第四章 原子吸收分光光度法
- 格式:doc
- 大小:24.00 KB
- 文档页数:1
原子吸收分光光度法1原子吸收分光光度法基本原理:原子吸收光谱分析是利用分析处于基态的待测原子蒸汽对特征辐射的吸收来测定样品中该元素含量的一种办法。
2共振吸收线:原子从基态激发到能量最低的激发态,产生的谱线称为共振吸收线。
由于元素的原子结构和外层电子排布不同,吸收的能量不同,共振吸收线各具有特征性,这种共振线称为元素的特征谱线,是元素所有谱线中最灵敏的谱线。
3原子吸收谱线轮廓和谱线宽度:谱线轮廓是指谱线具有一定频率范围和形状。
吸收线轮廓常用吸收系数K v随频率(或波长)的变化曲线来描述,而原子吸收线的特点是用谱线中心频率(由各原子能级分布特征所决定)、半宽度(最大吸收系数一半处峰的频率差)和强度来表征。
4原子吸收分光光度计:主要部件:瑞线光源、原子化器、单色器、检测器。
①光源:作用是发射待测元素的特征曲线,发射辐射波长的半宽度要明显小于吸收线的宽度,辐射强度大,稳定且背景信号小。
常用空心阴极灯。
②原子化器:将试样中的待测元素转变成原子蒸气。
主要有火焰原子化器和无火焰原子化器两类。
③单色器:衍射光栅是常用的分光元件。
单色器的作用是将所需的共振吸收线与邻近干扰线分离。
④检测系统:作用是将单色器分出的光信号进行光电转换,常用光电倍增管。
4仪器类型:①单光束原子吸收分光光度计:光源辐射不稳定引起基线漂移,仪器需预热。
②双光束原子吸收分光光度计:一束光通过火焰照样品,另一束光照参比,不通过火焰直接经单色器投射到光电元件上。
可克服光源的任何漂移及检测器灵敏度的变动。
5干扰及其消除:①电离干扰:某些易电离元素在原子化条件下电离,致使基态原子数减少,测定结果降低。
消除方法:加入消电剂。
②物理干扰:试样的物理性质(如表面张力、黏度、比重、温度等)变化影响吸收强度,导致测定误差。
标准加入法是常用的消除方法。
③光学干扰:主要指光谱线干扰和背景干扰。
谱线干扰是试样中共存元素的吸收线与被测元素的分析线相近而产生的干扰,使分析结果偏高。
原子吸收分光光度法的基本原理一、引言原子吸收分光光度法是一种常用的化学分析方法,用于测定溶液中金属元素的含量。
其基本原理是利用原子吸收光谱仪测量样品中金属元素原子在特定波长的光线下的吸收程度,通过测定吸光度来推断样品中金属元素的浓度。
本文将介绍原子吸收分光光度法的基本原理和仪器结构,以及其在实际应用中的一些注意事项。
二、原理原子吸收分光光度法的基本原理是利用金属元素原子对特定波长的光线的吸收特性。
当金属元素原子处于激发态时,它们会吸收特定波长的光线,使原子处于激发态能级上的电子跃迁到高能级。
而当金属元素原子处于基态时,它们不会吸收这些特定波长的光线。
通过测量样品溶液中特定波长的光线经过吸收后的光强度变化,可以推断出样品中金属元素的浓度。
三、仪器结构原子吸收分光光度法的仪器主要包括光源、光切割器、样品室、光路系统和检测器等部分。
光源产生特定波长的光线,光切割器用于选择特定波长的光线,样品室用于容纳待测样品溶液,光路系统将光线引导到样品室中,检测器测量经过样品溶液后的光线强度。
通过调节光切割器选择不同的波长,并测量不同波长下的吸光度,可以得到样品中金属元素的浓度信息。
四、注意事项在使用原子吸收分光光度法进行分析时,需要注意以下几点:1. 样品的制备:样品的制备对于分析结果的准确性至关重要。
样品应该经过适当的预处理,如酸溶解、稀释等,以保证样品中金属元素的浓度在合适的范围内。
2. 标准曲线的绘制:在分析过程中,需要绘制标准曲线来确定样品中金属元素的浓度。
