工程数学积分变换答案
- 格式:docx
- 大小:14.77 KB
- 文档页数:13
2019年4月自考《工程数学—复变函数与积分变换》考前试题和答案02199一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
第1题【正确答案】 B【你的答案】本题分数2分第2题【正确答案】 C【你的答案】本题分数2分第3题A. 解析的B. 可导的C. 不可导的D. 即不解析也不可导【正确答案】 B【你的答案】本题分数2分第4题复数-1+i的模是()【正确答案】 D【你的答案】本题分数2分第5题【正确答案】 D【你的答案】本题分数2分第6题【正确答案】 D【你的答案】本题分数2分第7题函数f(t)=tcoskt的拉氏变换为()【正确答案】 B【你的答案】本题分数2分第8题 2-i的模是()【正确答案】 D【你的答案】本题分数2分第9题A. 等于0B. 等于1C. 等于iD. 不存在【正确答案】 C【你的答案】本题分数2分第10题【正确答案】 B二、填空题(本大题共6小题,每小题2分,共12分)请在每小题的空格中填上正确答案。
错填、不填均无分。
___第1题题中横线处答案为:【正确答案】【你的答案】修改分数本题分数2分你的得分___第2题题中横线处答案为:【正确答案】 1/asinat【你的答案】本题分数2分修改分数你的得分第3题 |z-2i|=|z+2|所表示的曲线的直角坐标方程是___.【正确答案】 x=-y【你的答案】修改分数本题分数2分你的得分___第4题题中横线处答案为:【正确答案】【你的答案】修改分数本题分数2分你的得分第5题题中横线处答案为:___【正确答案】 -4πi【你的答案】修改分数本题分数2分你的得分___第6题题中横线处答案为:【正确答案】三、计算题(本大题共8小题,共52分)第1题【正确答案】【你的答案】本题分数6分你的得分修改分数第2题【正确答案】【你的答案】本题分数6分你的得分修改分数第3题【正确答案】【你的答案】本题分数6分你的得分修改分数第4题【正确答案】【你的答案】本题分数6分你的得分修改分数第5题【正确答案】【你的答案】本题分数6分你的得分修改分数第6题【正确答案】【你的答案】本题分数6分你的得分修改分数第7题【正确答案】【你的答案】本题分数6分你的得分修改分数第8题【正确答案】【你的答案】四、综合题(下列3个小题中,第1题必做,第2、3题中只选做一题。
1-21.求矩形脉冲函数,0()0,A t f t τ⎧≤≤⎪=⎨⎪⎩其他的Fourier 变换.解:[]()j j j j 01e e()()()e d e d 0j j t t t t A F f t f t t A t A τωωωωτωωω-----+∞⎡⎤=====⎢⎥-∞-⎣⎦⎰⎰F 2.设()F ω是函数()f t 的Fourier 变换,证明()F ω与()f t 有相同的奇偶性.证明:()F ω与()f t 是一个Fourier 变换对,即 ()()j e d t F f t t ωω-+∞=-∞⎰,()()j 1e d 2πt f t F ωωω+∞=-∞⎰ 如果()F ω为奇函数,即()()F F ωω-=-,则()()()()()()j j 11e d e d 2π2πt tf t F F ωωωωωω--+∞+∞-==---∞-∞⎰⎰ (令u ω-=)()j 1e d 2πut F u u -∞=+∞⎰(换积分变量u 为ω)()()j 1e d 2πtF f t ωωω+∞=-=--∞⎰ 所以()f t 亦为奇函数.如果()f t 为奇函数,即()()f t f t -=-,则()()()()()j j e d e d t t F f t t f t t ωωω----+∞+∞-==---∞-∞⎰⎰ (令t u -=)()j e d u f u u ω--∞=+∞⎰(换积分变量u 为t )()()j e d t f t t F ωω-+∞=-=--∞⎰所以()F ω亦为奇函数.同理可证()f t 与()F ω同为偶函数.4.求函数()()e 0t f t t -=≥的Fourier 正弦变换,并推证()20012sin πd e αωαωωαω+∞-=>+⎰解:由Fourier 正弦变换公式,有()()s s F f t ω⎡⎤=⎣⎦F ()0sin f t t t ω+∞=⎰d 0sin tt t ω+∞-=⎰e d ()2sin cos 10t t t ωωωω---+∞=+e 21ωω=+ 由Fourier 正弦逆变换公式,有()120022sin ()()sin 1s s s t f t F F t ωωωωωωωω+∞+∞-===⎡⎤⎣⎦+⎰⎰F d d ππ 由此,当0t α=>时,可得()()2sin ππd e 0122f αωαωωααω+∞-==>+⎰5.设()()f t F ω⎡⎤=⎣⎦F ,试证明:1)()f t 为实值函数的充要条件是()()F F ωω-=; 2)()f t 为虚值函数的充要条件是()()F F ωω-=-.证明: 在一般情况下,记()()()r i f t f t f t =+j 其中()r f t 和()i f t 均为t 的实值函数,且分别为()f t 的实部与虚部. 因此()()()()[]j e d j cos jsin d t r i F f t t f t f t t t t ωωωω-+∞+∞⎡⎤==+-⎣⎦-∞-∞⎰⎰ ()()()()cos sin d j sin cos d ri r i f t t f t t t f t t f t t t ωωωω+∞+∞⎡⎤⎡⎤=+--⎣⎦⎣⎦-∞-∞⎰⎰ ()()Re Im F j F ωω⎡⎤⎡⎤=+⎣⎦⎣⎦其中()()()Re cos sin d r i F f t t f t t t ωωω+∞⎡⎤⎡⎤=+⎣⎦⎣⎦-∞⎰, ()a ()()()Im sin cos d ri F f t t f t t t ωωω+∞⎡⎤⎡⎤=--⎣⎦⎣⎦-∞⎰()b 1)若()f t 为t 的实值函数,即()()(),0r i f t t f f t ==.此时,()a 式和()b 式分别为()()Re cos d rF f t t t ωω+∞⎡⎤=⎣⎦-∞⎰()()Im sin d rF f t t t ωω+∞⎡⎤=-⎣⎦-∞⎰所以()()()Re jIm F F F ωωω⎡⎤⎡⎤-=-+-⎣⎦⎣⎦()()()Re jIm F F F ωωω⎡⎤⎡⎤=-=⎣⎦⎣⎦反之,若已知()()F F ωω-=,则有()()()()Re jIm Re jIm F F F F ωωωω⎡⎤⎡⎤⎡⎤⎡⎤-+-=-⎣⎦⎣⎦⎣⎦⎣⎦此即表明()F ω的实部是关于ω的偶函数;()F ω的虚部是关于ω的奇函数.因此,必定有()()()cos d j sin d r rF f t t t f t t t ωωω+∞+∞=--∞-∞⎰⎰ 亦即表明()()r f t f t =为t 的实值函数.从而结论1)获证.2)若()f t 为t 的虚值函数,即()()()j ,0i r f t f f t t ==.此时,()a 式和()b 式分别为()()Re sin d i F f t t t ωω+∞⎡⎤=⎣⎦-∞⎰ ()()Im cos d i F f t t t ωω+∞⎡⎤=⎣⎦-∞⎰所以()()()Re jIm F F F ωωω⎡⎤⎡⎤-=-+-⎣⎦⎣⎦()()Re jIm F F ωω⎡⎤⎡⎤=-+⎣⎦⎣⎦()(){}Re jIm F F ωω⎡⎤⎡⎤=--⎣⎦⎣⎦()F ω=-反之,若已知()()F F ωω-=-,则有()()()()Re jIm Re jIm F F F F ωωωω⎡⎤⎡⎤⎡⎤⎡⎤-+-=-+⎣⎦⎣⎦⎣⎦⎣⎦此即表明()F ω的实部是关于ω的奇函数;()F ω的虚部是关于ω的偶函数.因此,必定有()()()sin d j cos d i iF f t t t f t t t ωωω+∞+∞==+-∞-∞⎰⎰, 亦即表明()()j i f t f t =为t 的虚值函数.从而结论2)获证.6.已知某函数的Fourier 变换sin ()F ωωω=,求该函数()f t .解:sin ()F ωωω=为连续的偶函数,由公式有()()j π1sin e d cos d 2π0tf t F t ωωωωωωω+∞+∞==-∞⎰⎰ ()()sin 1sin 111d d 2π02π0t t ωωωωωω+∞++∞-=+⎰⎰ 但由于当0a >时sin sin sin πd d()d 0002a a t a t t ωωωωωω+∞+∞+∞===⎰⎰⎰ 当0a <时sin sin()πd d 002a a ωωωωωω+∞+∞-=-=-⎰⎰当0a =时,sin d 0,0a ωωω+∞=⎰所以得 ()11211401t f t t t ⎧<⎪⎪⎪==⎨⎪⎪>⎪⎩,,,7.已知某函数的Fourier 变换为()()()00πδδF ωωωωω⎡⎤=++-⎣⎦,求该函数()f t .解:由函数()()()00δd t t g t t g t -=,易知()()()()j j j 001e d 2π11πδe d πδe d 2π2πt t t f t F ωωωωωωωωωωω+∞=-∞+∞+∞=++--∞-∞⎰⎰⎰j j 00011e e cos 22t t t ωωωωωωω=-==+=8.求符号函数(又称正负号函数)()1,0sgn 1,0t t t -<⎧=⎨>⎩的Fourier变换.解:容易看出()()()sgn t u t u t =--,而1[()]()πδ().j u t F ωωω=-+F 9.求函数()()()1δδδδ222aa t a t a t f t t ⎡⎤⎛⎫⎛⎫=++-+++- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的Fourier 变换.解 :()()()()j 1δδδδe d 222ta a F f t t a t a t t ωωω+∞--∞⎡⎤⎛⎫⎛⎫⎡⎤==++-+++- ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎣⎦⎰F j j j j 1e e e e 222t t t t a a t a t a t t ωωωω----⎡⎤⎢⎥=+++⎢⎥=-==-=⎢⎥⎣⎦cos cos 2aa ωω=+.10 .求函数()cos sin t f t t =的Fourier 变换. 解: 已知()()000sin j πδδt ωωωωω⎡⎤=+--⎡⎤⎣⎦⎣⎦F由()1cos sin sin 22f t t t t ==有()()()πjδ2δ22f t ωω⎡⎤⎡⎤=+--⎣⎦⎣⎦F 11.求函数()3sin f t t =的Fourier 变换.解:已知()0j 0e 2πδtωωω⎡⎤=-⎣⎦F ,由()()3j j 33j j -j 3j e e j sin e 3e 3e e 2j 8t t t t t t f t t --⎛⎫-===-+- ⎪⎝⎭即得()()()()()πjδ33δ13δ1δ34f t ωωωω⎡⎤⎡⎤=---++-+⎣⎦⎣⎦F12.求函数()πsin 53t t f ⎛⎫=+ ⎪⎝⎭的Fourier 变换.解: 由于()π1sin 5sin5cos5322f t t t t ⎛⎫=+=+ ⎪⎝⎭故()()()()()πjδ5δ55δ52f t ωωωω⎤⎡⎤⎡⎤=+--+++-⎥⎣⎦⎣⎦⎣⎦F . 14.证明:若()()j e t F ϕω⎡⎤=⎣⎦F ,其中()t ϕ为一实数,则()()()1cos 2t F F ϕωω⎡⎤⎡⎤=+-⎣⎦⎣⎦F ()()()1sin 2j t F F ϕωω⎡⎤⎡⎤=--⎣⎦⎣⎦F 其中()F ω-为()F ω的共轭函数.证明:因为 ()()j j e e d t t F t ϕωω+∞--∞=⋅⎰()()()j j j j ee d ee d t t tt F t t ϕϕωωω+∞+∞---∞-∞-==⋅⎰⎰()()()()()()j j j j 1e ee d cos e d cos 22t t t t F F t t t t ϕϕωωωωϕϕ-+∞+∞---∞-∞+⎡⎤⎡⎤+-===⎣⎦⎣⎦⎰⎰F 同理可证另一等式.17.求作如图的锯齿形波的频谱图.(图形见教科书).解 :02π,T ω=()1,00,ht t Tf t T ⎧≤≤⎪=⎨⎪⎩其他()00111d d 2TTh C f t t ht t TTT ===⎰⎰()()000j j j 02011e d e d e d TTTn t n t n t n ht h C F n f t t t t t TTT Tωωωω---===⋅=⎰⎰⎰00j j 211j e e d j j 2πTn t n t Thht T n n n ωωωω--⎡⎤=⋅+=⎢⎥-⎣⎦⎰()()()()()000j j 2πδ2πδπδδ.22πn n n n h h hF n h n n nωωωωωωω+∞+∞=-∞=-∞≠≠=+⋅-=+⋅-∑∑。
第一章 傅里叶变换内容提要:一 傅里叶变换定义1定义2定义34傅里叶积分定理二 δ函数型序列的充分条件构成δ1.)(21)(,)(21)(,)()( 为傅里叶积分公式即称则若设:dw e dx e x f t f dw e w F t f dt e t f w F iwt iwx iwt iwt ⎰⎰⎰⎰∞+∞--∞+∞-+∞∞--+∞∞-⎥⎦⎤⎢⎣⎡===ππ=)(t f [])(1-w F ℱ;)()()(21逆变换的傅里叶为Fourier w F dw e w F iwt ⎰+∞∞-=π=)(w F [])(t f ;)()()(变换的傅里叶为Fourier t f dt e t f iwt -+∞∞-⎰=ℱ .)(21)(,)(21)(,)()( 为傅里叶积分公式即称则若设:dw e dx e x f t f dw e w F t f dt e t f w F iwt iwx iwt iwt ⎰⎰⎰⎰∞+∞--∞+∞-+∞∞--+∞∞-⎥⎦⎤⎢⎣⎡===ππ满足如下两个条件:若函数)(t f 限个极值点;类间断点,且至多有有上连续或有有限个第一在即条件上满足狄利克雷在实轴的任何有限区间],[)( ,)(],[)( )b a t f Dirichlet b a t f i .],[)( )的反常积分收敛在区间+∞-∞t f ii .)()(,)(21)]0()0([21)(dt e t f w F dw e w F t f t f t f iwtiwt -∞+∞-∞+∞-⎰⎰==-++其中且的傅里叶变换存在,则函数π函数列的该趋向下,,则在)(的某种趋向下,函数若在参数可积,且满足在实轴的任何有限区间设普通函数βεβϕβ++∞∞→==⎰0,1)()(-dt t f t f ).()( )0)(( ))(1()(1)(t t f t f t f δδβϕβϕβϕββ→>=即:型序列,构成一个型序列几个常用 2δ⎪⎩⎪⎨⎧<<===⎩⎨⎧<<=. 0)0( 1)1(1)( . 0)10( 1)( )1其它,,则令其它,εεεεβεεt t f t f t t f ).()(lim 00t t δδδεεε=→+→+型序列,即时为当.)()1(1)(,1)(,)1(1)( )2(22-2πεεεεδπεw w f w dt t f t t f R +===+=⎰+∞∞构造:显然).()(lim 00w w R δδδεεε=→+→+即型序列,时为当.)cos(21sin )()(,sin ,sin )( )3(-⎰⎰-+∞∞=====RRIR dw wt t Rt Rt Rf t dt tt t tt f ππδππ构造:因为).()(lim t t R IR R δδδ=+∞→+∞→型序列,即时为当.2)1(1)(,2,2)( )4(2222-22πβββδππββw G t t ew f w dt eet f -∞+∞--====⎰构造:因为).()(lim 00w w G δδδβββ=→+→+型序列,即时为当函数的积分3δ).)(()()(lim )()()1-00-0处处无穷次可微,定义:t f dt t f t t dt t f t t ⎰⎰+∞∞→+∞∞-=-+εεδδ三 傅立叶变换的性质四 几个常用函数傅里叶变换对1.线性性质2.位移性质)( t f 若ℱ, )(w F 3.微分性质)( n1k ∑=t f C k k . )(1∑=nk k k w F C ℱ )( )1 a t f ±ℱ ;)( )(为实数a w F e iwa ±t iw et f 0)( )2±.)( )(00为实数w w w F ℱ)( t f k 若),,2,1( )(n k w F k =ℱ)( t f 若ℱ, )(w F )( )1 )(t fn ;)( )()(为自然数n w F iw n ℱ)()( )2t f -it n .)( )()(为自然数n w F n ℱ)( t f 若ℱ)(w F 4.积分性质 则ℱ []).(1)(w F iw t g =).( )10)((lim )(1lim )()(lim)()()2000-00-000t f t f dt t f dtt f t t dt t f t t t t =<<+==-=-+++→+→+∞∞→+∞∞⎰⎰⎰θεθεδδδεεεεε函数的筛选性质:2sin 2τw w E).2( 0),2( )()1⎪⎩⎪⎨⎧><=ττt t E t f ℱ)0( )0( 0)0( )()2>⎩⎨⎧<>=-ββt t e t f t 1iw+βℱ习题1.11. 求下列函数的Fourier 变换. (1)ℱ)]([t f =dt e A t i ⎰-τω0=0τωωt i e i A --=)1(ωτωi e i A --.(2) ℱ)]([t f =dt te e t i t⎰+∞∞---ωcos =dt te t i ⎰+∞+-0)1(cos ω+dt te t i ⎰∞--0)1(cos ω由201cos a a dt te at +=⎰+∞-,2001cos cos aa dt te dt te at at +==⎰⎰+∞-∞-, 可知:ℱ)]([t f =22)1(11)1(11ωωωωi i i i -+-++++=22424ωω-+.2. 求Fourier 逆变换. ℱ)]([1ωF -=ωπωωβd e et i ⎰+∞∞--21=ωωπωβωβd e d e it it ⎰⎰∞-++∞+-+0)(0)([21=⎥⎦⎤⎢⎣⎡∞-++∞++-++-010121)()(ωβωβββπit it e it e it=22221t +ββπ=)(22t +βπβ.3. ℱ)]([t f =⎰--⋅ππωdt e t t i sin=-⎰--ππωt d e t i cos =-⎰---⋅--⋅ππωωωππdt e t i te t i t i cos cos=()⎰-----ππωωωωπt d e i e e t i t i t i sin cos=⎰----⋅+-ππωωωωωdt te i i e e t i t i t i sin )(=⎰---+-ππωωωωdt teeeti ti ti sin 2ℱ)(1w iwπδ+)( )5t u )( )3t δℱ 1)( 2w πδ1)4ℱℱ)]([t f =1sin 22-ωωπi由ℱ)()]([1t f F =-ω可知下面的等式成立.4. 求下列函数的Fourier 积分。
