工程数学_积分变换
- 格式:ppt
- 大小:1.12 MB
- 文档页数:36
一、《积分变换》课程简介1.课程编号:201000852.课程名称:积分变换3.开课学院:数学课程组4.学时:285.类别:公共必修课6.先修课程:高等数学,复变函数7.课程简介:积分变换是高等院校工科有关专业的一门必修的基础理论课,是许多后继课程的必备基础。
本课程在大学第二个学年的第一学期内组织教学。
通过本课程的学习,要使学生获得:1.傅里叶变换2.拉普拉斯变换3.Z变换4.小波变换四方面的基本概念、基本性质及其基本应用,为学习后继课程和进一步获得数学知识奠定必要的数学基础。
在课程的教学过程中,通过各个教学环节逐步培养学生具有抽象概括问题和逻辑推理能力,基础的运算和自学能力,特别注意培养学生具有较强的综合运用所学知识去分析问题和解决问题的能力.8.Course Code: 20100085Name of Course:Integral TransformFaculty: Mathematics Course GroupCredit Hours: 28Classification: Compulsory coursePrerequisite: Advanced Mathematics, Complex FunctionsCourse Outline:Integral Transform is a compulsory basic theory course for undergraduate students who major in engineering. It is a necessary foundation for many subsequent courses.This course will be taught in the first semester of second year.Through the study of this course, the students will learn basic concepts, basic properties, and basic applications under four categories:1. Fourier Transform2. Laplace Transform3. Z Transform4. Wavelet TransformThese are key to understanding the subsequent courses and further study in mathematics.In the process of teaching the course, we will gradually train the students through the use of various teaching methods in abstraction andlogical reasoning ability, basic computing and self-learning ability, giving special attention to the development of a strong ability to analyze and solve problems through the comprehensive application of acquired knowledge.二、《积分变换》课程教学大纲9.1. 课程编号:20100085 5. 先修课程:高等数学,复变函数2. 课程类别:基础数学类,必修 6. 课内总学时:283. 开课学期:第二学年一学期7. 实验/上机学时:04. 适用专业:自动化专业8. 执笔人:安玉冉一.课程教学目的积分变换是高等院校工科有关专业的一门必修的基础理论课,是许多后继课程的必备基础。
《工程数学-复变函数与积分变换》课后习题详解 吉林大学数学学院 (主编:王忠仁 张静)高等教育出版社 习题一(P12)1.1 对任何z ,22z z =是否成立?如果是,就给出证明。
如果不是,对哪些z 值才成立?解:设z x iy =+,则2222z x y xyi =-+,222z x y =+;若22z z =成立,则有22222x y xyi x y -+=+,即222220x y x yxy ⎧-=+⎨=⎩,解得0y =,即z x =。
所以,对任何z ,22z z =不成立,只对z 为实数时才成立。
1.2 求下列各式的值:(1)5(3)i -; (2)6(1)i +; (3)61- ; (4)13(1)i -。
解:(1)因为632ii eπ--=,所以5555566631(3)223232()16(3)22i i i i e e e i i πππ--⨯-⎛⎫-====--=-+ ⎪⎝⎭(2)因为412ii e π+=,所以63663442(1)2288i i i e e e i πππ⨯⎛⎫+====- ⎪⎝⎭(3)因为1cos sin i ππ-=+,所以()166221cos sin cossin66k k k w i i ππππππ++=-=+=+,其中0,1k =;即031cossin6622w i i ππ=+=+,1cos sin 22w i i ππ=+=, 25531cossin 6622w i i ππ=+=-+,37731cos sin 6622w i i ππ=+=--,433cossin 22w i i ππ=+=-,5111131cos sin 6622w i i ππ=+=-。