标准曲线应该覆盖待测样品浓度范围,并包括多个浓度点,以提高分析结果的准确性。
3. 仪器的校准:在进行分析之前,需要对仪器进行校准,以保证测量结果的准确性。
校准可以通过使用已知浓度的标准溶液进行,根据标准溶液的吸光度和浓度的关系绘制标准曲线。
4. 光路系统的清洁:光路系统是原子吸收分光光度法中的关键部分,需要保持清洁以避免杂质对测量结果的影响。
定期清洁光路系统,以确保光线传输的准确性。
0406 原子吸收分光光度法❶原子吸收分光光度法的测量对象是呈原子状态的金属元素和部分非金属元素,是基于测量蒸气中原子对特征电磁辐射的吸收强度进行定量分析的一种仪器分析方法㊂原子吸收分光光度法遵循分光光度法的吸收定律,一般通过比较对照品溶液和供试品溶液的吸光度,计算供试品中待测元素的含量㊂对仪器的一般要求所用仪器为原子吸收分光光度计,它由光源㊁原子化❶药典一部和二部共有的附录,目前仅有一处修改㊂❷‘原子吸收光谱分析法通则“(G B /T15337-2008)明确规定, 采用标准曲线法时,在仪器可能的条件下,需配制五个以上不同浓度的校准溶液,以保证校准曲线误差符合分析要求㊂器㊁单色器㊁背景校正系统㊁自动进样系统和检测系统等组成㊂1.光源 常用待测元素作为阴极的空心阴极灯㊂2.原子化器 主要有四种类型:火焰原子化器㊁石墨炉原子化器㊁氢化物发生原子化器及冷蒸气发生原子化器㊂(1)火焰原子化器 由雾化器及燃烧灯头等主要部件组成㊂其功能是将供试品溶液雾化成气溶胶后,再与燃气混合,进入燃烧灯头产生的火焰中,以干燥㊁蒸发㊁离解供试品,使待测元素形成基态原子㊂燃烧火焰由不同种类的气体混合物产生,常用乙炔-空气火焰㊂改变燃气和助燃气的种类及比例可控制火焰的温度,以获得较好的火焰稳定性和测定灵敏度㊂(2)石墨炉原子化器 由电热石墨炉及电源等部件组成㊂其功能是将供试品溶液干燥㊁灰化,再经高温原子化使待测元素形成基态原子㊂一般以石墨作为发热体,炉中通入保护气,以防氧化并能输送试样蒸气㊂(3)氢化物发生原子化器 由氢化物发生器和原子吸收池组成,可用于砷㊁锗㊁铅㊁镉㊁硒㊁锡㊁锑等元素的测定㊂其功能是将待测元素在酸性介质中还原成低沸点㊁易受热分解的氢化物,再由载气导入由石英管㊁加热器等组成的原子吸收池,在吸收池中氢化物被加热分解,并形成基态原子㊂(4)冷蒸气发生原子化器 由汞蒸气发生器和原子吸收池组成,专门用于汞的测定㊂其功能是将供试品溶液中的汞离子还原成汞蒸气,再由载气导入石英原子吸收池进行测定㊂3.单色器 其功能是从光源发射的电磁辐射中分离出所需要的电磁辐射,仪器光路应能保证有良好的光谱分辨率和在相当窄的光谱带(0.2n m )下正常工作的能力,波长范围一般为190.0~900.0n m ㊂4.背景校正系统 背景干扰是原子吸收测定中的常见现象㊂背景吸收通常来源于样品中的共存组分及其在原子化过程中形成的次生分子或原子的热发射㊁光吸收和光散射等㊂这些干扰在仪器设计时应设法予以克服㊂常用的背景校正法有以下四种:连续光源(在紫外区通常用氘灯)㊁塞曼效应㊁自吸效应㊁非吸收线等㊂在原子吸收分光光度分析中,必须注意背景以及其他原因等对测定的干扰㊂仪器某些工作条件(如波长㊁狭缝㊁原子化条件等)的变化可影响灵敏度㊁稳定程度和干扰情况㊂在火焰法原子吸收测定中可采用选择适宜的测定谱线和狭缝㊁改变火焰温度㊁加入络合剂或释放剂㊁采用标准加入法等方法消除干扰;在石墨炉原子吸收测定中可采用选择适宜的背景校正系统㊁加入适宜的基体改进剂等方法消除干扰㊂具体方法应按各品种项下的规定选用㊂5.