111.2. 试证:若()f t 满足Fourier 积分定理中的条件,则有其中()()()()d d ππ11cos ,sin .a f b f ωτωττωτωττ+∞+∞-∞-∞==⎰⎰阐发:由Fourier 积分的单数形式和三角形式都可以证明此题,请读者试用三角形式证明.证明:利用Fourier 积分的单数形式,有由于()()()(),,a a b b ωωωω=-=--所以 2.求下列函数的Fourier 积分:1)()2221,10,1t t f t t ⎧-≤⎪=⎨>⎪⎩; 2)()0,0;e sin 2,0t t f t t t -⎧<⎪=⎨≥⎪⎩3)()0,11,101,010,1t t f t t t ⎧-∞<<-⎪--<<⎪=⎨<<⎪⎪<<+∞⎩阐发:由Fourier 积分的单数形式和三角形式都可以解此题,请读者试用三角形式解.解:1)函数()2221,10,1t t f t t ⎧-≤⎪=⎨>⎪⎩为连续的偶函数,其Fourier 变换为122330sin 2cos 2sin sin 4(sin cos )2t t t t t t ωωωωωωωωωωωω⎡⎤⎛⎫-=--+=⎢⎥ ⎪⎝⎭⎣⎦(偶函数)f(t)的Fourier 积分为2)所给函数为连续函数,其Fourier 变换为()224252j j 1121(2)j 1(2)j 256ωωωωωω⎡⎤--⎛⎫⎣⎦=+=⎪-+-+--+⎝⎭(实部为偶函数,虚数为奇函数) f (t)的Fourier 变换为这里用到奇偶函数的积分性质.3)所给函数有间断点1,0,1且f(t)= f(t)是奇函数,其Fourier 变换为12j(cos 1)2j 1sin d 0t t ωωω-=-⋅=⎰(奇函数)f(t)的Fourier 积分为其中t ≠1,0,1(在间断点0t 处,右边f(t)应以()()00002f t f t ++-取代).3.求下列函数的Fourier 变换,并推证下列积分结果: 1)()e (0),t f t ββ-=>证明:22cos πd e ;02tt βωωβωβ-+∞=+⎰2)()e cos tf t t -=,证明:242πcos d e cos ;042tt t ωωωω-+∞+=+⎰ 3)sin ,π()0,πt t f t t ⎧≤⎪=⎨>⎪⎩,证明:2πsin ,πsin πsin 2d 010,πt t tt ωωωω⎧≤+∞⎪=⎨-⎪>⎩⎰ 证明:1)函数()e t f t β-=为连续的偶函数,其Fourier 变换为 再由Fourier 变换得 即2)函数()e cos t f t t -=为连续的偶函数,其Fourier 变换为再由Fourier 变换公式得 即242πcos d e cos 042tt t ωωωω-+∞+=+⎰ 3)给出的函数为奇函数,其Fourier 变换为 故4.求函数()()e 0,0t f t t ββ-=>≥的Fourier 正弦积分表达式和Fourier 余弦积分表达式.解:根据Fourier 正弦积分公式,并用分部积分法,有根据Fourier 余弦积分公式,用分部积分法,有121.求矩形脉冲函数,0()0,A t f t τ⎧≤≤⎪=⎨⎪⎩其他的Fourier 变换.解:2.设()F ω是函数()f t 的Fourier 变换,证明()F ω与()f t 有相同的奇偶性.证明:()F ω与()f t 是一个Fourier 变换对,即()()j e d t F f t t ωω-+∞=-∞⎰,()()j 1e d 2πt f t F ωωω+∞=-∞⎰ 如果()F ω为奇函数,即()()F F ωω-=-,则 (令u ω-=)()j 1e d 2πutF u u -∞=+∞⎰ (换积分变量u 为ω)()()j 1e d 2πt F f t ωωω+∞=-=--∞⎰所以()f t 亦为奇函数.如果()f t 为奇函数,即()()f t f t -=-,则(令t u -=)()j e d u f u u ω--∞=+∞⎰(换积分变量u 为t )()()j e d t f t t F ωω-+∞=-=--∞⎰ 所以()F ω亦为奇函数.同理可证()f t 与()F ω同为偶函数.4.求函数()()e 0t f t t -=≥的Fourier 正弦变换,并推证解:由Fourier 正弦变换公式,有 由Fourier 正弦逆变换公式,有 由此,那时0t α=>,可得5.设()()f t F ω⎡⎤=⎣⎦F ,试证明:1)()f t 为实值函数的充要条件是()()F F ωω-=; 2)()f t 为虚值函数的充要条件是()()F F ωω-=-. 证明: 在一般情况下,记()()()r i f t f t f t =+j 其中()r f t 和()i f t 均为t 的实值函数,且辨别为()f t 的实部与虚部. 因此 其中()()()Re cos sin d ri F f t t f t t t ωωω+∞⎡⎤⎡⎤=+⎣⎦⎣⎦-∞⎰,()a1)若()f t 为t 的实值函数,即()()(),0r i f t t f f t ==.此时,()a 式和()b 式辨别为 所以反之,若已知()()F F ωω-=,则有此即标明()F ω的实部是关于ω的偶函数;()F ω的虚部是关于ω的奇函数.因此,肯定有亦即标明()()r f t f t =为t 的实值函数.从而结论1)获证.2)若()f t 为t 的虚值函数,即()()()j ,0i r f t f f t t ==.此时,()a 式和()b 式辨别为所以反之,若已知()()F F ωω-=-,则有此即标明()F ω的实部是关于ω的奇函数;()F ω的虚部是关于ω的偶函数.因此,肯定有()()()sin d j cos d i iF f t t t f t t t ωωω+∞+∞==+-∞-∞⎰⎰,亦即标明()()j i f t f t =为t 的虚值函数.从而结论2)获证.6.已知某函数的Fourier 变换sin ()F ωωω=,求该函数()f t .解:sin ()F ωωω=为连续的偶函数,由公式有但由于那时0a > 那时0a <那时0a =,sin d 0,0a ωωω+∞=⎰所以得 ()11211401t f t t t ⎧<⎪⎪⎪==⎨⎪⎪>⎪⎩,,,7.已知某函数的Fourier 变换为()()()00πδδF ωωωωω⎡⎤=++-⎣⎦,求该函数()f t .解:由函数()()()00δd t t g t t g t -=,易知8.求符号函数(又称正负号函数)()1,0sgn 1,0t t t -<⎧=⎨>⎩的Fourier 变换.解:容易看出()()()sgn t u t u t =--,而1[()]()πδ().j u t F ωωω=-+F 9.求函数()()()1δδδδ222a a t a t a t f t t ⎡⎤⎛⎫⎛⎫=++-+++- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的Fourier 变换.解 :cos cos 2a a ωω=+.10 .求函数()cos sin t f t t =的Fourier 变换. 解: 已知由()1cos sin sin 22f t t t t ==有()()()πj δ2δ22f t ωω⎡⎤⎡⎤=+--⎣⎦⎣⎦F11.求函数()3sin f t t =的Fourier 变换.解:已知()0j 0e 2πδtωωω⎡⎤=-⎣⎦F ,由即得12.求函数()πsin 53t t f ⎛⎫=+⎪⎝⎭的Fourier 变换.解: 由于故()()()()()πjδ5δ55δ52f t ωωωω⎤⎡⎤⎡⎤=+--+++-⎥⎣⎦⎣⎦⎣⎦F . 14.证明:若()()j e t F ϕω⎡⎤=⎣⎦F,其中()t ϕ为一实数,则其中()F ω-为()F ω的共轭函数.证明:因为()()j j ee d t t F t ϕωω+∞--∞=⋅⎰()()()()()()j j j j 1e ee d cos e d cos 22t t t t F F t t t t ϕϕωωωωϕϕ-+∞+∞---∞-∞+⎡⎤⎡⎤+-===⎣⎦⎣⎦⎰⎰F 同理可证另一等式.17.求作如图的锯齿形波的频谱图.(图形见教科书). 解:02π,T ω=()1,00,ht t T f t T ⎧≤≤⎪=⎨⎪⎩其他1-31.若1122()[()],()[()],F f t F f t ωω== FF ,αβ是常数,证明(线性性质):阐发:根据Fourier 变换的界说很容易证明. 证明:根据Fourier 变换与逆变换的公式辨别有 6.若()[()]F f t ω= F ,证明(翻转性质):()[()]F f t ω-=- F阐发:根据Fourier 变换的界说,再进行变量代换即可证明.证明:()[()]t f t f t t ω+∞--∞-=-⎰F j e d(令t u -=)()()u f u u ω+∞---∞=⎰j e d (换u 为t )()()t f t t ω+∞---∞=⎰j e d 9.设函数()1,10,1t f t t ⎧<⎪=⎨>⎪⎩,利用对称性质,证明:π ,1sin .0,1t t ωω⎧<⎪⎡⎤=⎨⎢⎥>⎣⎦⎪⎩F 证明:()[()]tf t f t t ω+∞--∞=⎰Fj ed 11t t ω--=⎰j e d由对称性质:()[()]f t F ω= F ,则()[()]2,F t f ω=-F π有12.利用能量积分()()2212f t t F ωω+∞+∞-∞-∞⎡⎤=⎣⎦⎰⎰d d π,求下列积分的值: 1)21cos xx x+∞-∞-⎰d ; 2)42sin xx x +∞-∞⎰d ; 3)()2211x x +∞-∞+⎰d ;4)()2221x x x +∞-∞+⎰d .解:1)2222sin 1cos 2xxx x x x +∞+∞-∞-∞-=⎰⎰d d(令2xt =)2sin t t t +∞-∞⎛⎫= ⎪⎝⎭⎰d 2)()22422sin 1cos sin x x xx x x x+∞+∞-∞-∞-=⎰⎰d d3)()22221111x t t x +∞+∞-∞-∞⎛⎫= ⎪+⎝⎭+⎰⎰d d 221121t ω+∞-∞⎡⎤=⎢⎥+⎣⎦⎰F d π,其中 从而4)()()2222221111x x x xx x +∞+∞-∞-∞+-=++⎰⎰d d ()2221111x x x x +∞+∞-∞-∞=-++⎰⎰d d 1-41.证明下列各式:2)()1f t ()()()()()23123f t f t f t f t f t ⎡⎤⎡⎤=⎣⎦⎣⎦;6)()()()()()()121212d dd;d d d f t f t f tf t f t f t t t t ⎡⎤==⎣⎦ 10)()()()d t f t u t f ττ-∞=⎰阐发:根据卷积的界说证明. 证明:2)()()()123f t f t f t ⎡⎤⎣⎦()()()123d f f t f t ττττ+∞-∞⎡⎤=--⎣⎦⎰6)()()()()1212d d d d d f t f t f f t t t τττ+∞-∞⎡⎤⎡⎤=⋅-⎢⎥⎣⎦⎣⎦⎰()()()()1212ddd d d f f t f t f t t t τττ+∞-∞⎡⎤=⋅-=⎣⎦⎰,()()()()1212d d d d d f t f f t f t t t τττ+∞-∞⎡⎤=-⋅=⎢⎥⎣⎦⎰.10)()()()()d f t u t f u t τττ+∞-∞=-⎰()1,0,t u t t τττ⎛⎫⎧<⎪-= ⎪⎨ ⎪>⎪⎩⎝⎭()d t f ττ-∞=⎰. 2.若()()()()12e ,sin t f t u t f t tu t α-==,求()()12f t f t .注意:不克不及随意调换()1f t 和()2f t 的位置. 解:由()()1e ,0e 0,0ttt f t u t t αα--⎧>⎪==⎨<⎪⎩,()()2sin ,0sin 0,0t t f t tu t t >⎧==⎨<⎩, 所以 ()()()()1221f t f t f t f t =()()21d f f t τττ+∞-∞=-⎰要确定()()210f f t ττ-≠的区间,采取解不等式组的办法.因为()()210,0;0,0f t f t ττττ>≠->-≠.即必须满足0t ττ>⎧⎨->⎩, 即0t ττ>⎧⎨<⎩, 因此(分部积分法)()2e sin cos e10ttατααττα-⎡⎤-=⎢⎥+⎣⎦ 4 .若()()()()1122,F f t F f t ωω⎡⎤⎡⎤==⎣⎦⎣⎦F F ,证明:证明:()()()()121211d 2π2πF F F u F u u ωωω+∞-∞=⋅-⎰5.求下列函数的Fourier 变换: 1)()()0sin f t t u t ω=⋅;2)()()0e sin t f t t u t βω-=⋅; 5)()()0j 0e t f t u t t ω=-;解: 1)已知()()1πδj u t ωω⎡⎤=+⎣⎦F,又()()()()()00j j 01sin e e 2jtt f t t u t u t u t ωωω-=⋅=-. 由位移性质有()()000220πδδ2j ωωωωωωω⎡⎤=--+-⎣⎦-. 2)由Fourier 变换的界说,有5)利用位移性质及()u t 的Fourier 变换,有再由象函数的位移性质,有7.已知某信号的相关函数()21e 4a R ττ-=,求它的能量谱密度()S ω,其中0a >.解 由界说知9.求函数()()()e ,0t f t u t αα-=>的能量谱密度. 解: 因为()()e ,0e0,0ttt f t u t t αα--⎧>⎪==⎨<⎪⎩,那时0τ>,()()0f t f t τ+≠的区间为()0,+∞,所以 那时0τ<,()()0f t f t τ+≠的区间为(),τ-+∞,所以 因此,()1e 2R αττα-=,现在可以求得()f t 的能量谱密度,即1-51.求微分方程()()(),()x t x t t t δ'+=-∞<<+∞的解. 阐发:求解微分、积分方程的步调:1)对微分、积分方程取Fourier 变换得象函数的代数方程;2)解代数方程得象函数;3)取Fourier 逆变换得象原函数(方程的解). 解:设()(),x t X ω⎡⎤=⎣⎦F 对方程两边取Fourier 变换,得即 其逆变换为()0,0.e ,0tt x t t -⎧<⎪=⎨≥⎪⎩4.求解下列积分方程: 1)()()()222210;y a b t bt aτττ+∞-∞=<<+-+⎰d 2)()222t t y τττ+∞----∞=⎰e d πe.解:1)利用卷积定理可以求解此类积分方程.显然,方程的左端是未知函数()y t 与221t a +的卷积,即()221y t t a +.设()(),y t Y ω⎡⎤=⎣⎦F 对方程两边取Fourier 变换,有 即 易知:220cos 2tt βωωβωβ+∞-=+⎰πd e ,有即所以()()22b b a a a b Y b aωωωω----==πee πe由上可知222201cos π2d e a t t t a t a a ωω+∞-⎡⎤=⎢⎦=⎥++⎣⎰F ,()()22--a b a b t b a =⎡⎤+⎣⎦π.2)设()(),y t Y ω⎡⎤=⎣⎦F 对方程两边取Fourier 变换,同理可得利用钟形脉冲函数的Fourier变换224e et A ωββ--⎡⎤=⎣⎦F 及由Fourier 变换的界说可求得:222e t βββω-⎡⎤=⎣⎦+F ,从而 即 从而()()222-1-122y t ωωω--⎡⎤⎡⎤=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦πe πj e F F , 其中,记()22ef t ω-⎡⎤=⎣⎦F,则()22t f t -=,上式中第二项可利用微分性质()()()()2222f t f t ωωω-''⎡⎤⎡⎤==⎣⎦⎣⎦F F j j e,则因此()22222t t y t --=-π22221t t -⎫=-⎪⎭e .5.求下列微分方程的解()x t :其中()(),f t h t 为已知函数,,,a b c 均为已知常数.解:设()()()()()(),,.f t F h t H x t X ωωω⎡⎤⎡⎤⎡⎤===⎣⎦⎣⎦⎣⎦F F F 对方程两边取Fourier 变换,可得 即 从而2-11.求下列函数的Laplace 变换,并给出其收敛域,再用查表的办法来验证结果.1)()sin 2tf t =.阐发:用Laplace 变换的界说解题. 解:j j 22001sin sin d d 222j e e e st s t s t t t t t ⎛⎫⎛⎫+∞+∞--+- ⎪ ⎪⎝⎭⎝⎭⎛⎫⎡⎤==+ ⎪⎢⎥⎣⎦⎝⎭-⎰⎰L()21112Re()0j j 2j 4122s s s s ⎡⎤⎢⎥=-=⎢⎥+⎢⎥-+⎣⎦>. 2)()2e t f t -=. 解:()()d d Re()e e eett sts tt t s s >-2222012+∞+∞----+⎡⎤===⎣⎦+⎰⎰L . 3)()2f t t =. 解:2220000112e d d(e )2e d e st stst st t t t t s s t tt -+∞+∞+∞--+∞-⎡⎤⎡⎤==-=--⎣⎦⎢⎥⎣⎦⎰⎰⎰L ∣()022300222d(e )e e d Re()0st st st t t t s s s s+∞+∞--+∞-⎡⎤=-=--=⎢⎥⎣⎦⎰⎰∣ >.4)()sin cos f t t t =. 解:[]0sin cos sin cos e d st t t t t t +∞-=⎰L22121244s s =⋅=++. 7)()2cos f t t =. 解 :22001cos 2cos cos e d e d 2ststt t t t t +∞+∞--+⎡⎤==⎣⎦⎰⎰L()2211112242j 2j 4s s s s s s ⎡⎤+=++=⎢⎥-++⎣⎦. 2.求下列函数的Laplace 变换:1)()3,021,2 4.0,4t f t t t ⎧≤<⎪=-≤<⎨⎪≥⎩解: ()()24002d 3d d e e e stststf t f t t t t +∞---⎡⎤==-⎣⎦⎰⎰⎰L2)()π3,2.πcos ,2t f t t t ⎧<⎪⎪=⎨⎪>⎪⎩解:()()π2π002e d 3e d cos e d stststf t f t t t t t +∞+∞---⎡⎤==+⎣⎦⎰⎰⎰L()()()()ππj j πππ222222313111e e Re()02j j 1e e e s s s ss s s s s s s -+----⎛⎫⎛⎫⎛⎫ ⎪=-+-=--> ⎪ ⎪ ⎪+-+⎝⎭⎪⎝⎭⎝⎭3) ()()2e 5δt f t t =+解:()()()()220005δe d d 5δe d e et s tst st f t t t t t t +∞+∞+∞---⎡⎤⎡⎤=+=+⎣⎦⎣⎦⎰⎰⎰L()0115e 5Re()222st t s s s -==+=+>--∣. 4)()()()cos δsin f t t t t u t =⋅-⋅ 解:()()()∣∣∣j j j 000011cos e e d 12j 2j j j e e ees t j s tttstst t t t s s--++∞+∞+∞---=⎡⎤⎢⎥=--=-+-+⎢⎥⎣⎦⎰()222111111Re()2j j j 11s s s s s s⎛⎫=---=-= ⎪+-++⎝⎭>0. 2-21.求下列函数的Laplace 变换式: 1)()232f t t t =++. 解:由[]2132!1232132m m m t s s s s st t +⎡⎤⎡⎤==++=++⎣⎦⎣⎦及有L L L . 2)()1e t f t t =-. 解:[]()()1111,e e t tt t t s ss s --⎡⎤⎡⎤===-⎣⎦⎣⎦222+1-1L L,L 1-.3)()()21e t f t t =-. 解:5)()cos f t t at =. 解: 由微分性质有: 6) ()5sin23cos2f t t t =- 解:已知[][]2222sin ,cos st t s s ωωωωω==++L L ,则 8)()4e cos4t f t t -=.解: 由[]2cos 416t s +s=L 及位移性质有 42cos 4416e ts t s -⎡⎤=⎣⎦++4(+)L . 3.