(4)因为12cos()sin()44i i ππ⎡⎤-=-+-⎢⎥⎣⎦,所以11362244(1)2cos sin 33k k k w i i ππππ⎡⎤-+-+⎢⎥=-=+⎢⎥⎢⎥⎣⎦,其中0,1,2k =;即1602cos()sin()1212w i ππ⎡⎤=-+-⎢⎥⎣⎦,161772cos sin1212w i ππ⎡⎤=+⎢⎥⎣⎦,162552cos sin 44w i ππ⎡⎤=+⎢⎥⎣⎦。
《工程数学-复变函数与积分变换》课后习题详解 吉林大学数学学院 (主编:王忠仁 张静)高等教育出版社 习题一(P12)对任何z ,22z z =是否成立如果是,就给出证明。
如果不是,对哪些z 值才成立解:设z x iy =+,则2222z x y xyi =-+,222z x y =+;若22z z =成立,则有22222x y xyi x y -+=+,即222220x y x yxy ⎧-=+⎨=⎩,解得0y =,即z x =。
所以,对任何z ,22z z =不成立,只对z 为实数时才成立。
求下列各式的值:(1)5)i ; (2)6(1)i +; (3; (4)13(1)i -。
解:(162ii eπ-=,所以555556661)223232())2i i i i e e e i i πππ--⨯-⎛⎫====-=- ⎪⎝⎭(2)因为41ii e π+=,所以63663442(1)288i i i e e e i πππ⨯⎫+====-⎪⎭(3)因为1cos sin i ππ-=+,所以()1622cos sin cossin66k k k w i i ππππππ++==+=+,其中0,1,2,3,4,5k =;即01cossin6622w i i ππ=+=+,1cos sin 22w i i ππ=+=,2551cossin 662w i i ππ=+=+,3771cos sin 662w i i ππ=+=-,433cossin 22w i i ππ=+=-,511111cos sin 662w i i ππ=+=-。
(4)因为1cos()sin()44i i ππ⎤-=-+-⎥⎦,所以11362244(1)2cos sin 33k k k w i i ππππ⎡⎤-+-+⎢⎥=-=+⎢⎥⎢⎥⎣⎦,其中0,1,2k =;即1602cos()sin()1212w i ππ⎡⎤=-+-⎢⎥⎣⎦,161772cos sin1212w i ππ⎡⎤=+⎢⎥⎣⎦,162552cos sin 44w i ππ⎡⎤=+⎢⎥⎣⎦。
《工程数学-复变函数与积分变换》课后习题详解大学数学学院 (主编:王忠仁 静)高等教育 习题一(P12)1.1 对任何z ,22z z =是否成立?如果是,就给出证明。
如果不是,对哪些z 值才成立?解:设z x iy =+,则2222z x y xyi =-+,222z x y =+;若22z z =成立,则有22222x y xyi x y -+=+,即222220x y x yxy ⎧-=+⎨=⎩,解得0y =,即z x =。
所以,对任何z ,22z z =不成立,只对z 为实数时才成立。
1.2 求下列各式的值:(1)5)i ; (2)6(1)i +; (3; (4)13(1)i -。
解:(162ii eπ-=,所以555556661)223232())2i i i i e e e i i πππ--⨯-⎛⎫====-=- ⎪⎝⎭(2)因为41ii e π+=,所以63663442(1)288i i i e e e i πππ⨯⎫+====-⎪⎭(3)因为1cos sin i ππ-=+,所以()1622cos sin cossin66k k k w i i ππππππ++==+=+,其中0,1,2,3,4,5k =;即01cossin6622w i i ππ=+=+,1cos sin 22w i i ππ=+=,2551cossin 662w i i ππ=+=+,3771cos sin 662w i i ππ=+=-,433cossin 22w i i ππ=+=-,511111cos sin 662w i i ππ=+=-。
(4)因为1cos()sin()44i i ππ⎤-=-+-⎥⎦,所以11362244(1)2cos sin 33k k k w i i ππππ⎡⎤-+-+⎢⎥=-=+⎢⎥⎢⎥⎣⎦,其中0,1,2k =;即1602cos()sin()1212w i ππ⎡⎤=-+-⎢⎥⎣⎦,161772cos sin1212w i ππ⎡⎤=+⎢⎥⎣⎦,162552cos sin 44w i ππ⎡⎤=+⎢⎥⎣⎦。
可编辑修改精选全文完整版工程数学 积分变换(第四版 张元林 编)课后习题答案编辑者:余小龙第一章:Fourier 变换习题一解答1、证:利用Fourier 积分变换的复数形式,有⎰⎰+∞∞--+∞∞-⎥⎦⎤⎢⎣⎡=ωττπωωτd e d e f t f t j j )(21)( ⎰⎰∞+∞-∞+∞-⎥⎦⎤⎢⎣⎡-=ωτωτωττπωd e d j f t j )sin )(cos (121[]⎰+∞∞-+-=ωωωωωd t j t jb a )sin (cos )()(21 由于)()(ωω-=a a , )()(ωω--=b b , 所以⎰⎰+∞∞-+∞∞-+=ωωωωωωtd b td a t f sin )(21cos )(21)(⎰⎰+∞+∞+=ωωωωωωtd b td a sin )(cos )(0。
注:本题也可以由Fourier 积分公式的三角形式得到证明。