检测系统 由检测器㊁信号处理器和指示记录器组成,应具有较高的灵敏度和较好的稳定性,并能及时跟踪吸收信号的急速变化㊂测定法第一法(标准曲线法) 在仪器推荐的浓度范围内,除另有规定外,制备含待测元素不同浓度的对照品溶液至少5份❷,浓度依次递增,并分别加入各品种项下制备供试品溶液的相应试剂,同时以相应试剂制备空白对照溶液㊂将仪器按规定启动后,依次测定空白对照溶液和各浓度对照品溶液的吸光度,记录读数㊂以每一浓度3次吸光度读数的平均值为纵坐标㊁相应浓度为横坐标,绘制标准曲线㊂按各品种项下的规定制备供试品溶液,使待测元素的估计浓度在标准曲线浓度范围内,测定吸光度,取3次读数的平均值,从标准曲线上查得相应的浓度,计算被测元素含量㊂绘制标准曲线时,一般采用线性回归,也可采用非线性拟合方法回归㊂第二法(标准加入法) 取同体积按各品种项下规定制备的供试品溶液4份,分别置4个同体积的量瓶中,除(1)号量瓶外,其他量瓶分别精密加入不同浓度的待测元素对照品溶液,分别用去离子水稀释至刻度,制成从零开始递增的一系列溶液㊂按上述标准曲线法自 将仪器按规定启动后 操作,测定吸光度,记录读数;将吸光度读数与相应的待测元素加入量作图,延长此直线至与含量轴的延长线相交,此交点与原点间的距离即相当于供试品溶液取用量中待测元素的含量(如图),再以此计算供试品中待测元素的含量㊂㊃56㊃0406 原子吸收分光光度法图 标准加入法测定图示当用于杂质限量检查时,取供试品,按各品种项下的规定,制备供试品溶液;另取等量的供试品,加入限度量的待测元素溶液,制成对照品溶液㊂照上述标准曲线法操作,设对照品溶液的读数为a ,供试品溶液的读数为b ,b 值应小于(a -b )㊂㊃66㊃0406 原子吸收分光光度法。
简述原子吸收分光光度法的基本原理原子吸收分光光度法是一种常用的化学分析方法,用于测量物质的吸收光谱。
其基本原理是,当物质吸收光子时,其分子或原子会与光子相互作用,导致分子或原子振动并改变其能量。
根据能量与波长的关系,物质的吸收光谱可以被记录下来,并用于确定物质的吸收程度和化学性质。
原子吸收分光光度法使用一种称为原子吸收装置的设备。
原子吸收装置中包含一个光源(如LED或激光)和一个吸收剂(如气体或液体)。
当光源发出光子时,这些光子会被吸收剂吸收,并激发原子或分子。
这些原子或分子随后振动并释放光子,这个过程被称为原子吸收。
根据原子吸收光谱的波长范围,吸收剂可以吸收不同波长的光子,导致其光谱变化。
原子吸收分光光度法的基本步骤包括:1. 光源发出光子,被吸收剂吸收。
2. 原子或分子被激发并释放光子。
3. 测量释放光子的波长,并计算出吸收剂的吸收光谱。
4. 根据吸收光谱确定吸收剂的吸收程度和化学性质。
原子吸收分光光度法的基本原理可以应用于许多领域,如分析化学、有机合成、环境科学、生物学等。
例如,在化学分析中,原子吸收分光光度法可以用于检测化合物的吸收光谱,以确定其化学性质和结构。
在有机合成中,原子吸收分光光度法可以用于检测有机化合物的吸收光谱,以确定其结构和活性。
在环境科学中,原子吸收分光光度法可以用于检测污染物的吸收光谱,以确定其毒性和来源。
除了基本的原子吸收装置外,原子吸收分光光度法还可以使用多个技术和设备,如多孔板分光光度法、荧光分光光度法等,以满足不同的应用需求。
随着技术的发展,原子吸收分光光度法在化学分析、环境科学和生命科学等领域中的应用越来越广泛。
第四章原子吸收光谱法(Atomic Absorption Spectrometry, AAS)§4-1 概述原子吸收光谱分析原子吸收分光光度法原子吸收法基于物质产生的原子蒸汽对特定谱线(通常是待测原子的特征谱线)的吸收来进行元素定量分析的一种方法。