若()()f t F s ⎡⎤=⎣⎦L ,证明(象函数的微分性质):特别地,()()tf t F s '⎡⎤=-⎣⎦L ,或()()11f t F s t-'⎡⎤=-⎣⎦L ,并利用此结论计算下列各式:1)()3e sin2t f t t t -=,求()F s . 解:()()()322sin 224ett s s ωωω-===++22+3+3L,2)()30e sin 2d tt f t t t t -=⎰,求()F s .解:()0332112sin 2d sin 234e e t t tt t t s ss --⎡⎤⎡⎤==⋅⎢⎥⎣⎦⎣⎦++⎰L L ,3)()1ln1s F s s +=-,求()f t . 解:()1ln,1s F s s +=-()(),F s f t ⎡⎤=⎣⎦令-1L故()()-12sinh t F s f t t⎡⎤==⎣⎦L. 4.若()()f t F s ⎡⎤=⎣⎦L ,证明(象函数的积分性质):()()d s f t F s s t ∞⎡⎤=⎢⎥⎣⎦⎰L ,或()()1d s f t t F s s ∞-⎡⎤=⎢⎥⎣⎦⎰L 并利用此结论计算下列各式:1)()sin ktf t t=,求()F s . 解: ()2222sin kkkt s s kωωω===++L ,2)()3e sin 2t t f t t-=,求()F s .解:()()322e sin 234t t s -=++L ,2-31.设()()12,f t f t 均满足Laplace 变换存在定理的条件(若它们的增长指数均为c),且()()()()1212,f t f t F s F s ⎡⎤⎡⎤==⎣⎦⎣⎦L L ,则乘积()()12f t f t ⋅的Laplace 变换一定存在,且 其中(),Re .c s c ββ>>+证明: 已知()()12,f t f t 均满足Laplace 变换存在定理的条件且其增长指数均为c ,由Laplace 变换存在定理知()()12f t f t ⋅也满足Laplace 变换存在定理的条件且标明()()12f t f t ⋅的增长指数为2c .因此()()12f t f t ⋅的Laplace 变换在半平面()Re 2s c >上一定存在,且右端积分在()()Re s c c ββ≥+>上绝对且一致收敛,并且在()Re 2s c >的半平面内,()F s 为解析函数.根据()()11F f t s ⎡⎤=⎣⎦L ,则()1f t 的Laplace 反演积分公式为从而(交换积分次第)()()()1j 0j 2e 12πj d d s q t F q f t t q ββ++∞-∞∞--⎡⎤=⎢⎥⎣⎦⎰⎰ 2.求下列函数的Laplace 逆变换(象原函数);并用另一种办法加以验证.1)()221F s s a =+. 2)()()()sF s s a s b =--. 3)()()()2s cF s s a s b +=++. 10)()()()2214sF s ss =++.解: 1)12211sin at s a a-⎡⎤=⎢⎥+⎣⎦L . 2)()()1sa b s a s b a b s a s b ⎛⎫=- ⎪-----⎝⎭, 3)()()()()()222111s cc a b c F s s a s b b a s a s b b a s b +--⎡⎤==-+⋅⎢⎥++-⎣⎦++-+, 故10)由()()()2222131414ss s s s s F s s ⎛⎫=⎪++++⎝⎭=-,有 ()()()11cos cos 23f t F s t t -⎡⎤==-⎣⎦L.3.求下列函数的Laplace 逆变换: 1)()()2214F s s=+.6)()221ln s F s s -=.13)()221e sF s s-+=.解 : 1)用留数计算法,由于122j,2j s s ==-均为()F s 的二级极点, 所以6)令()()()22212ln ,ln 1s F s F s s s s -'==-,()()()()112e e 211t t F s tf t s s s-'=+-=+-=-+-L L , ()()21212ln 1cosh s f t t s t -⎛⎫-==- ⎪⎝⎭L. 13)2211122221e 1e s s ss s s -----⎡⎤⎡⎤⎡⎤+=+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦LLL ()()()21,222,02t t t t u t t t ⎧->⎪=+--=⎨≤<⎪⎩.2-41.求下列卷积:3)m t n t (,m n 为正整数). 解:mt()()()0d 1C d nttnknm mk n k k n k t t t ττττττ-==⋅-=-∑⎰⎰()1!!1!m n m n t m n ++=++.注:本小题可先用卷积定理求出m t n t 的Laplace 变换,再由Laplace 逆变换求出卷积6)sin kt ()sin 0kt k ≠. 解:sin kt()()001sin sin sin d cos cos 2d 2ttkt k k t kt k kt τττττ⎡⎤=-=---⎣⎦⎰⎰ ()0sin 211sin cos cos 2422tt k ktt kt t kt kkτ-=-+=-+.7) t sinh t解 :t sinh sinh t t =t ()0sinh d tt τττ=⋅-⎰()()()000111d(e )d(e )2e e sinh 2220t t t t t t t t ττττττ---⎡⎤=-+-=-++-=⎢⎥⎣⎦⎰⎰ 9)()u t a -()()0f t a ≥ .解:()u t a -()()()()00,d d ,tta t a f t u a f t f t t a τττττ⎧<⎪=-⋅-=⎨-≥⎪⎩⎰⎰. 10)()δt a -()()0f t a ≥. 解: 当t a <,()δt a -()0f t =. 当t a ≥,()()()()δd aa f t f t f t a τττττ+∞-∞==-⋅-=-=-⎰.2.设()()f t F s ⎡⎤=⎣⎦L ,利用卷积定理,证明:()()0d t F s f t t s⎡⎤=⎢⎥⎣⎦⎰L 证明:()()()()()1f t u t f t u t F s s⎡⎤⎡⎤⎡⎤=⋅=⋅⎣⎦⎣⎦⎣⎦LL L , ()()()()()()000d d d t t tf t u t u f t f t f t t τττττ⎡⎤⎡⎤⎡⎤⎡⎤=⋅-=-=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎰⎰⎰L L L L3.利用卷积定理,证明:()2221sin 2s a at a s t-⎡⎤⎢⎥=⎢⎥+⎣⎦L .证明 :()()22222221ss F s s a s a sa==⋅+++,由有251.求下列常系数微分方程的解: 1)()2e ,00t y y y '-==;8)()()()331,0000y y y y y y y '''''''''+++====; 12)()()()()()420,0000,01y y y y y y y ''''''''++=====; 16)()π10sin 2,00,12y y t y y ⎛⎫''+===⎪⎝⎭。
《工程数学-复变函数与积分变换》课后习题详解大学数学学院 (主编:王忠仁 静)高等教育 习题一(P12)1.1 对任何z ,22z z =是否成立?如果是,就给出证明。
如果不是,对哪些z 值才成立?解:设z x iy =+,则2222z x y xyi =-+,222z x y =+;若22z z =成立,则有22222x y xyi x y -+=+,即222220x y x yxy ⎧-=+⎨=⎩,解得0y =,即z x =。
所以,对任何z ,22z z =不成立,只对z 为实数时才成立。
1.2 求下列各式的值:(1)5)i ; (2)6(1)i +; (3; (4)13(1)i -。
解:(162ii eπ-=,所以555556661)223232())2i i i i e e e i i πππ--⨯-⎛⎫====-=- ⎪⎝⎭(2)因为41ii e π+=,所以63663442(1)288i i i e e e i πππ⨯⎫+====-⎪⎭(3)因为1cos sin i ππ-=+,所以()1622cos sin cossin66k k k w i i ππππππ++==+=+,其中0,1,2,3,4,5k =;即01cossin6622w i i ππ=+=+,1cos sin 22w i i ππ=+=,2551cossin 662w i i ππ=+=+,3771cos sin 662w i i ππ=+=-,433cossin 22w i i ππ=+=-,511111cos sin 662w i i ππ=+=-。
(4)因为1cos()sin()44i i ππ⎤-=-+-⎥⎦,所以11362244(1)2cos sin 33k k k w i i ππππ⎡⎤-+-+⎢⎥=-=+⎢⎥⎢⎥⎣⎦,其中0,1,2k =;即1602cos()sin()1212w i ππ⎡⎤=-+-⎢⎥⎣⎦,161772cos sin1212w i ππ⎡⎤=+⎢⎥⎣⎦,162552cos sin 44w i ππ⎡⎤=+⎢⎥⎣⎦。
可编辑修改精选全文完整版工程数学 积分变换(第四版 张元林 编)课后习题答案编辑者:余小龙第一章:Fourier 变换习题一解答1、证:利用Fourier 积分变换的复数形式,有⎰⎰+∞∞--+∞∞-⎥⎦⎤⎢⎣⎡=ωττπωωτd e d e f t f t j j )(21)( ⎰⎰∞+∞-∞+∞-⎥⎦⎤⎢⎣⎡-=ωτωτωττπωd e d j f t j )sin )(cos (121[]⎰+∞∞-+-=ωωωωωd t j t jb a )sin (cos )()(21 由于)()(ωω-=a a , )()(ωω--=b b , 所以⎰⎰+∞∞-+∞∞-+=ωωωωωωtd b td a t f sin )(21cos )(21)(⎰⎰+∞+∞+=ωωωωωωtd b td a sin )(cos )(0。
注:本题也可以由Fourier 积分公式的三角形式得到证明。
2、解:(1)此题亦可写成⎩⎨⎧-=.0,1)(2t t f .1;1>≤t t 它是一个连续的偶函数,利用Euler 公式和分部积分法,由Fourier 积分公式的复数形式,有 ⎰⎰+∞∞-+∞∞--⎥⎦⎤⎢⎣⎡=ωττπωωτd e d e f t f t j j )(21)(⎰⎰+∞∞-⎥⎦⎤⎢⎣⎡-=ωτωττπωd e d t j 102cos )1(1ωωωττωωτωωττωωτπωd e tj 1232sin sin 2cos 2sin 1⎰∞+∞-⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+--==ωωωωωπωd e t j ⎰+∞∞--3)cos (sin 21=⎰+∞∞-+-ωωωωωωωπd t j t )sin (cos cos sin 23ωωωωωωπtd cos cos sin 403⎰+∞-= (2)函数)(t f 为一连续函数,用类似于(1)的方法,有⎰⎰+∞∞-+∞∞--⎥⎦⎤⎢⎣⎡=ωττπωωτd e d e f t f t j j )(21)(⎰⎰+∞∞-+∞--⎥⎦⎤⎢⎣⎡=ωττπωωττd e d e e t j j 02sin 21 ⎰⎰+∞∞-+∞+-⎥⎦⎤⎢⎣⎡=ωττπωτωd e d e t j j 0)1(2sin 21 {}()()⎰∞+∞-+∞+-⎥⎥⎦⎤⎢⎢⎣⎡++--+-=ωωττωπωτωd e j j e tj j 02)1(412cos 22sin )1(21 ⎰+∞∞-+-=ωωωπωd e j tj 252212[][]⎰∞+∞-+--+---=ωωωωωωωωωπd t j t j j j )sin (cos 2)5(2)5(2)5(1222⎰∞+∞-+---++-=ωωωωωωωωωωωπd tj t j t t 222224)5(cos 2sin )5(sin 2cos )5(1⎰∞+∞-+-+-=ωωωωωωωπd tt 432625sin 2cos )5(2(3)可以看出)(t f 为奇函数,且-1,0,1为其间断点。
积分变换复习题解答一、求下列函数的付氏变换1、设(),0,00,⎩⎨⎧<≥=-t t e t f t β求()[]()[]()[]t f F t f F t f F -+'',1,解:()()()2117152F f t j F f t j ωωβω---''==⎡⎤⎡⎤⎣⎦⎣⎦+()()11415(1)11j j F f t eF f t ej ωωβω---⋅-+==⎡⎤⎡⎤⎣⎦⎣⎦+()()1212151F f t F j ωβω----=-=⎡⎤⎣⎦-2、()()()()1151141722111122{[]}{}itj j F e u t F u t eF u t e j ωωωωωωωωπδωω-----⋅-⋅=+=+=+⎡⎤⎡⎤-=-==+⎡⎤⎢⎥⎣⎦⎣⎦⎣⎦()2(1)11(1)j e j ωπδωω-+⎡⎤=++⎢⎥+⎣⎦3、[]()()112000sin F t j ωωδωωδωω-=+--⎡⎤⎣⎦4、()()()55114173351353j j F u t F u t e F u t e j ωωπδωω----⎡⎤⎡⎤⎛⎫-=-==+⎡⎤⎡⎤ ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭⎣⎦⎣⎦5、()()()()()1181721122d d d F tu t j F u t j F u t j j d d d j πδωπδωωωωωω--⎡⎤'===+=-+⎡⎤⎡⎤⎡⎤⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦6、()()()()()114118111j j j j F t eF t e j F t e j j e ωωωωδδωδωω---⋅---''-===⋅=⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦7、()()()()1111111[11]cos F t t F t t t δδπδδππ-++-=++-=⎡⎤⎡⎤⎣⎦⎣⎦8、()110323itF e πδω-⎡⎤=-⎣⎦二、计算:1、()127sin sin 0332t t dt ππδ-+∞-∞⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭⎰2、128sin sin 42242t t dt ππππδ-+∞-∞⎛⎫⎛⎫⎛⎫-+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰三、求卷积:1、设()(),0,00,,0,00,221⎩⎨⎧<≥=⎩⎨⎧<≥=--t t e t f t t e t f t t 求:()()t f t f 21*解:0t <时:12()()0f t f t *=0t ≥时:()()()22212120()()tttt tt t f t f t f f t d e ed ee d e e ττττττττ------*=-===-⎰⎰⎰212,0()()0,0t te e tf t f t t --⎧-≥∴*=⎨<⎩2、设()()212,0,0,0,00,0t t t t f t f t t t ≥⎧≥⎧==⎨⎨<<⎩⎩,求:()()t f t f 21* 解:0t <时:12()()0f t f t *=0t ≥时:()()()24121201()()12ttf t f t f f t d t d t ττττττ*=-=-=⎰⎰ 412,0()()120,0t t f t f t t ⎧≥⎪∴*=⎨⎪<⎩四、求下列函数的拉氏变换: 1、219126333222255[sin5][sin5]5(3)5ts s s s L e t L t s s ---=-=-===+-+ 2、()(1)1221[cos2][cos2]12t ts L et e L e t e s ---+=⋅=⋅++同上题3、()()()(){}22221521812422222222231442[2]1[2][]ss s d d d L t u t L u t e L u t e e ds ds ds s s s s -------⎧⎫⎛⎫-=--==⋅=++⎨⎬ ⎪⎩⎭⎝⎭4、()222511[521]2ts L e t t e s s sδ-+-++=+++- 5、[]272822211sin sin cos cos sin sin cos 444221121s s L t L t t L t t s s s πππ--⎡⎤-⎛⎫⎡⎤⎡⎤-=-=-=-= ⎪⎢⎥⎢⎥⎢⎥+++⎝⎭⎣⎦⎣⎦⎣⎦6、(){}21312191271122[cos2]1[cos2]{[cos2]}2tts s s s d d d sL te t L e t L t ds dsds s -----=-=-⎧⎫=-=-=-⎨⎬+⎩⎭()22222123(1)225d s s s ds s s s ⎧⎫---=-=⎨⎬-+⎩⎭-+ 7、⎥⎦⎤⎢⎣⎡t t L 2sin []21712822sin 2arctan arctan 2222ss s s sL t ds ds s π---+∞+∞+∞====-+⎰⎰ 8、⎥⎦⎤⎢⎣⎡⎰-tt tdt e L 023sin []()21621912622221113sin3sin323t s s L e t L t s ss s -----=+⎡⎤==⋅=⋅⎣⎦++9、20t t e e dt t --+∞-⎰21722000111ln ln 2122t ts L e e ds ds s s s --+∞+∞--+∞+⎛⎫⎡⎤=-=-== ⎪⎣⎦+++⎝⎭⎰⎰10、设()5,122,24,0,4t f t t t ≤<⎧⎪=≤<⎨⎪≥⎩试用单位阶跃函数及延迟了的单位阶跃函数表示()t f ,并求[])(t f L 。
工程数学积分变换答案【篇一:复变函数与积分变换是一门内容丰富】建立和发展与解决实际问题的需要联系密切,其理论与方法被广泛应用在自然科学的许多领域,是机械、电子工程、控制工程,理论物理与流体力学,弹性力学等专业理论研究和实际应用中不可缺少的数学工具。
课程包含2部分内容:向量分析与场论,复变函数论与积分变换。
本课程的目的,是使学生掌握向量分析与场论,复变函数论,积分变换的基本理论、基本概念与基本方法,使学生在运用向量分析与场论,复变函数论,积分变换的思想和方法解决实际问题的能力方面得到系统的培养和训练,为在后继专业课程和以后的实际工作打下良好的数学基础向量分析与场论部分第一章向量与向量值函数分析学时:4几何向量,几何向量的加法、数乘、数量积、向量积,向量的混合积与三重向量积,向量值函数的定义,向量值函数的加法、数乘、复合、数量积运算,向量值函数的极限、连续,向量值函数的导数,向量值函数的体积分、曲线积分、曲面积分,高斯公式,斯托克斯公式。
第二章数量场学时:2数量场的等值面,数量场的方向导数、梯度的概念,哈米尔顿算子的用法。
第三章数量场学时:6向量场的向量线,向量场的通量,向量场的散度,向量场的环量,向量场的环量面密度、向量场的旋度,向量场场函数的导数与向量场的散度、旋度及数量场的梯度之间的关系。
第四章三种特殊形式的向量场学时:4保守场,保守场的旋度,保守场的势函数,管形场,管形场的向量势,调和场,调和函数。
复变函数与积分变换部分第一章:复数与平面点集学时:2复数的直角坐标表示法,三角表示法,指数表示法。
复数的模和辐角,复数的四则运算。
平面区域,邻域,聚点,闭集,孤立点,边界点,边界,连通集,区域,单连通区域,多连通区域。
第二章:解析函数学时:6复变函数的概念,复变函数的几何表示。