2、解:(1)此题亦可写成⎩⎨⎧-=.0,1)(2t t f .1;1>≤t t 它是一个连续的偶函数,利用Euler 公式和分部积分法,由Fourier 积分公式的复数形式,有 ⎰⎰+∞∞-+∞∞--⎥⎦⎤⎢⎣⎡=ωττπωωτd e d e f t f t j j )(21)(⎰⎰+∞∞-⎥⎦⎤⎢⎣⎡-=ωτωττπωd e d t j 102cos )1(1ωωωττωωτωωττωωτπωd e tj 1232sin sin 2cos 2sin 1⎰∞+∞-⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+--==ωωωωωπωd e t j ⎰+∞∞--3)cos (sin 21=⎰+∞∞-+-ωωωωωωωπd t j t )sin (cos cos sin 23ωωωωωωπtd cos cos sin 403⎰+∞-= (2)函数)(t f 为一连续函数,用类似于(1)的方法,有⎰⎰+∞∞-+∞∞--⎥⎦⎤⎢⎣⎡=ωττπωωτd e d e f t f t j j )(21)(⎰⎰+∞∞-+∞--⎥⎦⎤⎢⎣⎡=ωττπωωττd e d e e t j j 02sin 21 ⎰⎰+∞∞-+∞+-⎥⎦⎤⎢⎣⎡=ωττπωτωd e d e t j j 0)1(2sin 21 {}()()⎰∞+∞-+∞+-⎥⎥⎦⎤⎢⎢⎣⎡++--+-=ωωττωπωτωd e j j e tj j 02)1(412cos 22sin )1(21 ⎰+∞∞-+-=ωωωπωd e j tj 252212[][]⎰∞+∞-+--+---=ωωωωωωωωωπd t j t j j j )sin (cos 2)5(2)5(2)5(1222⎰∞+∞-+---++-=ωωωωωωωωωωωπd tj t j t t 222224)5(cos 2sin )5(sin 2cos )5(1⎰∞+∞-+-+-=ωωωωωωωπd tt 432625sin 2cos )5(2(3)可以看出)(t f 为奇函数,且-1,0,1为其间断点。
工程数学教学大纲一、总纲《工程数学》包括两部分内容:第一部分“积分变换”,提供一点复变函数的基本知识,并为信号的处理和分析提供必备的数学工具,第二部分“概率统计”,提供概率论的一些基本知识,并为数据的处理和分析提供必备的数学工具。
本课程是广播电视大学工科各专业的必修基础课之一(机械、土建只修概率统计)。
二、内容第一部分复变函数与积分变换第一章复变函数1、复数与复变函数2、可导与解析3、积分概念与积分公式4、极点和留数第二章积分变换1、付氏级数的复数形式2、付氏积分与付氏变换3、付氏变换的性质4、拉氏变换及其性质5、常用拉氏变换公式6、拉氏反变换的求法第二部分概率与数理统计第三章概率基础1、事件与概率随机现象,随机事件,事件的概率,加法公式。
2、条件概率与独立性条件概率,乘法公式,独立性。
3、随机变量概念,概率分布与分布密度。
4、几种常见的分布二项分布与泊松分布,均匀分布与指数分布,正态分布(正态分布密度,正态分布函数,查表方法)。
5、联合分布与独立性联合分布,边缘分布,随机变量的独立性。
6、期望与方差期望值,方差,期望、方差的性质。
7、大数定律与中心极限定理切比雪夫不等式,大数定律,中心极限定理。
第四章统计推断1、基本概念总体、样本,直方图,统计量。
2、参数估计最大似然估计,无偏估计,区间估计(正态总体已知方差的均值估计)。
3、假设检验(正态总体)已知方差的均值检验,未知方差的均值检验(t检验),方差的检验(x2检验),两个下态总体的比较。
4、1→1回归概念,最小二乘估计。
5、检验与预测平方和分解,F检验,预测。
大纲说明一、课程的目的和任务《工程数学》是电大工科各专业(机械和土建只修概率统计)的必修基础课,是为培养适应四个现代化需要的大专层次的应用型工程技术和工程管理人才而设置的目的定为学习电工原理、电路分析、自动控制原理、系统管理工程、工程规划与设计等专业基础课提供必备的基础数学知识和分析方法。
工程数学积分变换答案【篇一:复变函数与积分变换是一门内容丰富】建立和发展与解决实际问题的需要联系密切,其理论与方法被广泛应用在自然科学的许多领域,是机械、电子工程、控制工程,理论物理与流体力学,弹性力学等专业理论研究和实际应用中不可缺少的数学工具。
课程包含2部分内容:向量分析与场论,复变函数论与积分变换。
本课程的目的,是使学生掌握向量分析与场论,复变函数论,积分变换的基本理论、基本概念与基本方法,使学生在运用向量分析与场论,复变函数论,积分变换的思想和方法解决实际问题的能力方面得到系统的培养和训练,为在后继专业课程和以后的实际工作打下良好的数学基础向量分析与场论部分第一章向量与向量值函数分析学时:4几何向量,几何向量的加法、数乘、数量积、向量积,向量的混合积与三重向量积,向量值函数的定义,向量值函数的加法、数乘、复合、数量积运算,向量值函数的极限、连续,向量值函数的导数,向量值函数的体积分、曲线积分、曲面积分,高斯公式,斯托克斯公式。
第二章数量场学时:2数量场的等值面,数量场的方向导数、梯度的概念,哈米尔顿算子的用法。
第三章数量场学时:6向量场的向量线,向量场的通量,向量场的散度,向量场的环量,向量场的环量面密度、向量场的旋度,向量场场函数的导数与向量场的散度、旋度及数量场的梯度之间的关系。
第四章三种特殊形式的向量场学时:4保守场,保守场的旋度,保守场的势函数,管形场,管形场的向量势,调和场,调和函数。
复变函数与积分变换部分第一章:复数与平面点集学时:2复数的直角坐标表示法,三角表示法,指数表示法。
复数的模和辐角,复数的四则运算。
平面区域,邻域,聚点,闭集,孤立点,边界点,边界,连通集,区域,单连通区域,多连通区域。
第二章:解析函数学时:6复变函数的概念,复变函数的几何表示。
复变函数的极限,连续性,复变函数可导和解析的概念,复变函数解析的条件,复变初等函数(指数函数,对数函数,幂函数,三角函数)的定义和性质。