如图: 测定试液中Mg2+的含量原于吸收分析示意图原子吸收法和分光光度法在基本原理上是相同的,都是基于物质对光的吸收。
但吸光物质的状态不同,一个是基态原子的吸收,一个是溶液中分子或离子的吸收。
原子蒸气对光的吸收程度也是符合朗伯比耳定律的。
仪器的基本结构也与一般光度计类似。
§4-2 原子吸收光谱法基本原理一、共振发射线与共振吸收线原子在两个能态之间的跃迁伴随着能量的发射和吸收。
最外层电子由基态跃迁到第一激发态时,所产生的吸收谱线称为共振吸收线。
跃回到基态时,则发射出同样频率的光,称为共振发射线。
发射吸收E0E1共振线:共振发射线和共振吸收线的波长相同,简称为共振线。
各种元素的原子结构和外层电子排布不同,各能级的能量不同,不同元素的原子在基态和第一激发态间跃迁能量不同——共振线具有特征性。
各种元素的基态和第一激发态间跃迁最易发生——最灵敏线。
hν在原子吸收分析中,就是利用处于基态的待测原子蒸汽对从光源发射的共振发射线的吸收来进行分析的。
共振线的特点:①是元素的特征谱线;②一般是元素所有谱线中最灵敏的谱线。
二、热激发时基态原子数与激发态原子数之间的分配原子化过程:MO Mn+ Mj在适当条件下,基本不发生,且应尽量防止发生。
在适当条件下,基本不发生,且应尽量防止发生。
热力学平衡时,激发态与基态原子数之比服从玻尔兹曼(Boltzmann )分布定律:式中:Nj和N0 ——激发态和基态原子数;Pj和PO ——激发态和基态的统计权重;k ——玻尔兹曼常数;T——热力学温度。
T一定,比值一定。
温度升高或共振线的波长越长,比值越大。
通常比值<1%,Nj<<N0,N0≈N,故可用基态原子数代表待测元素的原子总数。
2020年版药典-原子吸收分光光度法一、前言随着科学技术的不断发展,原子吸收分光光度法在医学、药学等领域中得到了广泛应用。
为了保证药品的质量和安全性,药典中对原子吸收分光光度法的相关标准也在不断更新和完善。
而2020年版药典中的原子吸收分光光度法内容更是经过了严格的审查和修改,以确保检测结果的准确性和可靠性。
二、原子吸收分光光度法概述原子吸收分光光度法是一种利用原子对特定波长的光吸收的分析方法。
它适用于测定各种元素的含量,特别是对微量元素的测定有着独特的优势,因此被广泛应用于药品的质量控制以及环境、食品等领域。
三、2020年版药典中的原子吸收分光光度法更新内容1. 样品的处理要求根据2020年版药典的要求,对于药品样品的处理必须更加严格和规范。
在进行原子吸收分析前,必须对样品进行适当的前处理,以保证样品的稳定性和可测性。
2. 仪器设备的要求药典对原子吸收仪器的性能和规格做出了更为详细和严格的规定。
对于仪器的精密度、灵敏度等方面都有了更为具体的要求,以确保测试结果的准确性和可靠性。
3. 实验操作的要求2020年版药典中对原子吸收分光光度法的实验操作也做出了详细的规定,包括了实验环境的要求、仪器操作的步骤等,以确保实验过程的标准化和规范化。
四、结语2020年版药典中的原子吸收分光光度法内容的更新和完善,为药品质量控制提供了更为严格和可靠的依据。
随着科学技术的不断进步和发展,相信在未来的药典中,原子吸收分光光度法的标准会继续得到完善和提高,以更好地保障人们的用药安全和健康。
随着生产制造技术的不断进步和创新,药品的制备工艺也在不断改进和优化。
在2020年版药典中对原子吸收分光光度法的更新内容还包括了对药品样品的处理要求。
在药品生产过程中,常常会出现一些成分的变化或者变异,这就需要对样品进行更加严格的前处理。
对于液体药剂的样品处理,可能需要使用特殊的前处理方法,以保证样品中需要检测的元素的稳定性和准确性。