复变函数的极限,连续性,复变函数可导和解析的概念,复变函数解析的条件,复变初等函数(指数函数,对数函数,幂函数,三角函数)的定义和性质。
111.2. 试证:若()f t 满足Fourier 积分定理中的条件,则有其中()()()()d d ππ11cos ,sin .a f b f ωτωττωτωττ+∞+∞-∞-∞==⎰⎰阐发:由Fourier 积分的单数形式和三角形式都可以证明此题,请读者试用三角形式证明.证明:利用Fourier 积分的单数形式,有由于()()()(),,a a b b ωωωω=-=--所以 2.求下列函数的Fourier 积分:1)()2221,10,1t t f t t ⎧-≤⎪=⎨>⎪⎩; 2) ()0,0;e sin 2,0tt f t t t -⎧<⎪=⎨≥⎪⎩ 3)()0,11,101,010,1t t f t t t ⎧-∞<<-⎪--<<⎪=⎨<<⎪⎪<<+∞⎩阐发:由Fourier 积分的单数形式和三角形式都可以解此题,请读者试用三角形式解.解:1)函数()2221,10,1t t f t t ⎧-≤⎪=⎨>⎪⎩为连续的偶函数,其Fourier 变换为122330sin 2cos 2sin sin 4(sin cos )2t t t t t t ωωωωωωωωωωωω⎡⎤⎛⎫-=--+=⎢⎥ ⎪⎝⎭⎣⎦(偶函数)f(t)的Fourier 积分为2)所给函数为连续函数,其Fourier 变换为()224252j j 1121(2)j 1(2)j 256ωωωωωω⎡⎤--⎛⎫⎣⎦=+=⎪-+-+--+⎝⎭(实部为偶函数,虚数为奇函数) f (t)的Fourier 变换为这里用到奇偶函数的积分性质.3)所给函数有间断点1,0,1且f(t)= f(t)是奇函数,其Fourier 变换为12j(cos 1)2j 1sin d 0t t ωωω-=-⋅=⎰(奇函数)f(t)的Fourier 积分为 其中t ≠1,0,1(在间断点0t 处,右边f(t)应以()()00002f t f t ++-取代).3.求下列函数的Fourier 变换,并推证下列积分结果: 1)()e (0),t f t ββ-=>证明:22cos πd e ;02tt βωωβωβ-+∞=+⎰2)()e cos tf t t -=,证明:242πcos d e cos ;042tt t ωωωω-+∞+=+⎰ 3)sin ,π()0,πt t f t t ⎧≤⎪=⎨>⎪⎩,证明:2πsin ,πsin πsin 2d 010,πt t t t ωωωω⎧≤+∞⎪=⎨-⎪>⎩⎰ 证明:1)函数()e t f t β-=为连续的偶函数,其Fourier 变换为再由Fourier 变换得 即2)函数()e cos t f t t -=为连续的偶函数,其Fourier 变换为 再由Fourier 变换公式得 即242πcos d e cos 042tt t ωωωω-+∞+=+⎰ 3)给出的函数为奇函数,其Fourier 变换为 故4.求函数()()e 0,0t f t t ββ-=>≥的Fourier 正弦积分表达式和Fourier 余弦积分表达式.解:根据Fourier 正弦积分公式,并用分部积分法,有 根据Fourier 余弦积分公式,用分部积分法,有121.求矩形脉冲函数,0()0,A t f t τ⎧≤≤⎪=⎨⎪⎩其他的Fourier 变换.解:2.设()F ω是函数()f t 的Fourier 变换,证明()F ω与()f t 有相同的奇偶性.证明:()F ω与()f t 是一个Fourier 变换对,即()()j e d t F f t t ωω-+∞=-∞⎰,()()j 1e d 2πtf t F ωωω+∞=-∞⎰ 如果()F ω为奇函数,即()()F F ωω-=-,则(令u ω-=)()j 1e d 2πutF u u -∞=+∞⎰ (换积分变量u 为ω)()()j 1e d 2πt F f t ωωω+∞=-=--∞⎰所以()f t 亦为奇函数.如果()f t 为奇函数,即()()f t f t -=-,则(令t u -=)()j e d u f u u ω--∞=+∞⎰(换积分变量u 为t )()()j e d t f t t F ωω-+∞=-=--∞⎰ 所以()F ω亦为奇函数.同理可证()f t 与()F ω同为偶函数.4.求函数()()e 0t f t t -=≥的Fourier 正弦变换,并推证 解:由Fourier 正弦变换公式,有 由Fourier 正弦逆变换公式,有 由此,那时0t α=>,可得5.设()()f t F ω⎡⎤=⎣⎦F ,试证明:1)()f t 为实值函数的充要条件是()()F F ωω-=; 2)()f t 为虚值函数的充要条件是()()F F ωω-=-. 证明: 在一般情况下,记()()()r i f t f t f t =+j 其中()r f t 和()i f t 均为t 的实值函数,且辨别为()f t 的实部与虚部. 因此其中()()()Re cos sin d r i F f t t f t t t ωωω+∞⎡⎤⎡⎤=+⎣⎦⎣⎦-∞⎰, ()a 1)若()f t 为t 的实值函数,即()()(),0r i f t t f f t ==.此时,()a 式和()b 式辨别为所以反之,若已知()()F F ωω-=,则有此即标明()F ω的实部是关于ω的偶函数;()F ω的虚部是关于ω的奇函数.因此,肯定有亦即标明()()r f t f t =为t 的实值函数.从而结论1)获证.2)若()f t 为t 的虚值函数,即()()()j ,0i r f t f f t t ==.此时,()a 式和()b 式辨别为所以反之,若已知()()F F ωω-=-,则有此即标明()F ω的实部是关于ω的奇函数;()F ω的虚部是关于ω的偶函数.因此,肯定有()()()sin d j cos d i iF f t t t f t t t ωωω+∞+∞==+-∞-∞⎰⎰,亦即标明()()j i f t f t =为t 的虚值函数.从而结论2)获证.6.已知某函数的Fourier 变换sin ()F ωωω=,求该函数()f t .解:sin ()F ωωω=为连续的偶函数,由公式有但由于那时0a > 那时0a <那时0a =,sin d 0,0a ωωω+∞=⎰所以得()11211401t f t t t ⎧<⎪⎪⎪==⎨⎪⎪>⎪⎩,,,7.已知某函数的Fourier 变换为()()()00πδδF ωωωωω⎡⎤=++-⎣⎦,求该函数()f t .解:由函数()()()00δd t t g t t g t -=,易知8.求符号函数(又称正负号函数)()1,0sgn 1,0t t t -<⎧=⎨>⎩的Fourier 变换.解:容易看出()()()sgn t u t u t =--,而1[()]()πδ().j u t F ωωω=-+F 9.求函数()()()1δδδδ222a a t a t a t f t t ⎡⎤⎛⎫⎛⎫=++-+++- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的Fourier 变换.解 :cos cos 2a a ωω=+.10 .求函数()cos sin t f t t =的Fourier 变换. 解: 已知由()1cos sin sin 22f t t t t ==有()()()πjδ2δ22f t ωω⎡⎤⎡⎤=+--⎣⎦⎣⎦F 11.求函数()3sin f t t =的Fourier 变换.解:已知()0j 0e 2πδtωωω⎡⎤=-⎣⎦F ,由即得12.求函数()πsin 53t t f ⎛⎫=+⎪⎝⎭的Fourier 变换.解: 由于故()()()()()πjδ5δ5δ5δ522f t ωωωω⎤⎡⎤⎡⎤=+--+++-⎥⎣⎦⎣⎦⎣⎦F .14.证明:若()()j e t F ϕω⎡⎤=⎣⎦F,其中()t ϕ为一实数,则其中()F ω-为()F ω的共轭函数.证明:因为()()j j ee d t t F t ϕωω+∞--∞=⋅⎰()()()()()()j j j j 1e ee d cos e d cos 22t t t t F F t t t t ϕϕωωωωϕϕ-+∞+∞---∞-∞+⎡⎤⎡⎤+-===⎣⎦⎣⎦⎰⎰F 同理可证另一等式.17.求作如图的锯齿形波的频谱图.(图形见教科书).解 :02π,T ω=()1,00,ht t Tf t T ⎧≤≤⎪=⎨⎪⎩其他1-31.若1122()[()],()[()],F f t F f t ωω== F F ,αβ是常数,证明(线性性质):阐发:根据Fourier 变换的界说很容易证明. 证明:根据Fourier 变换与逆变换的公式辨别有 6.若()[()]F f t ω= F,证明(翻转性质):()[()]F f t ω-=- F 阐发:根据Fourier 变换的界说,再进行变量代换即可证明.证明:()[()]t f t f t t ω+∞--∞-=-⎰Fj e d (令t u -=)()()u f u u ω+∞---∞=⎰j ed(换u 为t )()()t f t t ω+∞---∞=⎰j e d 9.设函数()1,10,1t f t t ⎧<⎪=⎨>⎪⎩,利用对称性质,证明:π ,1sin .0,1t t ωω⎧<⎪⎡⎤=⎨⎢⎥>⎣⎦⎪⎩F 证明:()[()]t f t f t t ω+∞--∞=⎰Fj e d 11t t ω--=⎰j e d由对称性质:()[()]f t F ω= F ,则()[()]2,F t f ω=-F π有12.利用能量积分()()2212f t t F ωω+∞+∞-∞-∞⎡⎤=⎣⎦⎰⎰d d π,求下列积分的值:1)21cos xx x+∞-∞-⎰d ; 2)42sin x x x +∞-∞⎰d ; 3)()2211x x +∞-∞+⎰d ;4)()2221x x x +∞-∞+⎰d .解:1)2222sin 1cos 2xxx x x x +∞+∞-∞-∞-=⎰⎰d d(令2xt =)2sin t t t +∞-∞⎛⎫= ⎪⎝⎭⎰d 2)()22422sin 1cos sin x x xx x x x+∞+∞-∞-∞-=⎰⎰d d 3)()22221111x t t x +∞+∞-∞-∞⎛⎫= ⎪+⎝⎭+⎰⎰d d 221121t ω+∞-∞⎡⎤=⎢⎥+⎣⎦⎰F d π,其中 从而4)()()2222221111x x x x x x +∞+∞-∞-∞+-=++⎰⎰d d ()2221111x x x x +∞+∞-∞-∞=-++⎰⎰d d 1-41.证明下列各式:2)()1f t ()()()()()23123f t f t f t f t f t ⎡⎤⎡⎤=⎣⎦⎣⎦;6)()()()()()()121212d dd;d d d f t f t f tf t f t f t t t t ⎡⎤==⎣⎦ 10)()()()d t f t u t f ττ-∞=⎰阐发:根据卷积的界说证明. 证明: 2)()()()123f t f t f t ⎡⎤⎣⎦()()()123d f f t f t ττττ+∞-∞⎡⎤=--⎣⎦⎰6)()()()()1212d d d d d f t f t f f t tt τττ+∞-∞⎡⎤⎡⎤=⋅-⎢⎥⎣⎦⎣⎦⎰()()()()1212ddd d d f f t f t f t t t τττ+∞-∞⎡⎤=⋅-=⎣⎦⎰,()()()()1212d d d d d f t f f t f t t t τττ+∞-∞⎡⎤=-⋅=⎢⎥⎣⎦⎰.10)()()()()d f t u t f u t τττ+∞-∞=-⎰()1,0,t u t t τττ⎛⎫⎧<⎪-= ⎪⎨ ⎪>⎪⎩⎝⎭()d t f ττ-∞=⎰. 2.若()()()()12e ,sin t f t u t f t tu t α-==,求()()12f t f t .注意:不克不及随意调换()1f t 和()2f t 的位置. 解:由()()1e ,0e0,0t tt f t u t t αα--⎧>⎪==⎨<⎪⎩,()()2sin ,0sin 0,0t t f t tu t t >⎧==⎨<⎩,所以 ()()()()1221f t f t f t f t =()()21d f f t τττ+∞-∞=-⎰要确定()()210f f t ττ-≠的区间,采取解不等式组的办法.因为()()210,0;0,0f t f t ττττ>≠->-≠.即必须满足00t ττ>⎧⎨->⎩, 即tττ>⎧⎨<⎩, 因此 (分部积分法)()2e sin cos e 10tt ατααττα-⎡⎤-=⎢⎥+⎣⎦ 4 .若()()()()1122,F f t F f t ωω⎡⎤⎡⎤==⎣⎦⎣⎦F F ,证明: 证明:()()()()121211d 2π2πF F F u F u u ωωω+∞-∞=⋅-⎰ 5.求下列函数的Fourier 变换: 1)()()0sin f t t u t ω=⋅; 2)()()0e sin t f t t u t βω-=⋅; 5)()()0j 0e t f t u t t ω=-;解: 1)已知()()1πδj u t ωω⎡⎤=+⎣⎦F,又()()()()()00j j 01sin e e 2jtt f t t u t u t u t ωωω-=⋅=-. 由位移性质有()()000220πδδ2j ωωωωωωω⎡⎤=--+-⎣⎦-. 2)由Fourier 变换的界说,有5)利用位移性质及()u t 的Fourier 变换,有再由象函数的位移性质,有7.已知某信号的相关函数()21e 4a R ττ-=,求它的能量谱密度()S ω,其中0a >.解 由界说知9.求函数()()()e ,0t f t u t αα-=>的能量谱密度. 解: 因为()()e ,0e 0,0t tt f t u t t αα--⎧>⎪==⎨<⎪⎩, 那时0τ>,()()0f t f t τ+≠的区间为()0,+∞,所以 那时0τ<,()()0f t f t τ+≠的区间为(),τ-+∞,所以 因此,()1e 2R αττα-=,现在可以求得()f t 的能量谱密度,即1-51.求微分方程()()(),()x t x t t t δ'+=-∞<<+∞的解. 阐发:求解微分、积分方程的步调:1)对微分、积分方程取Fourier 变换得象函数的代数方程;2)解代数方程得象函数;3)取Fourier 逆变换得象原函数(方程的解). 解:设()(),x t X ω⎡⎤=⎣⎦F 对方程两边取Fourier 变换,得 即其逆变换为()0,0.e ,0tt x t t -⎧<⎪=⎨≥⎪⎩ 4.求解下列积分方程:1)()()()222210;y a b t b t aτττ+∞-∞=<<+-+⎰d 2)()222t t y τττ+∞----∞=⎰e d πe.解:1)利用卷积定理可以求解此类积分方程.显然,方程的左端是未知函数()y t 与221t a +的卷积,即()221y t t a +.设()(),y t Y ω⎡⎤=⎣⎦F 对方程两边取Fourier 变换,有即 易知:220cos 2tt βωωβωβ+∞-=+⎰πd e ,有即所以()()22b b a a a b Y b aωωωω----==πee πe由上可知222201cos π2d e a t t t a t a a ωω+∞-⎡⎤=⎢⎦=⎥++⎣⎰F ,()()22--a b a b t b a =⎡⎤+⎣⎦π.2)设()(),y t Y ω⎡⎤=⎣⎦F 对方程两边取Fourier 变换,同理可得利用钟形脉冲函数的Fourier 变换224e eπt A A ωβββ--⎡⎤=⎣⎦F 及由Fourier 变换的界说可求得:222e t βββω-⎡⎤=⎣⎦+F ,从而即 从而()()222-1-122y t ωωω--⎡⎤⎡⎤=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦πe πj e F F, 其中,记()22ef t ω-⎡⎤=⎣⎦F ,则()22t f t -=,上式中第二项可利用微分性质()()()()2222f t f t ωωω-''⎡⎤⎡⎤==⎣⎦⎣⎦F F j j e ,则因此()22222t t y t --=-π22221t t -⎫=-⎪⎭e .5.求下列微分方程的解()x t :其中()(),f t h t 为已知函数,,,a b c 均为已知常数.解:设()()()()()(),,.f t F h t H x t X ωωω⎡⎤⎡⎤⎡⎤===⎣⎦⎣⎦⎣⎦F F F 对方程两边取Fourier 变换,可得 即 从而2-11.求下列函数的Laplace 变换,并给出其收敛域,再用查表的办法来验证结果.1)()sin 2tf t =.阐发:用Laplace 变换的界说解题. 解:j j 22001sin sin d d 222j e e e st s t s t t t t t ⎛⎫⎛⎫+∞+∞--+- ⎪ ⎪⎝⎭⎝⎭⎛⎫⎡⎤==+ ⎪⎢⎥⎣⎦⎝⎭-⎰⎰L()21112Re()0j j 2j 4122s s s s ⎡⎤⎢⎥=-=⎢⎥+⎢⎥-+⎣⎦>.2)()2e t f t -=.解:()()d d Re()e e ee t t st s t t t s s >-22220012+∞+∞----+⎡⎤===⎣⎦+⎰⎰L . 3)()2f t t =. 解:2220000112e d d(e )2e d e st stst st t t t t s s t tt -+∞+∞+∞--+∞-⎡⎤⎡⎤==-=--⎣⎦⎢⎥⎣⎦⎰⎰⎰L ∣()022300222d(e )e e d Re()0st st st t t t s s s s+∞+∞--+∞-⎡⎤=-=--=⎢⎥⎣⎦⎰⎰∣ >.4)()sin cos f t t t =. 解:[]0sin cos sin cos e d st t t t t t +∞-=⎰L22121244s s =⋅=++. 7)()2cos f t t =. 解 :22001cos 2cos cos e d e d 2ststt t t t t +∞+∞--+⎡⎤==⎣⎦⎰⎰L()2211112242j 2j 4s s s s s s ⎡⎤+=++=⎢⎥-++⎣⎦. 2.求下列函数的Laplace 变换: 1)()3,021,2 4.0,4t f t t t ⎧≤<⎪=-≤<⎨⎪≥⎩解: ()()24002d 3d d e e e stststf t f t t t t +∞---⎡⎤==-⎣⎦⎰⎰⎰L2)()π3,2.πcos ,2t f t t t ⎧<⎪⎪=⎨⎪>⎪⎩解:()()π2π02e d 3e d cos e d stst stf t f t t t t t +∞+∞---⎡⎤==+⎣⎦⎰⎰⎰L()()()()ππj j πππ222222313111e e Re()02j j 1e e e s s s ss s s s s s s -+----⎛⎫⎛⎫⎛⎫ ⎪=-+-=--> ⎪ ⎪ ⎪+-+⎝⎭⎪⎝⎭⎝⎭3) ()()2e 5δt f t t =+解:()()()()220005δe d d 5δe d e et s tst st f t t t t t t +∞+∞+∞---⎡⎤⎡⎤=+=+⎣⎦⎣⎦⎰⎰⎰L()0115e 5Re()222st t s s s -==+=+>--∣. 4)()()()cos δsin f t t t t u t =⋅-⋅ 解:()()()∣∣∣j j j 000011cos e e d 12j 2j j j e e ees t j s tttststt t t s s --++∞+∞+∞---=⎡⎤⎢⎥=--=-+-+⎢⎥⎣⎦⎰()222111111Re()2j j j 11s s s s s s⎛⎫=---=-= ⎪+-++⎝⎭>0. 2-21.求下列函数的Laplace 变换式: 1)()232f t t t =++.解:由[]2132!1232132mm m t s ss s s t t +⎡⎤⎡⎤==++=++⎣⎦⎣⎦及有L L L . 