角度,在概念层次上,对斜拉桥与悬索桥的计算理论做个总结,以加深自己对这些计算理论的理解。
一、斜拉桥的计算理论斜拉桥诞生于十七世纪,在最近的五十年间,斜拉桥有了飞速的发展,成为200米到800米跨径范围内最具竞争力的桥梁结构形式之一。
有理由相信,在大江河口的软土地基上或不适合建造悬索桥的地区,有可能修建超过1200米的斜拉桥。
斜拉桥是塔、梁、索三种基本结构组成的缆索承重结构体系,一般表现为柔性的受力特性。
(一)、斜拉桥的静力设计过程1、方案设计阶段此阶段也称为概念设计。
本阶段的主要任务是凭借设计者的经验,参考别的斜拉桥的设计,结合自己的分析计算,来完成结构的总体布置,初拟构件尺寸。
根据此设计文件,设计者或甲方(有些地方领导说了算)进行方案比选。
2、初步设计阶段本阶段在前一阶段工作的基础上进一步细化。
主要任务是:通过反复计算比较以确定恒活载集度、恒载分析、调索初定恒载索力、修正斜拉索截面积、活载及附加荷载计算、荷载组合及梁体配索、索力优化以及强度刚度验算等。
3、施工图设计阶段此阶段要对斜拉桥的每一部位以及每一施工阶段进行计算,确保结构安全。
主要计算内容有:构件无应力尺寸计算、对施工阶段循环倒退分析、计算斜拉索初张力、预拱度计算、强度刚度稳定性验算以及前进分析验算等。
(二)、斜拉桥的计算模式1、平面杆系加横分系数此模式用在概念设计阶段研究结构的设计参数,以求获得理想的结构布置。
还可用于技术设计阶段,仅仅计算恒载作用下的内力。
2、空间杆系计算模式此模式用在空间荷载(风载、地震荷载以及局部温差等)作用下的静力响应分析。
此模式按照主梁可分为三种:“鱼骨”模式、双梁式模式与三梁式模型。
浅谈斜拉桥认识斜拉桥又称斜张桥,是一种缆索承重结构体系,其上部结构由塔、梁、拉索三种基本构件组成。
由塔柱伸出的斜拉索作为主梁的多点弹性支承,同时斜拉索拉力的水平分力对主梁起着轴向预应力作用,因此斜拉桥是一种桥面体系以主梁受压(密索)或受弯(稀索)为主、支承体系以斜拉索受拉及桥塔受压为主的桥梁。
斜拉桥良好的力学性能、建造相对经济、景观优美,已是我国大跨径桥梁最流行的桥型之一。
一、斜拉桥介绍以斜拉桥的主要结构体系来划分,斜拉桥的发展可分成两个阶段:第一阶段,稀索体系;第二阶段,密索体系。
稀索体系的主梁基本上为弹性支承连续梁;密索体系的主梁主要承受强大的轴向力,同时又是一个受弯构件。
斜拉桥是将主梁用许多拉索直接拉在桥塔上的一种桥梁,可看作是拉索代替支墩的多跨弹性支承连续梁。
斜拉桥是一种自锚式体系,斜拉索的水平力由梁承受、梁除支承在墩台上外,还支承在由塔柱引出的斜拉索上。
这样可使梁体内弯矩减小,降低建筑高度,减轻了结构重量,节省了材料。
斜拉桥是由承压的塔,受拉的索和承弯的梁体组合起来的一种结构体系。
索塔型式有A型、倒Y型、H型、独柱,材料有钢和混凝土的。
斜拉索布置有单索面、平行双索面、斜索面等。
梁按所用的材料不同可分为钢斜拉桥、结合梁斜拉桥和混凝土梁斜拉桥。
纵观斜拉桥结构体系的发展历史,可以看到,加劲梁朝着更细更柔的方向演变,加劲梁的高跨比不断减小。
唯一的制约来自于空气动力作用,为了使加劲梁获得令人愉悦的外形而同时又要保证最小刚度,加劲梁从最初的重质量块发展到后来的加肋板、箱梁。
虽然也有由桁架构成的加劲梁体系,但这多应用于双层桥面体系。
拉索体系则经历了一个从无到有、从少到多的过程。
现在稀索体系斜拉桥已经很少采用,除非偶尔为了桥梁造型上的求新创异,密索体系以其突出的优势成为了人们心目中默认的斜拉桥体系,也必然将是超千米主跨斜拉桥结构体系的组成之一。
索塔的外形由简单到复杂,稳定性却在不断加强,其最初为门式塔,继而“入"形塔,A形塔,钻石形塔,直至空间塔结构。
浅谈斜拉桥与悬索桥浅谈斜拉桥与悬索桥谈到斜拉桥与悬索桥,作为一种基础性设施,我们就必须从各方面去理解认识它们。
这里我将从结构、组成内容、工程内容、针对范围、优缺点等方面来做进一步的阐述!首先谈一下斜拉桥。
斜拉桥,又称斜张桥,由索塔、主梁、斜拉索三种基本构件组成。
用高强钢材制成的斜索将主梁多点吊起,将主梁承受的荷载和车辆荷载传至塔柱,再由塔柱基础传给地基。
是一种将桥面用许多拉索直接拉在桥塔上的一种桥梁,是由承压的塔,受拉的索和承弯的梁体组合起来的一种结构体系。
我国常用高强钢丝束、钢绞线束等制成斜拉索,并在钢束外包一层高密度的聚乙烯外套加以防护。
斜拉桥的主梁则做成钢筋混凝土或预应力混凝土构件,它们在纵向可以做成连续构件、伸臂构件、与塔柱固端连接的构件等,其截面形式视采用材料、索面布置、施工工艺而异。
另外其可看作是拉索代替支墩的多跨弹性支承连续梁。
其可使梁体内弯矩减小,降低建筑高度,减轻了结构重量,节省了材料。
斜拉桥作为一种拉索体系,比梁式桥的跨越能力更大,是大跨度桥梁的最主要桥型。
斜拉桥是由许多直接连接到塔上的钢缆吊起桥面,斜拉桥由索塔、主梁、斜拉索组成。
索塔型式有A型、倒Y型、H型、独柱,材料有钢和混凝土的。
斜拉索布置有单索面、平行双索面、斜索面等。
斜拉桥一般有三孔,中孔为主孔,边空跨度通常为中空的0.25—0.5倍(多在0.4左右)。
若为两孔,其跨度比值在0.5—1.0,常在0.8—0.9之间。
索型有辐射形、竖琴形和扇形3种。
我国斜拉桥的主梁形式:混凝土以箱式、板式、边箱中板式;钢梁以正交异性极钢箱为主,也有边箱中板式。
第一座现代斜拉桥始建于1955年的瑞典,跨径为182米。
目前世界上建成的最大跨径的斜拉桥为法国的诺曼底桥,主跨径为856米。
1993年建成的上海杨浦大桥是我国目前最大的斜拉桥,主跨径为602米。
一般说,斜拉桥跨径300~1000m是合适的,在这一跨径范围,斜拉桥与悬索桥相比,斜拉桥有较明显优势。