2)()1e t f t t =-.解 :[]()()1111,e e t tt t t s ss s --⎡⎤⎡⎤===-⎣⎦⎣⎦222+1-1L L,L 1-.3)()()21e t f t t =-. 解:5)()cos f t t at =. 解: 由微分性质有: 6) ()5sin23cos2f t t t =- 解:已知[][]2222sin ,cos st t s s ωωωωω==++L L ,则 8)()4e cos4t f t t -=.解: 由[]2cos 416t s +s=L 及位移性质有 42cos 4416e ts t s -⎡⎤=⎣⎦++4(+)L . 3.若()()f t F s ⎡⎤=⎣⎦L ,证明(象函数的微分性质):特别地,()()tf t F s '⎡⎤=-⎣⎦L ,或()()11f t F s t-'⎡⎤=-⎣⎦L ,并利用此结论计算下列各式:1)()3e sin2t f t t t -=,求()F s . 解:()()()322sin 224ett s s ωωω-===++22+3+3L,2)()30e sin 2d tt f t t t t -=⎰,求()F s .解:()0332112sin 2d sin 234e e t tt t t t s ss --⎡⎤⎡⎤==⋅⎢⎥⎣⎦⎣⎦++⎰L L ,3)()1ln1s F s s +=-,求()f t . 解:()1ln,1s F s s +=-()(),F s f t ⎡⎤=⎣⎦令-1L故 ()()-12sinh t F s f t t⎡⎤==⎣⎦L . 4.若()()f t F s ⎡⎤=⎣⎦L ,证明(象函数的积分性质):()()d s f t F s s t ∞⎡⎤=⎢⎥⎣⎦⎰L ,或()()1d s f t t F s s ∞-⎡⎤=⎢⎥⎣⎦⎰L并利用此结论计算下列各式:1)()sin ktf t t=,求()F s . 解: ()2222sin kkkt s s kωωω===++L , 2)()3e sin 2t t f t t-=,求()F s .解:()()322e sin 234t t s -=++L ,2-31.设()()12,f t f t 均满足Laplace 变换存在定理的条件(若它们的增长指数均为c ),且()()()()1212,f t f t F s F s ⎡⎤⎡⎤==⎣⎦⎣⎦L L ,则乘积()()12f t f t ⋅的Laplace 变换一定存在,且 其中(),Re .c s c ββ>>+证明: 已知()()12,f t f t 均满足Laplace 变换存在定理的条件且其增长指数均为c ,由Laplace 变换存在定理知()()12f t f t ⋅也满足Laplace 变换存在定理的条件且标明()()12f t f t ⋅的增长指数为2c .因此()()12f t f t ⋅的Laplace 变换在半平面()Re 2s c >上一定存在,且右端积分在()()Re s c c ββ≥+>上绝对且一致收敛,并且在()Re 2s c >的半平面内,()F s 为解析函数.根据()()11F f t s ⎡⎤=⎣⎦L ,则()1f t 的Laplace 反演积分公式为 从而(交换积分次第)()()()1j 0j 2e 12πj d d s q t F q f t t q ββ++∞-∞∞--⎡⎤=⎢⎥⎣⎦⎰⎰ 2.求下列函数的Laplace 逆变换(象原函数);并用另一种办法加以验证.1)()221F s s a =+. 2)()()()sF s s a s b =--. 3)()()()2s cF s s a s b +=++. 10)()()()2214sF s s s =++.解: 1)12211sin at s a a-⎡⎤=⎢⎥+⎣⎦L . 2)()()1sa b s a s b a b s a s b ⎛⎫=- ⎪-----⎝⎭, 3)()()()()()222111s cc a b c F s s a s b b a s a s b b a s b +--⎡⎤==-+⋅⎢⎥++-⎣⎦++-+,故10)由()()()2222131414ss s s s s F s s ⎛⎫=⎪++++⎝⎭=-,有 ()()()11cos cos 23f t F s t t -⎡⎤==-⎣⎦L.3.求下列函数的Laplace 逆变换: 1)()()2214F s s=+.6)()221ln s F s s -=.13)()221e sF s s-+=.解 : 1)用留数计算法,由于122j,2j s s ==-均为()F s 的二级极点, 所以6)令()()()22212ln ,ln 1s F s F s s s s -'==-,()()()()112e e 211t t F s tf t s s s-'=+-=+-=-+-L L , ()()21212ln 1cosh s f t t s t -⎛⎫-==- ⎪⎝⎭L. 13)2211122221e 1e s s ss s s -----⎡⎤⎡⎤⎡⎤+=+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦LLL ()()()21,222,02t t t t u t t t ⎧->⎪=+--=⎨≤<⎪⎩.2-41.求下列卷积:3)m t n t (,m n 为正整数). 解:mt()()()0d 1C d nttnknm mk n k k n k t t t ττττττ-==⋅-=-∑⎰⎰()1!!1!m n m n t m n ++=++.注:本小题可先用卷积定理求出m t n t 的Laplace 变换,再由Laplace 逆变换求出卷积6)sin kt ()sin 0kt k ≠. 解:sin kt ()()001sin sin sin d cos cos 2d 2ttkt k k t kt k kt τττττ⎡⎤=-=---⎣⎦⎰⎰ ()0sin 211sin cos cos 2422tt k ktt kt t kt kkτ-=-+=-+. 7) t sinh t解 :t sinh sinh t t =t ()0sinh d tt τττ=⋅-⎰()()()000111d(e )d(e )2e e sinh 2220t t t t t t t t t ττττττ---⎡⎤=-+-=-++-=-⎢⎥⎣⎦⎰⎰ 9)()u t a -()()0f t a ≥ .解:()u t a -()()()()00,d d ,tt a t a f t u a f t f t t a τττττ⎧<⎪=-⋅-=⎨-≥⎪⎩⎰⎰.10)()δt a -()()0f t a ≥. 解: 当t a <,()δt a -()0f t =. 当t a ≥,()()()()δd aa f t f t f t a τττττ+∞-∞==-⋅-=-=-⎰.2.设()()f t F s ⎡⎤=⎣⎦L ,利用卷积定理,证明:()()0d t F s f t t s⎡⎤=⎢⎥⎣⎦⎰L 证明:()()()()()1f t u t f t u t F s s⎡⎤⎡⎤⎡⎤=⋅=⋅⎣⎦⎣⎦⎣⎦LL L , ()()()()()()000d d d t t tf t u t u f t f t f t t τττττ⎡⎤⎡⎤⎡⎤⎡⎤=⋅-=-=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎰⎰⎰L L L L 3.利用卷积定理,证明:()2221sin 2s a at a s t -⎡⎤⎢⎥=⎢⎥+⎣⎦L. 证明 :()()22222221ss F s s a s a sa==⋅+++,由有251.求下列常系数微分方程的解: 1)()2e ,00t y y y '-==;8)()()()331,0000y y y y y y y '''''''''+++====; 12)()()()()()420,0000,01y y y y y y y ''''''''++=====; 16)()π10sin 2,00,12y y t y y ⎛⎫''+===⎪⎝⎭。
1-11. 试证:若()f t 满足Fourier 积分定理中的条件,则有()()()d d 0cos sin f t a t b t ωωωωωω+∞+∞=+⎰⎰其中()()()()d d ππ11cos ,sin .a f b f ωτωττωτωττ+∞+∞-∞-∞==⎰⎰分析:由Fourier 积分的复数形式和三角形式都可以证明此题,请读者试用三角形式证明.证明:利用Fourier 积分的复数形式,有()()j j e e d π12t tf t f ωωτω+∞+∞--∞-∞⎡⎤=⎢⎥⎣⎦⎰⎰ ()()j j d e d π11cos sin 2t f ωτωτωττω+∞+∞-∞-∞⎡⎤=-⎢⎥⎣⎦⎰⎰()()()j j d 1cos sin 2a b t t ωωωωω+∞-∞⎡⎤=-+⎣⎦⎰ 由于()()()(),,a a b b ωωωω=-=--所以()()()d d 11cos sin 22f t a t b t ωωωωωω+∞+∞-∞-∞=+⎰⎰ ()()d d 0cos sin a t b t ωωωωωω+∞+∞=+⎰⎰2.求下列函数的Fourier 积分:1)()2221,10,1t t f t t ⎧-≤⎪=⎨>⎪⎩; 2) ()0,0;e sin 2,0tt f t t t -⎧<⎪=⎨≥⎪⎩ 3) ()0,11,101,010,1t t f t t t ⎧-∞<<-⎪--<<⎪=⎨<<⎪⎪<<+∞⎩分析:由Fourier 积分的复数形式和三角形式都可以解此题,请读者试用三角形式解.解:1)函数()2221,10,1t t f t t ⎧-≤⎪=⎨>⎪⎩为连续的偶函数,其Fourier 变换为 j 21()[()]()e d 2()cos d 2(1)cos d 00t F f t f t t f t t t t t t ωωωω-+∞+∞⎧====-⎨-∞⎩⎰⎰F122330sin 2cos 2sin sin 4(sin cos )2t t t t t t ωωωωωωωωωωωω⎡⎤⎛⎫-=--+=⎢⎥ ⎪⎝⎭⎣⎦(偶函数)f (t )的Fourier 积分为j 311()()e d ()cos d 02ππ4(sin cos )cos d 0πtf t F F t t ωωωωωωωωωωωω+∞+∞==-∞+∞-=⎰⎰⎰ 2)所给函数为连续函数,其Fourier 变换为()[]j j ω()()e d e sin 2e d 0tt t F f t f t t t t ωωτ---+∞===-∞⎰⎰F2j 2j j (12j j )(12j j )e e 1e e d [e e ]d 02j 2j 0t t t t t t t t ωωω----+--+++∞+∞-=⋅⋅=-⎰⎰ (12j j )(12j j )01e e 2j 12j j 12j j t t ωωωω+∞-+--++⎡⎤=+⎢⎥-+-++⎣⎦ ()224252j j 1121(2)j 1(2)j 256ωωωωωω⎡⎤--⎛⎫⎣⎦=+=⎪-+-+--+⎝⎭(实部为偶函数,虚数为奇函数)f (t )的Fourier 变换为()j 1()e d 2πt f t F ωωω+∞=-∞⎰ ()()224252j 1cos jsin d 2π256t t ωωωωωωω⎡⎤--+∞⎣⎦=⋅--∞-+⎰ ()()()2224242245cos 2sin 5sin 2cos 11d d π256π2565cos 2sin 2d π0256t t t t t t ωωωωωωωωωωωωωωωωωωωωω-+--+∞+∞=+-∞-+-∞-+-++∞=-+⎰⎰⎰这里用到奇偶函数的积分性质.3)所给函数有间断点-1,0,1且f (-t )= - f (t )是奇函数,其Fourier 变换为()[]j ()()e d 2j ()sin d 0tF f t f t t f t t t ωωω-+∞+∞===--∞⎰⎰F12j(cos 1)2j 1sin d 0t t ωωω-=-⋅=⎰(奇函数)f (t )的Fourier 积分为()()j j ()e d sin d π0π021cos sin d π0tf t F F t t ωωωωωωωωωω+∞+∞=+∞-=⎰⎰⎰1=2其中t ≠-1,0,1(在间断点0t 处,右边f (t )应以()()00002f t f t ++-代替).3.求下列函数的Fourier 变换,并推证下列积分结果: 1)()e(0),tf t ββ-=>证明:22cos πd e ;02tt βωωβωβ-+∞=+⎰ 2)()e cos tf t t -=,证明:242πcos d e cos ;042tt t ωωωω-+∞+=+⎰ 3)sin ,π()0,πt t f t t ⎧≤⎪=⎨>⎪⎩,证明:2πsin ,πsin πsin 2d 010,πt t t t ωωωω⎧≤+∞⎪=⎨-⎪>⎩⎰ 证明:1)函数()e t f t β-=为连续的偶函数,其Fourier 变换为()()j e e d 2e cos d 0t t tF f t t t t βωβωω---+∞+∞⎡⎤===⎣⎦-∞⎰⎰F()2222e cos sin 22t t t t t ββωωωββωβω-=+∞=-+==++ 再由Fourier 变换得()()j 22112e d cos d 2ππ0tf t F t t ωβωωωβω+∞+∞==-∞+⎰⎰ 即 22cos πd e 02tt βωωβωβ-+∞=+⎰2)函数()e cos t f t t -=为连续的偶函数,其Fourier 变换为()j j ()e d e cos e d t t t F f t t t t ωωω---+∞+∞==-∞-∞⎰⎰j j j e e e e d 2t t t tt ω---+∞+-∞⎰ (1j j )(1j j )(1j j )(1j j )001e d e d e d e d 200tt t t t t t t ωωωω-+----+--+++∞+∞⎧⎫=+++⎨⎬-∞-∞⎩⎭⎰⎰⎰⎰ (1j j )(1j j )(1j j )(1j j )001e e e e 21j j 1j j 1j j 01j j 0t t t t ωωωωωωωω+--++-+++-⎧⎫+∞+∞=+++⎨⎬+--∞---∞-+-+-⎩⎭2411111221j j 1j j 1j j 1j j 4ωωωωωω⎧⎫-+=+++=⎨⎬+----+-+-+⎩⎭ 再由Fourier 变换公式得()()2j 41112()e d cos d cos d 2ππ0π04tf t F F t t ωωωωωωωωωω+∞+∞+∞+===-∞+⎰⎰⎰ 即 242πcos d e cos 042tt t ωωωω-+∞+=+⎰ 3)给出的函数为奇函数,其Fourier 变换为()()()ππj j ππed sin ed sin cos jsin d ttF f t t t t t t t t ωωωωω+∞---∞--===-⎰⎰⎰()()ππ002j sin sin d j cos 1cos 1d t t t t t t ωωω⎡⎤=-=+--⎣⎦⎰⎰ ()()2sin 1πsin 1πsin sin 2jsin j j 1010111t t ωωωπωπωπωωωωω⎛⎫+---⎛⎫=-=-= ⎪⎪+-+--⎝⎭⎝⎭ ()()()-1j 2112jsin πe d cos jsin d 2π2π1tF F t t ωωωωωωωωω+∞+∞-∞-∞⎡⎤==+⎣⎦-⎰⎰F20sin ,π2sin πsin d π10,πt t t t ωωωω+∞⎧≤⎪=-=⎨->⎪⎩⎰ 故2πsin ,πsin πsin 2d 10,πt t t t ωωωω+∞⎧≤⎪=⎨-⎪>⎩⎰4.求函数()()e 0,0t f t t ββ-=>≥的Fourier 正弦积分表达式和Fourier 余弦积分表达式.解:根据Fourier 正弦积分公式,并用分部积分法,有()()002sin d sin d πf t t f ωωτττω+∞+∞⎡⎤=⎢⎥⎣⎦⎰⎰002sin d sin d πe t t βτωωτω+∞+-∞⎡⎤=⎢⎥⎣⎦⎰⎰ ()220sin cos 2sin d π0e t t βτβωωωωωβτω+-∞⎡⎤-+∞=⎢⎥+⎣⎦⎰ 2202sin d .πt ωωωβω+∞=+⎰ 根据Fourier 余弦积分公式,用分部积分法,有()()002cos d cos d πf t t f ωωτττω+∞+∞⎡⎤=⎢⎥⎣⎦⎰⎰ 002cos d cos d πe tt βτωωτω+∞+-∞⎡⎤=⎢⎥⎣⎦⎰⎰ ()220sin cos 2cos d π0e t t βτβωωωωωβτω+-∞⎡⎤-+∞=⎢⎥+⎣⎦⎰ 2202cos d .πt ωωωβω+∞=+⎰ 1-21.求矩形脉冲函数,0()0,A t f t τ⎧≤≤⎪=⎨⎪⎩其他的Fourier 变换.解:[]()j j j j 01e e()()()e d e d 0j j t t t t A F f t f t t A t A τωωωωτωωω-----+∞⎡⎤=====⎢⎥-∞-⎣⎦⎰⎰F 2.设()F ω是函数()f t 的Fourier 变换,证明()F ω与()f t 有相同的奇偶性.证明:()F ω与()f t 是一个Fourier 变换对,即 ()()j e d t F f t t ωω-+∞=-∞⎰,()()j 1e d 2πt f t F ωωω+∞=-∞⎰ 如果()F ω为奇函数,即()()F F ωω-=-,则()()()()()()j j 11e d e d 2π2πt tf t F F ωωωωωω--+∞+∞-==---∞-∞⎰⎰—(令u ω-=)()j 1e d 2πut F u u -∞=+∞⎰ (换积分变量u 为ω)()()j 1e d 2πtF f t ωωω+∞=-=--∞⎰ 所以()f t 亦为奇函数.如果()f t 为奇函数,即()()f t f t -=-,则()()()()()j j e d e d t tF f t t f t t ωωω----+∞+∞-==---∞-∞⎰⎰ (令t u -=)()j e d u f u u ω--∞=+∞⎰ (换积分变量u 为t )()()j e d t f t t F ωω-+∞=-=--∞⎰ 所以()F ω亦为奇函数.同理可证()f t 与()F ω同为偶函数.4.求函数()()e 0t f t t -=≥的Fourier 正弦变换,并推证()20012sin πd e αωαωωαω+∞-=>+⎰解:由Fourier 正弦变换公式,有()()s s F f t ω⎡⎤=⎣⎦F ()0sin f t t t ω+∞=⎰d 0sin tt t ω+∞-=⎰e d ()2sin cos 10t t t ωωωω---+∞=+e 21ωω=+ 由Fourier 正弦逆变换公式,有()120022sin ()()sin 1ss s tf t F F t ωωωωωωωω+∞+∞-===⎡⎤⎣⎦+⎰⎰F d d ππ由此,当0t α=>时,可得()()20sin ππd e 0122f αωαωωααω+∞-==>+⎰5.设()()f t F ω⎡⎤=⎣⎦F ,试证明:1)()f t 为实值函数的充要条件是()()F F ωω-=; 2)()f t 为虚值函数的充要条件是()()F F ωω-=-.证明: 在一般情况下,记()()()r i f t f t f t =+j 其中()r f t 和()i f t 均为t 的实值函数,且分别为()f t 的实部与虚部. 因此()()()()[]j e d j cos jsin d t r i F f t t f t f t t t t ωωωω-+∞+∞⎡⎤==+-⎣⎦-∞-∞⎰⎰ ()()()()cos sin d j sin cos d ri r i f t t f t t t f t t f t t t ωωωω+∞+∞⎡⎤⎡⎤=+--⎣⎦⎣⎦-∞-∞⎰⎰ ()()Re Im F j F ωω⎡⎤⎡⎤=+⎣⎦⎣⎦ 其中()()()Re cos sin d r i F f t t f t t t ωωω+∞⎡⎤⎡⎤=+⎣⎦⎣⎦-∞⎰, ()a ()()()Im sin cos d r i F f t t f t t t ωωω+∞⎡⎤⎡⎤=--⎣⎦⎣⎦-∞⎰ ()b1)若()f t 为t 的实值函数,即()()(),0r i f t t f f t ==.此时,()a 式和()b 式分别为()()Re cos d r F f t t t ωω+∞⎡⎤=⎣⎦-∞⎰ ()()Im sin d r F f t t t ωω+∞⎡⎤=-⎣⎦-∞⎰所以()()()Re jIm F F F ωωω⎡⎤⎡⎤-=-+-⎣⎦⎣⎦()()()Re jIm F F F ωωω⎡⎤⎡⎤=-=⎣⎦⎣⎦ 反之,若已知()()F F ωω-=,则有()()()()Re jIm Re jIm F F F F ωωωω⎡⎤⎡⎤⎡⎤⎡⎤-+-=-⎣⎦⎣⎦⎣⎦⎣⎦此即表明()F ω的实部是关于ω的偶函数;()F ω的虚部是关于ω的奇函数.因此,必定有()()()cos d j sin d r rF f t t t f t t t ωωω+∞+∞=--∞-∞⎰⎰亦即表明()()r f t f t =为t 的实值函数.从而结论1)获证.2)若()f t 为t 的虚值函数,即()()()j ,0i r f t f f t t ==.此时,()a 式和()b 式分别为()()Re sin d i F f t t t ωω+∞⎡⎤=⎣⎦-∞⎰ ()()Im cos d iF f t t t ωω+∞⎡⎤=⎣⎦-∞⎰所以()()()Re jIm F F F ωωω⎡⎤⎡⎤-=-+-⎣⎦⎣⎦()()Re jIm F F ωω⎡⎤⎡⎤=-+⎣⎦⎣⎦()(){}Re jIm F F ωω⎡⎤⎡⎤=--⎣⎦⎣⎦()F ω=-反之,若已知()()F F ωω-=-,则有()()()()Re jIm Re jIm F F F F ωωωω⎡⎤⎡⎤⎡⎤⎡⎤-+-=-+⎣⎦⎣⎦⎣⎦⎣⎦此即表明()F ω的实部是关于ω的奇函数;()F ω的虚部是关于ω的偶函数.因此,必定有()()()sin d j cos d i iF f t t t f t t t ωωω+∞+∞==+-∞-∞⎰⎰, 亦即表明()()j i f t f t =为t 的虚值函数.从而结论2)获证.6.已知某函数的Fourier 变换sin ()F ωωω=,求该函数()f t .解:sin ()F ωωω=为连续的偶函数,由公式有()()j π1sin e d cos d 2π0tf t F t ωωωωωωω+∞+∞==-∞⎰⎰()()sin 1sin 111d d 2π02π0t t ωωωωωω+∞++∞-=+⎰⎰但由于当0a >时sin sin sin πd d()d 0002a a t a t t ωωωωωω+∞+∞+∞===⎰⎰⎰ 当0a <时sin sin()πd d 002a a ωωωωωω+∞+∞-=-=-⎰⎰ 当0a =时,sin d 0,0a ωωω+∞=⎰所以得 ()11211401t f t t t ⎧<⎪⎪⎪==⎨⎪⎪>⎪⎩,,,7.已知某函数的Fourier 变换为()()()00πδδF ωωωωω⎡⎤=++-⎣⎦,求该函数()f t .解:由函数()()()00δd t t g t t g t -=,易知()()()()j j j 001e d 2π11πδe d πδe d 2π2πtt t f t F ωωωωωωωωωωω+∞=-∞+∞+∞=++--∞-∞⎰⎰⎰j j 00011e e cos 22t t t ωωωωωωω=-==+=8.求符号函数(又称正负号函数)()1,0sgn 1,0t t t -<⎧=⎨>⎩的Fourier 变换.解:容易看出()()()sgn t u t u t =--,而1[()]()πδ().j u t F ωωω=-+F 9.求函数()()()1δδδδ222a a t a t a t f t t ⎡⎤⎛⎫⎛⎫=++-+++- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的Fourier 变换.解 :—()()()()j 1δδδδe d 222t a a F f t t a t a t t ωωω+∞--∞⎡⎤⎛⎫⎛⎫⎡⎤==++-+++- ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎣⎦⎰F j j j j 1e e e e 222t t t t a a t a t a t t ωωωω----⎡⎤⎢⎥=+++⎢⎥=-==-=⎢⎥⎣⎦cos cos 2aa ωω=+.10 .求函数()cos sin t f t t =的Fourier 变换. 解: 已知()()000sin j πδδt ωωωωω⎡⎤=+--⎡⎤⎣⎦⎣⎦F 由()1cos sin sin 22f t t t t ==有()()()πjδ2δ22f t ωω⎡⎤⎡⎤=+--⎣⎦⎣⎦F 11.求函数()3sin f t t =的Fourier 变换.解:已知()0j 0e 2πδtωωω⎡⎤=-⎣⎦F ,由()()3j j 33j j -j 3j e e j sin e 3e 3e e 2j 8t t t t t tf t t --⎛⎫-===-+- ⎪⎝⎭即得()()()()()πjδ33δ13δ1δ34f t ωωωω⎡⎤⎡⎤=---++-+⎣⎦⎣⎦F12.求函数()πsin 53t t f ⎛⎫=+ ⎪⎝⎭的Fourier 变换.解: 由于()π1sin 5sin532f t t t t ⎛⎫=+=+ ⎪⎝⎭故()()()()()πjδ5δ5δ5δ522f t ωωωω⎤⎡⎤⎡⎤=+--+++-⎥⎣⎦⎣⎦⎣⎦F .14.证明:若()()j e t F ϕω⎡⎤=⎣⎦F ,其中()t ϕ为一实数,则 ()()()1cos 2t F F ϕωω⎡⎤⎡⎤=+-⎣⎦⎣⎦F()()()1sin 2j t F F ϕωω⎡⎤⎡⎤=--⎣⎦⎣⎦F其中()F ω-为()F ω的共轭函数.证明:因为 ()()j j ee d t t F t ϕωω+∞--∞=⋅⎰()()()j j j j ee d ee d t t tt F t t ϕϕωωω+∞+∞---∞-∞-==⋅⎰⎰()()()()()()j j j j 1e eed cose d cos 22t t tt F F t t t t ϕϕωωωωϕϕ-+∞+∞---∞-∞+⎡⎤⎡⎤+-===⎣⎦⎣⎦⎰⎰F 同理可证另一等式.17.求作如图的锯齿形波的频谱图.(图形见教科书).解 :02π,T ω=()1,00,ht t T f t T ⎧≤≤⎪=⎨⎪⎩其他()00111d d 2TTh C f t t ht t TTT ===⎰⎰()()000j j j 02011ed e d e d TTTn tn t n t n ht h C F n f t t t t t TTT Tωωωω---===⋅=⎰⎰⎰00j j 211j e e d j j 2πTn t n t Thht T n n n ωωωω--⎡⎤=⋅+=⎢⎥-⎣⎦⎰()()()()()000j j 2πδ2πδπδδ.22πn n n n h h hF n h n n n ωωωωωωω+∞+∞=-∞=-∞≠≠=+⋅-=+⋅-∑∑1-31.若1122()[()],()[()],F f t F f t ωω== F F ,αβ是常数,证明(线性性质):1212()()()()f t f t F F αβαωβω+=+⎡⎤⎣⎦F -11212()()()()F F f t f t αωβωαβ+=+⎡⎤⎣⎦F分析:根据Fourier 变换的定义很容易证明. 证明:根据Fourier 变换与逆变换的公式分别有1212()()()()tf t f t f t f t t ωαβαβ+∞--∞+=+⎡⎤⎡⎤⎣⎦⎣⎦⎰F j e d12()()tt f t t f t t ωωαβ+∞+∞---∞-∞=+⎰⎰j j ed e d12()()F F αωβω=+-112121()()()()2tF F F F ωαωβωαωβωω+∞-∞+=+⎡⎤⎡⎤⎣⎦⎣⎦⎰Fj e d π1211()()22t tF F ωωαωωβωω+∞+∞-∞-∞⎡⎤⎡⎤=+⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰j j e d e d ππ12()()f t f t αβ=+6.若()[()]F f t ω= F ,证明(翻转性质):()[()]F f t ω-=- F 分析:根据Fourier 变换的定义,再进行变量代换即可证明. 证明:()[()]t f t f t t ω+∞--∞-=-⎰F j e d (令t u -=)()()u f u u ω+∞---∞=⎰j e d(换u 为t )()()tf t t ω+∞---∞=⎰j ed()F ω=-9.设函数()1,10,1t f t t ⎧<⎪=⎨>⎪⎩,利用对称性质,证明:π ,1sin .0,1t t ωω⎧<⎪⎡⎤=⎨⎢⎥>⎣⎦⎪⎩F 证明:()[()]t f t f t t ω+∞--∞=⎰F j e d 11t t ω--=⎰j e d1cos t t ω=⎰d 1sin tt ωω=⎰d由对称性质:()[()]f t F ω= F ,则()[()]2,F t f ω=-F π有()sin [()]2t F t f t ω⎡⎤==-⎢⎥⎣⎦F F π (),1sin 0,1t f t ωωω⎧<⎪⎡⎤=-=⎨⎢⎥>⎣⎦⎪⎩F π π 12.利用能量积分()()2212f t t F ωω+∞+∞-∞-∞⎡⎤=⎣⎦⎰⎰d d π,求下列积分的值: 1)21cos xx x +∞-∞-⎰d ; 2)42sin x x x +∞-∞⎰d ;3)()2211x x +∞-∞+⎰d ;4)()2221x x x +∞-∞+⎰d .解:1)2222sin 1cos 2xxx x x x +∞+∞-∞-∞-=⎰⎰d d(令2xt =)2sin t t t +∞-∞⎛⎫= ⎪⎝⎭⎰d 21sin 2t t ω+∞-∞⎡⎤=⎢⎥⎣⎦⎰F d π 12112ω-=⎰πd π=π 2)()22422sin 1cos sin x x xx x x x+∞+∞-∞-∞-=⎰⎰d d 22sin sin cos x x x x x x x +∞+∞-∞-∞⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭⎰⎰d d 21sin 2t t t +∞-∞⎛⎫=- ⎪⎝⎭⎰πd22=πππ-=3)()22221111x t t x +∞+∞-∞-∞⎛⎫= ⎪+⎝⎭+⎰⎰d d 221121t ω+∞-∞⎡⎤=⎢⎥+⎣⎦⎰F d π,其中221111tt t t ω+∞--∞⎡⎤=⎢⎥++⎣⎦⎰F j e d 20cos 21t t t ω+∞=+⎰d 22ωω--==πe πe 从而()2221121x x ωω+∞+∞--∞-∞=+⎰⎰d πe d π2201ωω+∞-=⎰πe d π20122ω-+∞=⋅=-ππe 4)()()2222221111x x x x x x +∞+∞-∞-∞+-=++⎰⎰d d ()2221111x x x x +∞+∞-∞-∞=-++⎰⎰d d arctan 2x+∞-∞=-π2222=+-=ππππ1-41.证明下列各式: 2)()1f t ()()()()()23123f t f t f t f t f t ⎡⎤⎡⎤=⎣⎦⎣⎦;6)()()()()()()121212d dd;d d d f t f t f tf t f t f t tt t⎡⎤==⎣⎦ 10)()()()d t f t u t f ττ-∞=⎰分析:根据卷积的定义证明. 证明: 2) ()()()123f t f t f t ⎡⎤⎣⎦()()()123d f f t f t ττττ+∞-∞⎡⎤=--⎣⎦⎰()()()132d f f u f t u du τττ+∞+∞-∞-∞⎡⎤=--⎢⎥⎣⎦⎰⎰ ()()()132d d f f u f t u u τττ+∞+∞-∞-∞=--⎰⎰()()()123d d f f t u f u uτττ+∞+∞-∞-∞⎡⎤=--⎢⎥⎣⎦⎰⎰ ()()()123d f t u f t u f u u +∞-∞⎡⎤=--⎣⎦⎰()()()123f t f t f t ⎡⎤=⎣⎦6)()()()()1212d d d d d f t f t f f t tt τττ+∞-∞⎡⎤⎡⎤=⋅-⎢⎥⎣⎦⎣⎦⎰()()()()1212ddd d d f f t f t f t t t τττ+∞-∞⎡⎤=⋅-=⎣⎦⎰, ()()()()1212d d d d d f t f t f t f t t τττ+∞-∞⎡⎤⎡⎤=-⋅⎢⎥⎣⎦⎣⎦⎰ ()()()()1212d d d d d f t f f t f t t t τττ+∞-∞⎡⎤=-⋅=⎢⎥⎣⎦⎰.10) ()()()()d f t u t f u t τττ+∞-∞=-⎰()1,0,t u t t τττ⎛⎫⎧<⎪-= ⎪⎨ ⎪>⎪⎩⎝⎭()d t f ττ-∞=⎰. 2.若()()()()12e ,sin t f t u t f t tu t α-==,求()()12f t f t .注意:不能随意调换()1f t 和()2f t 的位置.解:由()()1e ,0e 0,0t tt f t u t t αα--⎧>⎪==⎨<⎪⎩,()()2sin ,0sin 0,0t t f t tu t t >⎧==⎨<⎩, 所以 ()()()()1221f t f t f t f t =()()21d f f t τττ+∞-∞=-⎰要确定()()210f f t ττ-≠的区间,采用解不等式组的方法.因为()()210,0;0,0f t f t ττττ>≠->-≠.即必须满足 00t ττ>⎧⎨->⎩, 即0t ττ>⎧⎨<⎩, 因此 ()()()()1221f t f t f t f t =()()21d f f t τττ+∞-∞=-⎰()0sin ed t t ατττ--=⎰e sin e d t t αατττ-=⎰(分部积分法)()2e sin cos e 10ttατααττα-⎡⎤-=⎢⎥+⎣⎦ ()22e sin cos 1e11tαταατταα-⎡⎤-=+⎢⎥++⎣⎦ 2sin cos e 1tααττα--+=+ 4 .若()()()()1122,F f t F f t ωω⎡⎤⎡⎤==⎣⎦⎣⎦F F ,证明:()()()()11221*2πF f t t F f ωω⎡⎤⋅=⎣⎦F证明:()()()()121211d 2π2πF F F u F u u ωωω+∞-∞=⋅-⎰ ()()j 211e d d 2πut F u f t t u ω+∞+∞--∞-∞⎡⎤=-⋅⋅⎢⎥⎣⎦⎰⎰ ()()j 211e d d 2πut F u f t t u ω+∞+∞--∞-∞⎡⎤=-⎢⎥⎣⎦⎰⎰ ()()j 211e d d 2πut F u f t u t ω+∞+∞--∞-∞⎡⎤=-⎢⎥⎣⎦⎰⎰—()()j 121e d d 2πut f t F u u t ω+∞+∞--∞-∞⎡⎤=-⎢⎥⎣⎦⎰⎰ ()()j j 121e e d d 2πst tf t F s s t ω+∞+∞--∞-∞⎡⎤=⋅⎢⎥⎣⎦⎰⎰ ()()()()j 1212e d t f t f t t f t f t ω+∞--∞⎡⎤=⋅⋅=⋅⎣⎦⎰F5.求下列函数的Fourier 变换: 1)()()0sin f t t u t ω=⋅; 2)()()0e sin t f t t u t βω-=⋅; 5)()()0j 0e t f t u t t ω=-;解: 1)已知()()1πδj u t ωω⎡⎤=+⎣⎦F ,又 ()()()()()00j j 01sin e e 2jtt f t t u t u t u t ωωω-=⋅=-. 由位移性质有()()()()()0000111πδπδ2j j j f t ωωωωωωωω⎛⎫⎡⎤=-+-+- ⎪⎣⎦ ⎪-+⎝⎭F()()000220πδδ2j ωωωωωωω⎡⎤=--+-⎣⎦-. 2)由Fourier 变换的定义,有()()j 00e sin e sin e d t t tt u t t u t t ββωωω+∞----∞⎡⎤⋅=⋅⎣⎦⎰F ()j 00sin ed tt t βωω+∞-+=⎰()()()j 000220ej sin cos 0j tt t βωβωωωωβωω-+⎡⎤-+-+∞⎣⎦=++()22j ωβωω=++5)利用位移性质及()u t 的Fourier 变换,有()()0j 0e t u t t u t ω-⎡⎤⎡⎤-=⎣⎦⎣⎦F F ()0j 1e πδj t ωωω-⎛⎫=+⎪⎝⎭再由象函数的位移性质,有()()()()000j j 0001e e πδj t tu t t ωωωωωωω--⎡⎤⎡⎤-=+-⎢⎥⎣⎦-⎢⎥⎣⎦F 7.已知某信号的相关函数()21e 4a R ττ-=,求它的能量谱密度()S ω,其中0a >.解 由定义知()()j e d S R ωτωττ+∞--∞=⎰2j 1e e d 4a τωττ+∞---∞=⎰ 02j 2j 011e e d e e d 44a a τωττωτττ+∞----∞=+⎰⎰ ()()()2j 2j 001e 1e 42j 42j a a a a ωτωτωω--++∞=+--∞-+2211142j 2j 4aa a a ωωω⎛⎫=+= ⎪-++⎝⎭ 9.求函数()()()e ,0t f t u t αα-=>的能量谱密度. 解: 因为()()e ,0e0,0t tt f t u t t αα--⎧>⎪==⎨<⎪⎩,()()()()e,e0,t t t f t u t t ατατττττ-+-+⎧>-⎪+=+=⎨<-⎪⎩当0τ>时,()()0f t f t τ+≠的区间为()0,+∞,所以()()()()d e ed t t R f t f t t t αταττ+∞+∞-+--∞=+=⎰⎰22011eed ee e 22tt t αταατααταα+∞-----+∞===--⎰当0τ<时,()()0f t f t τ+≠的区间为(),τ-+∞,所以()()()d R f t f t t ττ+∞-∞=+⎰()e ed t t t ατατ+∞-+--=⎰2eed tt ατατ+∞---=⎰21e e2t ατατα--+∞-=-21e e 2ατατα-=1e 2ατα= 因此,()1e2R αττα-=,现在可以求得()f t 的能量谱密度,即 ()()j ed S R ωτωττ+∞--∞=⎰j 1e e d 2ατωττα+∞---∞=⎰()()0j j 01e d e d 2αωταωτττα+∞--+-∞⎡⎤=+⎢⎥⎣⎦⎰⎰ ()()()j j 0111e e 2j j 0αωταωτααωαω--+⎡⎤+∞=+⎢⎥--∞-+⎣⎦1112j j ααωαω⎡⎤=+⎢⎥-+⎣⎦221αω=+ 1-51.求微分方程()()(),()x t x t t t δ'+=-∞<<+∞的解. 分析:求解微分、积分方程的步骤:1)对微分、积分方程取Fourier 变换得象函数的代数方程; 2)解代数方程得象函数;3)取Fourier 逆变换得象原函数(方程的解).解:设()(),x t X ω⎡⎤=⎣⎦F 对方程两边取Fourier 变换,得 ()()j 1.X X ωωω+= 即()1.1X j ωω=+其逆变换为()0,0.e ,0tt x t t -⎧<⎪=⎨≥⎪⎩ 4.求解下列积分方程: 1)()()()222210;y a b t b t aτττ+∞-∞=<<+-+⎰d2)()222t t y τττ+∞----∞=⎰e d πe.解:1)利用卷积定理可以求解此类积分方程.显然,方程的左端是未知函数()y t 与221t a+的卷积,即()221y t t a+.设()(),y t Y ω⎡⎤=⎣⎦F 对方程两边取Fourier 变换,有()222211y t t a t b ⎡⎤⎡⎤=⎢⎥*+⎢⎥⎣⎦⎣+⎦F F即()222211y t t a t b ⎡⎤⎡⎤⎡⎤⋅=⎣⎦⎢+⎥⎢⎥⎣⎦⎣⎦+F F F 易知:22cos 2tt βωωβωβ+∞-=+⎰πd e ,有 ()222211t tY t t t a t bωωω+∞+∞---∞-∞⋅=++⎰⎰j j e d e d 即()222200cos cos 22t t Y t t t a t bωωω+∞+∞⋅=++⎰⎰d d 所以()()22b b a a a b Y b aωωωω----==πee πe由上可知222201cos π2d e a t t t a t a a ωω+∞-⎡⎤=⎢⎦=⎥++⎣⎰F ,()()-1b a a y t e b ω--⎥=⎡⎤⎢⎣⎦F()-1-b a a b a b b a ω--=⋅-⎡⎤⎢⎥⎣⎦F πe π()()22--a b a b t b a =⎡⎤+⎣⎦π.2)设()(),y t Y ω⎡⎤=⎣⎦F 对方程两边取Fourier 变换,同理可得()22e 2πe t t y t --⎡⎤⎡⎤=⎢⎥⎣⎦⎥⎦F F利用钟形脉冲函数的Fourier 变换224e eπt A A ωβββ--⎡⎤=⎣⎦F 及由Fourier 变换的定义可求得:222e tβββω-⎡⎤=⎣⎦+F ,从而 ()22e 2πe t t y t --⎡⎤⎡⎤⎡⎤⋅=⎢⎥⎣⎦⎣⎦⎥⎦F F F即()()2222222121Y ωωωωω--==++πe πe()22222ωωω--=-πeπj e从而()()222-1-122y t ωωω--⎡⎤⎡⎤=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦πe πj e F F , 其中,记()22ef t ω-⎡⎤=⎣⎦F ,则()222πet f t -=,上式中第二项可利用微分性质()()()()2222f t f t ωωω-''⎡⎤⎡⎤==⎣⎦⎣⎦F F j j e,则()()2222-12222t f t t ωω--⎡⎤⎛⎫''== ⎪⎢⎥ ⎪⎢⎥⎣⎦⎝⎭F πd j e e d 2222t-=πe 因此()2222222t t y t --=⋅-πeπeππ222221t t -⎛⎫=- ⎪⎭e π.5.求下列微分方程的解()x t :()()()()d ax t b x f t ch t τττ+∞-∞'+-=⎰其中()(),f t h t 为已知函数,,,a b c 均为已知常数.解:设()()()()()(),,.f t F h t H x t X ωωω⎡⎤⎡⎤⎡⎤===⎣⎦⎣⎦⎣⎦F F F 对方程两边取Fourier 变换,可得()()()()j a X bX F cH ωωωωω+= 即()()(),j cH X a bF ωωωω=+从而()()()()-1.12tcH X a bF x t ωωωωωω+∞-∞⎡⎤==⎣⎦+⎰Fj πe d j 2-11.求下列函数的Laplace 变换,并给出其收敛域,再用查表的方法来验证结果.1)()sin 2tf t =.分析:用Laplace 变换的定义解题.解: j j 22001sin sin d d 222j e e e st s t s t t t t t ⎛⎫⎛⎫+∞+∞--+- ⎪⎪⎝⎭⎝⎭⎛⎫⎡⎤==+ ⎪⎢⎥⎣⎦⎝⎭-⎰⎰L ()21112Re()0j j 2j 4122s s s s ⎡⎤⎢⎥=-=⎢⎥+⎢⎥-+⎣⎦>. 2)()2e t f t -=.解:()()d d Re()e e eett sts tt t s s >-2222012+∞+∞----+⎡⎤===⎣⎦+⎰⎰L . 3)()2f t t =. 解:2220000112e d d(e )2e d e st stst st t t t t s s t tt -+∞+∞+∞--+∞-⎡⎤⎡⎤==-=--⎣⎦⎢⎥⎣⎦⎰⎰⎰L ∣()022300222d(e )e e d Re()0st st st t t t s sss+∞+∞--+∞-⎡⎤=-=--=⎢⎥⎣⎦⎰⎰∣ >.4)()sin cos f t t t =. 解:[]0sin cos sin cos e d st t t t t t +∞-=⎰L01sin 2e d 2stt t +∞-=⎰22121244s s =⋅=++. 7)()2cos f t t =.解 :22001cos 2cos cos e d e d 2ststt t t t t +∞+∞--+⎡⎤==⎣⎦⎰⎰L ()()2j 2j 001111cos 2e d e e d 2224s t s t st t t t s s +∞+∞--+-⎡⎤=+=++⎣⎦⎰⎰ ()2211112242j 2j 4s s s s s s ⎡⎤+=++=⎢⎥-++⎣⎦. 2.求下列函数的Laplace 变换:1)()3,021,2 4.0,4t f t t t ⎧≤<⎪=-≤<⎨⎪≥⎩解: ()()24002d 3d d e e e stststf t f t t t t +∞---⎡⎤==-⎣⎦⎰⎰⎰L()∣∣24240231134.e e e e st st s ss s s----=-+=-+2)()π3,2.πcos ,2t f t t t ⎧<⎪⎪=⎨⎪>⎪⎩解:()()π2π02e d 3e d cos e d stst stf t f t t t t t +∞+∞---⎡⎤==+⎣⎦⎰⎰⎰L ()()()∣∣j j πj -j π22ππ0223e e 31e e d 122j j e e e s t s tt tsst st t s s s s --++∞+∞---⎛⎫+⎛⎫ ⎪=-+=-++ ⎪ ⎪--+⎝⎭⎝⎭⎰()()()()ππj j πππ222222313111e e Re()02j j 1e e e s s s ss s s s s s s -+----⎛⎫⎛⎫⎛⎫ ⎪=-+-=--> ⎪ ⎪ ⎪+-+⎝⎭ ⎪⎝⎭⎝⎭3) ()()2e 5δt f t t =+解:()()()()220005δe d d 5δe d e et s tst st f t t t t t t +∞+∞+∞---⎡⎤⎡⎤=+=+⎣⎦⎣⎦⎰⎰⎰L()0115e 5Re()222st t s s s -==+=+>--∣. 4)()()()cos δsin f t t t t u t =⋅-⋅ 解:()()()()()0δcos sin ed δcose d sin e d stst st f t t t u t t t t t t t t+∞+∞+∞---⎡⎤=-=-⎣⎦⎰⎰⎰L()()()∣∣∣j j j 00011cos e e d 12j 2j j j e e ees tj s tttst st t t t s s--++∞+∞+∞---=⎡⎤⎢⎥=--=-+-+⎢⎥⎣⎦⎰ ()222111111Re()2j j j 11s s s s s s ⎛⎫=---=-= ⎪+-++⎝⎭>0. 2-21.求下列函数的Laplace 变换式: 1)()232f t t t =++.解:由[]2132!1232132m m m t s s s s st t +⎡⎤⎡⎤==++=++⎣⎦⎣⎦及有L L L .2)()1e t f t t =-. 解 :[]()()1111,e e t tt t t s ss s --⎡⎤⎡⎤===-⎣⎦⎣⎦222+1-1L L,L 1-.3)()()21e t f t t =-. 解:()22-1e e 2e e t t t tt t t ⎡⎤⎡⎤=-+⎣⎦⎣⎦L L ()()()232322145.-1-1-1s s s s s s -+=-+=-1 5)()cos f t t at =. 解: 由微分性质有:[][]()2222222d d cos cos d d s s a t at at s s s a s a -⎛⎫=-=-= ⎪+⎝⎭+L L 6) ()5sin23cos2f t t t =-解:已知[][]2222sin ,cos st t s s ωωωωω==++L L ,则 []522222103sin 23cos 253444s t t s s s --=-=+++L 8)()4e cos4t f t t -=. 解: 由[]2cos 416t s +s=L 及位移性质有 42cos 4416e ts t s -⎡⎤=⎣⎦++4(+)L . 3.若()()f t F s ⎡⎤=⎣⎦L ,证明(象函数的微分性质):()()()()()1,Re nn nF s t f t s c ⎡⎤=->⎣⎦L特别地,()()tf t F s '⎡⎤=-⎣⎦L ,或()()11f t F s t-'⎡⎤=-⎣⎦L ,并利用此结论计算下列各式:1)()3e sin2t f t t t -=,求()F s . 解:()()()322sin 224ett s s ωωω-===++22+3+3L,()()()()()32222343d 2sin 2d 444e ts s t st s s s -⎡⎤⎡⎤-++⎢⎥⎣⎦⎡⎤=-=-=⎢⎥⎣⎦⎡⎤⎡⎤+⎢⎥++⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦222+3+3+3L2)()30e sin 2d tt f t t t t -=⎰,求()F s .解:()0332112sin 2d sin 234e e t t tt t t s s s --⎡⎤⎡⎤==⋅⎢⎥⎣⎦⎣⎦++⎰L L ,()()()02322222312132sin 2d 3434e t t s s t t t s s s s -'⎛⎫++ ⎪⎡⎤=-=⎢⎥ ⎪⎣⎦⎡⎤⎡⎤ ⎪++++⎣⎦⎝⎭⎣⎦⎰L3)()1ln1s F s s +=-,求()f t . 解:()1ln,1s F s s +=-()(),F s f t ⎡⎤=⎣⎦令-1L()()()()()()'211111ee ttF s tf t tf t s s s -=-=-=-=-=--+-2L L L故 ()()-12sinh tF s f t t⎡⎤==⎣⎦L. 4.若()()f t F s ⎡⎤=⎣⎦L ,证明(象函数的积分性质):()()d s f t F s s t ∞⎡⎤=⎢⎥⎣⎦⎰L ,或()()1d s f t t F s s ∞-⎡⎤=⎢⎥⎣⎦⎰L并利用此结论计算下列各式:1)()sin ktf t t=,求()F s . 解: ()2222sin kkkt s s kωωω===++L , 222sin 1d d 1s skt k s s t s k k s k ∞∞⎛⎫⎛⎫== ⎪ ⎪+⎝⎭⎝⎭⎛⎫+ ⎪⎝⎭⎰⎰L πarctan arctan 2ss s k k∞==- 2)()3e sin 2t tf t t-=,求()F s .解:()()322e sin 234t t s -=++L ,()32e sin 22π3d arctan 2234t s t s s t s -∞⎡⎤+==-⎢⎥++⎣⎦⎰L 2-31.设()()12,f t f t 均满足Laplace 变换存在定理的条件(若它们的增长指数均为c ),且()()()()1212,f t f t F s F s ⎡⎤⎡⎤==⎣⎦⎣⎦L L ,则乘积()()12f t f t ⋅的Laplace 变换一定存在,且()()()()j 1122j 1d 2πj F q F s q q f t f t ββ+∞-∞⎡⎤=-⎣⋅⎦⎰L其中(),Re .c s c ββ>>+证明: 已知()()12,f t f t 均满足Laplace 变换存在定理的条件且其增长指数均为c ,由Laplace 变换存在定理知()()12f t f t ⋅也满足Laplace 变换存在定理的条件且()()()()1212e e ct ct f t f t f t f t M M ⋅=⋅≤⋅22e ,0ct M t =≤<+∞ 表明()()12f t f t ⋅的增长指数为2c .因此()()12f t f t ⋅的Laplace 变换()()()120e d st F sf t f t t +∞-=⎰在半平面()Re 2s c >上一定存在,且右端积分在()()Re s c c ββ≥+>上绝对且一致收敛,并且在()Re 2s c >的半平面内,()F s 为解析函数.根据()()11F f t s ⎡⎤=⎣⎦L ,则()1f t 的Laplace 反演积分公式为()()11j j 1e d 2πj qt q f F q t ββ+∞-∞=⎰ 从而()()()()12120e d stf t f t f t f t t +∞-⎡⎤⎣⋅=⎦⎰L()()j 12j e d 1e d 2πj q s t tF q q f t t ββ+∞+--∞∞⎡⎤=⎢⎥⎣⎦⎰⎰(交换积分次序)()()()1j 0j 2e 12πj d d s q t F q f t t q ββ++∞-∞∞--⎡⎤=⎢⎥⎣⎦⎰⎰ ()()j 12j 1d 2πjF q F s q q ββ+∞-∞=-⎰ 2.求下列函数的Laplace 逆变换(象原函数);并用另一种方法加以验证. 1)()221F s s a=+. 2)()()()sF s s a s b =--.3)()()()2s cF s s a s b +=++.10)()()()2214sF s ss =++.解: 1)12211sin at s a a -⎡⎤=⎢⎥+⎣⎦L. 2)()()1sa b s a s b a b s a s b ⎛⎫=- ⎪-----⎝⎭, ()()()11e e .at bt s a b s a s b a b-⎡⎤=-⎢⎥---⎣⎦L3)()()()()()222111s cc a b c F s s a s b b a s a s b b a s b +--⎡⎤==-+⋅⎢⎥++-⎣⎦++-+, 故()()()()1222e at bts c c a b c a c e t b a s a s b b a a b ---⎡⎤⎡⎤+---⎢⎥⎢⎥=++-++--⎢⎥⎢⎥⎣⎦⎣⎦L10)由()()()2222131414ss s s s s F s s ⎛⎫=⎪++++⎝⎭=-,有 ()()()11cos cos 23f t F s t t -⎡⎤==-⎣⎦L.3.求下列函数的Laplace 逆变换: 1)()()2214F s s=+.6)()221ln s F s s -=.13)()221e sF s s -+=.解 : 1)用留数计算法,由于122j,2j s s ==-均为()F s 的二级极点,所以()()()()()2112211e 2j 2j Res k s sts k F s F s s s f t --==⎡⎤⎡⎤⎡⎤⎢⎥===⎣⎦⎣⎦⎢⎥⎣-⎦+∑LL()()2222j j e e 2j 2d d lim lim d d j st s s t s s s s s →→-⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎦⎣-⎣⎦+⎥ ()()()()()()2j 22244j22j 22j e e e e 2j 2j 2j 2l j im lim s s st st st st s s t t s s s s →→-⎡⎤⎡⎤⎢⎥⎢⎥=++---++⎢⎥⎢⎣⎦⎣-⎦-⎥ 2j 2j 2j 2j 8j 8j e e e e 1625616256t t t t t t --=---+ 2j 2j 2j 2j e e 1e e sin 2cos 282162j 168t t t t t t t t --+-=-+=-6)令()()()22212ln ,ln 1s F s F s s s s -'==-, ()()()()112e e 211t t F s tf t s s s-'=+-=+-=-+-L L , ()()21212ln 1cosh s f t t s t -⎛⎫-==- ⎪⎝⎭L. 13)2211122221e 1e s s ss s s -----⎡⎤⎡⎤⎡⎤+=+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦LLL ()()()21,222,02t t t t u t t t ⎧->⎪=+--=⎨≤<⎪⎩.2-41.求下列卷积:3)mt n t (,m n 为正整数). 解:mt ()()()0d 1C d nttnknm mk n k k n k t t t ττττττ-==⋅-=-∑⎰⎰()()001C d 1d C nnt tkkk n km km k k n knn k k tt ττττ-++-===-=-⋅∑∑⎰⎰ ()()()11001C 1C 11m k n k nnkk k m n k n nk k t t t m k m k ++-++==⋅=-⋅=-++++∑∑()1!!1!m n m n t m n ++=++.注:本小题可先用卷积定理求出mt n t 的Laplace 变换,再由Laplace 逆变换求出卷积6)sin kt ()sin 0kt k ≠.解 :sin kt ()()001sin sin sin d cos cos 2d 2ttkt k k t kt k kt τττττ⎡⎤=-=---⎣⎦⎰⎰ ()()011cos cos 2d 224tt kt k t t k k ττ=-+--⎰()0sin 211sin cos cos 2422tt k ktt kt t kt kkτ-=-+=-+. 7) t sinh t解 :t sinh sinh t t = t ()0sinh d tt τττ=⋅-⎰()()0011e d e d 22t t t t ττττττ-=---⎰⎰ ()()()000111d(e )d(e )2e e sinh 2220t t t t t t t t t ττττττ---⎡⎤=-+-=-++-=-⎢⎥⎣⎦⎰⎰ 9)()u t a - ()()0f t a ≥ .解:()u t a - ()()()()00,d d ,tt a t a f t u a f t f t t a τττττ⎧<⎪=-⋅-=⎨-≥⎪⎩⎰⎰.10) ()δt a - ()()0f t a ≥. 解: 当t a <,()δt a - ()0f t =. 当t a ≥,()δt a - ()()()0δd tf t a f t τττ=-⋅-⎰()()()()δd aa f t f t f t a τττττ+∞-∞==-⋅-=-=-⎰.2.设()()f t F s ⎡⎤=⎣⎦L ,利用卷积定理,证明:()()0d t F s f t t s⎡⎤=⎢⎥⎣⎦⎰L 证明:()()()()()1f t u t f t u t F s s⎡⎤⎡⎤⎡⎤=⋅=⋅⎣⎦⎣⎦⎣⎦L L L ,。
工程数学(复变与积分变换A集)目录A.1 复数与复变函数(第一章) (2)1.1复数 (2)1.2复变函数 (6)A.2 导数(第二章) (10)2.3解析函数 (10)2.4调和函数 (14)A.3 积分(第三章) (16)3.3柯西积分公式解析函数的导数 (16)A.4 级数(第四章) (20)4.3泰勒级数 (20)4.4罗朗级数 (24)A.5 留数(第五章) (28)5.2留数及留数定理(2) (28)5.3应用留数计算定积分 (32)A.6 傅里叶变换(第七章) (34)7.1傅里叶积分 (34)7.2傅里叶变换 (36)7.3 函数及其傅里叶变换 (38)A.1 复数与复变函数(第一章)1.1 复数1.选择题(1) Re()iz =( B )(A )Re()iz - (B )Im()z - (C )Im()z(D )Im()iz(2) 下列对任意复数z 均成立的等式为( A )(A )22z z = (B )()22z z =(C )()22arg arg z z = (D )()22Re Re z z =(3) 复数2z =所属区域为( B )(A )01z << (B )0arg 2z π≤≤(C )12z <<(D )11z i>- (4) 设复数z 满足:arg(2)3z π+=,且5arg(2)6z π-=,则z =(A )(A )1- (B )i(C )12-(D )12i +2. 将下例函数化为三角表达式和指数表达式 (1) i +1 解 因 2|1|=+i ,ππk i Arg 24)1(+=+,0,1,2,k =±±所以, 1cos 2sin 244i k i k ππππ⎫⎛⎫⎛⎫+=+++ ⎪ ⎪⎪⎝⎭⎝⎭⎭24i k ππ⎛⎫+ ⎪⎝⎭=(2) i解 cos 2sin 222i k i k ππππ⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (2)2k i e ππ+=,0,1,2,k =±±(3)21i-解 (2)41cos 2sin 2244k i i k i k ππππππ--⎫⎛⎫⎛⎫=-+-= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭, 0,1,2,k =±±3. 证明:当1z <时,()2Im 12z z-+<.证 因()()222Im 1Im 12z zx iy xy i xy -+=-++-+=22y xy y xy +≤+,又因1y z ≤=<,且22221x y x y z ⋅≤+=<,所以, ()2Im 12z z-+<4. 填空题(1) 设8214z i i i =-+,则复数z x iy =+的形式为 13i -复数z 的模为 辐角主值为 arctan3-(2) 设121i z i -=+,则其实部为 12-虚部为 32-共轭复数为1322i-+(3) 设复数5z i =-,则其三角形式5cos sin 22i i ππ⎛⎫⎛⎫⎛⎫-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭指数形式 25i eπ⎛⎫- ⎪⎝⎭(4) 当z 满足||1(0)0z y y =≠=或条件时,21zz +是实数. (5) 设811i z i -⎛⎫= ⎪+⎝⎭,则663322z z +-的值为___1__ 5.选择题(1) 设12z i =+,则3Im z =( A)(A )-2 (B )1 (C )8 (D )14(2) 设)2z i =-,则100501z z ++的值为( A ) (A )i -(B )i(C )1 (D )-16.计算下例各题的值(1) 8(1)i -+解 8833(1)cos 2sin 244i k i k ππππ⎤⎫⎛⎫⎛⎫-+=+++⎥ ⎪ ⎪⎪⎝⎭⎝⎭⎭⎦ ()()()42cos 616sin 616k i k ππππ=+++16=(2) 13(1)i +解 132244(1)sin )33kk i i ππππ+++=+,0,1,2k =解()()16cos 2sin 2k i k ππππ=+++⎡⎤⎣⎦=22cos sin 66k k i ππππ++⎛⎫⎛⎫+⎪⎪⎝⎭⎝⎭, 0,1,,6k= (4) 10(1)- 解 10(1)-102cos 2sin 233k i k ππππ-⎡⎤⎛⎫⎛⎫⎛⎫=+++⎢⎥⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎣⎦=1010102cos sin 33i ππ-⎛--⎫⎛⎫⎛⎫+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=()1121--1.2 复变函数7. 选择题(1) 12(1)-=( D )(A )无定义 (B )-1 (C )cos()2k ππ+ (D )sin()2i k ππ+(2) 方程()2Re 1z =所代表的曲线为( C )(A )圆周 (B )椭圆 (C )双曲线 (D )抛物线 (3) 下例正确的是( D )(A )()Ln z 在1z =-处无定义 (B )(1)0Ln -=(C )(1)Ln -的虚部等于π (D )(1)Ln -的实部等于0 (4) 若z e 为纯虚数,则z 有( C )(A )Re()0z = (B )Im()z k π= (C )Im()2z k ππ=+(D )Im()2z π=(5) 下例中为单值函数的为( A )(A )rg a z (B )rg A z(C (D )8. 求z 的值 (1) 23i z e π-=解 2223333cos sin 33i i i i z e e ee i ππππ⎛⎫-- ⎪⎝⎭⎛⎫⎛⎫⎛⎫==⋅=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2312e ⎛=- ⎝⎭(2) 211z e -= 解 因211z e-=,有211z Ln -=,所以,()11ln 112z iArg =++=()()1122i k π+ 0,1,2,k =±±(3) (1)z Ln=解(1)z Ln =()ln 11iArg =+-ln 223i k ππ⎛⎫=+-+ ⎪⎝⎭0,1,2,k =±±(4) ln(1)z i =-解 ln(1)z i =-()1ln 1arg 1ln 224i i i i π⎛⎫=-+-=+- ⎪⎝⎭9. 选择题 (1) 设函数1z e i =-则Im z =( C )(A )4π-(B )4π (C )24k ππ- (D)24k ππ+(2) 设0y >,则sin()iy 的模为( D )(A )2y y e e i -- (B )2y ye e i --(C )2y y e e -- (D )2y ye e --(3) 设{}01D z z =<<,则D 为( B )(A )无界区域 (B )复连通域 (C )单连通域 (D )闭区域 (4) 下例正确的是( D )(A )ze 为单调函数. (B )ze 为有界函数. (C )ze 为多值函数. (D )ze 为周期函数. 10. 判断正误(1) 因为12(1)i i +<+,所以12(1)i i +<+.( × )(2) sin ,cos z z 为有界函数. ( × ) (3) 2()2Ln z Lnz =. ( × ) (4) {}Re()D z z z =≤所表示的为整个复平面. ( √ )11. 计算下例各值(1) (1)i i +解()1ln22124(1)i i k iLn ii i e eππ⎛⎫⎛⎫++ ⎪⎪+⎝⎭⎝⎭+==12ln 242k i eππ⎛⎫⎛⎫-++⎪ ⎪⎝⎭⎝⎭=,0,1,2,k =±±(2) 解))l n 11221i A r g keπ+===,0,1,2,k =±±(3)32(1)-解 (3233ln2212322(1)i k Ln e eππ⎛⎫⎛⎫++ ⎪- ⎪⎝⎭⎝⎭-==()()3l n 232i k ee ππ+=⋅=±12. 计算下例各值(1) cos(2)i -解 ()(2)(2)12121cos(2)22i i i i i ie e i e e ---+--+-==+ 11cos 2sin 222e e e e i --+-=⋅+⋅(2) sin i解 1s i n22i i i i e e e e i i i ⋅-⋅---==(3) ()tan 2Arc i解 ()()221211t a n 2l n 22122323i i i i A r ci L n L n i k i ππ+-⎡⎤=-=-=-++⎢⎥-⎣⎦1ln322i k π⎛⎫=++ ⎪⎝⎭ 0,1,2,k =±±A.2 导数(第二章)2.3 解析函数1. 选择题(1) 函数()w f z u iv ==+在点0z 处解析,则下列命题不成立的是( A ) (A ),u v 仅在点0z 处可微且满足柯西-黎曼方程(B )存在点0z 的某一邻域()0,U z u v 、在()0U z 内满足柯西-黎曼方程 (C ),u v 在()0U z 内可微 (D ) B 与C 同时成立(2) 函数()w f z u iv ==+在开区域D 内可导的充要条件是( D ) (A )在D 内存在某点0z ,()f z 在点0z 处解析 (B ),u v 在D 内有偏导数(C ),u v 在D 内满足柯西-黎曼方程 (D )()f z 在D 内解析(3) 函数()w f z u iv ==+的实、虚部,u v 在区域D 内有一阶连续的偏导数,则( B )(A ),u v 在D 内满足柯西-黎曼方程 (B )()f z 在D 内连续 (C )()f z 在D 内可导 (D )()f z 在D 内解析(4) 设函数()f z 在区域D 内解析,则与()f z ≡常数不等价的命题是( B ) (A )()0f z '≡ (B )()()Re Im f z f z ≡≡常数 (C ) ()f z 解析 (D ) ()f z ≡常数2. 讨论下列函数的解析性 (1) ()1f z z=解 ()222211x y f z i x iy x y x y z===+-++.所以2222,x yu v x y x y ==++,从而()22222u y x x x y ∂-=∂+,()2222u xy v y x x y ∂-∂==∂∂+,()22222v x y y x y ∂-=∂+.对于0z ≠,处处不满足柯西-黎曼方程(0z =时函数无定义),所以函数1z处处不可导,从而处处不解析. (2) ()()Re f z z z =解 ()()2Re f z z z x ixy ==+,所以2,u x v xy ==,从而2,0,,u u v v x y x x y x y∂∂∂∂====∂∂∂∂ 在整个复平面上连续,且当0,0x y ==时柯西-黎曼方程成立,所以()f z 在0z =点可导,在z 平面上处处不解析.(3) ()22f z xy ix y =+解 由于22,2,2,u u v vy xy xy x x y x y∂∂∂∂====∂∂∂∂在z 平面上处处连续,且当且仅当0z =时,,u v 才满足柯西-黎曼方程.故()22f z xy ix y =+仅在点0z =处可导,在z 平面上处处不解析.3. 判断题(1) 解析函数的导函数仍为解析函数.( √ )(2) 初等函数在其定义域内解析,可导. ( × ) (3) 如果()f z 在0z 解析,那么()f z 在0z 连续. ( √ ) (4) 函数()2f z z =在z 平面上解析. ( × ) 4. 选择题(1) 如果0z 是()f z 的奇点, 则()f z 在0z 处一定为( C ) (A )不可导 (B )可导 (C ) 不解析 (D )解析 (2) 下例函数中为解析函数的为( D ) (A )2()f z x iy =- (B )33()23f z x i y =+(C )22()f z xy ix y =+ (D ) ()sin cos f z x chy i x shy =⋅+⋅ (3) 函数21()1f z z =+ 在圆域1z <内( A )(A )可导 (B )不可导 (C ) 不连续 (D )连续不可导 (4) 如果()0f z '存在,那么()f z 在0z 处一定有( D ) (A )解析 (B )不解析 (C ) 不连续 (D )连续5. 讨论()322333f z x x yi xy y i =+--的解析性,并求导数. 解 因为 32233,3u x xy v x y y =-=-, 而2233,6u v u v x y xy x y y x∂∂∂∂=-==-=-∂∂∂∂, 且这四个偏导数均连续.所以()322333f z x x yi xy y i =+--解析且()()222363f z x y xyi z '=-+=6. 设函数()()3232f z my nx y i x lxy =+++为解析函数,试确定,,l m n .解 设()f z u iv =+,则()()3232,,,.u x y my nx y v x y x lxy =+=+因为()f z 为解析函数,所以22u v nxy lxy x y∂∂===∂∂, ()222233u vmy nx x ly y x∂∂=+=-=-+∂∂ 即得3,1l n m ==-=2.4 调和函数7. 判断题(1) 解析函数()()(),,f z u x y iv x y =+的(),u x y 与(),v x y 互为共扼调和函数.( × )(2) 解析函数()()(),,f z u x y iv x y =+中(),v x y 的共轭调和函数是(),u x y -.( √ )(3) 设(),u u x y =为区域D 内的调和函数,u u f i x y∂∂=-∂∂,则f 是D 内的解析函数.( √ )(4) 若(),u x y 与(),v x y 都是调和函数,则()()(),,f z u x y iv x y =+是解析函数.( × )8. 选择题(1) 函数()()(),,f z u x y iv x y =+解析,则下列命题中错误的是( C ) (A ) ,u v 均是调和函数 (B )v 是u 的共轭调和函数 (C ) u 是v 的共轭调和函数 (D ) u -是v 的共轭调和函数 (2) 设函数()f z u iv =+在区域D 内解析,则,u v 的雅可比(Jacobi)行列式()(,),uu x y u v vv x y xy∂∂∂∂∂=∂∂∂∂∂ 的值为 ( C )(A ) ()f z ' (B ) ()f z '- (C ) ()2f z ' (D )()2f z '- ⑶ 下列函数中不是调和函数的是( D ) (A )(),arctan y h x y x= (B ).()()22,ln 2h x y x y x y =++-; (C )()22,2x h x y y x y=-+ (D )()2,sin xh x y e y =9. 已知()23,3v x y xy x =-+,求以v 为虚部的解析函数()f z u iv =+. 解 显然,v 是调和函数.由柯西-黎曼方程,2233,6v u v uy x xy x y y x∂∂∂∂=-+=-=-=∂∂∂∂. 由第一式得:()323u y x y x ϕ=-+,代入第二式,则有()66xy x xy ϕ'-+=-.于是()0x ϕ'=,()x C ϕ=.因此()32,3u x y y x y C =-+,()()3223333f z u iv y x y C i xy x iz C =+=-++-+=+10. 已知(),2sin xu x y e y =,求以u 为实部的解析函数()f z u iv =+,使()00f =.解 显然,u 是调和函数. 由柯西-黎曼方程,2sin ,2cos x x u v u ve y e y x y y x∂∂∂∂====-∂∂∂∂ 由第一式得:()2cos xv e y x ϕ=-+,代入第二式,则有()2cos 2cos x x e y x e y ϕ'-=于是()0x ϕ'=,()x C ϕ=.因此(),2cos xv x y e y C =-+,()()2sin 2cos 2cos sin 2x x x z f z u iv e y i e y iC ie y i y iC ie iC =+=-+=-++=-+由()00f =得2C =,所以()()21z f z i e =-A.3 积分(第三章)3.3 柯西积分公式 解析函数的导数1. 选择题(1) 设)(则D dz 2z e ,1|2|:C z=-=-⎰z C(A) i e 2π (B) ei 2π(C) 2e 2π (D) i e 22π (2) 设)()(则C z C =-=⎰C3dz 2z sinz,1||:π(A) i π- (B) i π(C) 0 (D) i 2π-(3) 设)(则A dz ze ,1||:C 5z==⎰z C(A)i 12π(B) i 12π-(C) i 6π (D)i 6π- (4) 设)(z f 在区域D 内连续,且对D 内任一条的闭曲线C 均有⎰=Cdz z f 0)(则)(z f 在( A )(A) D 内解析 (B) D 上连续 (C) D 上解析 (D) D 内未必解析2. 计算题(1) ⎰=--1|2|2z zdz z e 解22|2|12|22zz z z e d z i e e i zππ=-===-⎰(2) ⎰=-3||3zdz 1z e z z )( 解 ⎰⎰⎰=-==-+-=-31|1|331||33||3z )1()1(dz 1z e z zz z z dz z z e dz z z e z )( 3110133|||1|332(1)2()|()|(1)(1)2!2(2)z zz z z z z z e e e i e z z dz dz i z z z zi ie i e πππππ===-=-''=+=+--=-+=-⎰⎰ (3)22sin (1)z zdz z =-⎰ 解 '122s i n 12(s i n )(1)1!z z z d z i z z π====-⎰ i π21c o s(4) ⎰C zdz ze ,其中C 为由正向圆周2||=z 与负向圆周1||=z 所组成。
工程数学积分变换答案【篇一:复变函数与积分变换是一门内容丰富】建立和发展与解决实际问题的需要联系密切,其理论与方法被广泛应用在自然科学的许多领域,是机械、电子工程、控制工程,理论物理与流体力学,弹性力学等专业理论研究和实际应用中不可缺少的数学工具。
课程包含2部分内容:向量分析与场论,复变函数论与积分变换。
本课程的目的,是使学生掌握向量分析与场论,复变函数论,积分变换的基本理论、基本概念与基本方法,使学生在运用向量分析与场论,复变函数论,积分变换的思想和方法解决实际问题的能力方面得到系统的培养和训练,为在后继专业课程和以后的实际工作打下良好的数学基础向量分析与场论部分第一章向量与向量值函数分析学时:4几何向量,几何向量的加法、数乘、数量积、向量积,向量的混合积与三重向量积,向量值函数的定义,向量值函数的加法、数乘、复合、数量积运算,向量值函数的极限、连续,向量值函数的导数,向量值函数的体积分、曲线积分、曲面积分,高斯公式,斯托克斯公式。
第二章数量场学时:2数量场的等值面,数量场的方向导数、梯度的概念,哈米尔顿算子的用法。
第三章数量场学时:6向量场的向量线,向量场的通量,向量场的散度,向量场的环量,向量场的环量面密度、向量场的旋度,向量场场函数的导数与向量场的散度、旋度及数量场的梯度之间的关系。
第四章三种特殊形式的向量场学时:4保守场,保守场的旋度,保守场的势函数,管形场,管形场的向量势,调和场,调和函数。
复变函数与积分变换部分第一章:复数与平面点集学时:2复数的直角坐标表示法,三角表示法,指数表示法。
复数的模和辐角,复数的四则运算。
平面区域,邻域,聚点,闭集,孤立点,边界点,边界,连通集,区域,单连通区域,多连通区域。
第二章:解析函数学时:6复变函数的概念,复变函数的几何表示。
复变函数的极限,连续性,复变函数可导和解析的概念,复变函数解析的条件,复变初等函数(指数函数,对数函数,幂函数,三角函数)的定义和性质。
第三章:复变函数的积分学时:6复变函数积分的定义及其性质,柯西定理,复连通区域内的柯西定理,柯西积分公式,解析函数无穷次可导的性质。
第四章:级数学时:6复数项级数,复数项级数收敛、发散、绝对收敛的概念,收敛圆的概念和幂级数收敛半径的求法,幂级数在收敛圆内的性质。
解析函数的台劳展式,解析函数的零点,零点的阶数。
罗朗展式,解析函数罗朗展式的求法,利用罗朗展式对孤立奇点进行分类。
第五章:残数学时:2残数的概念,残数基本定理,残数的求法,利用残数计算积分。
第六章:保形映射学时:6导数的几何意义,保形映射,分式线性映射,初等保形映射的性质,一些简单区域之间的保形映射的求法。
第七章:拉普拉斯变换学时:8拉普拉斯变换,拉普拉斯变换的性质,拉普拉斯逆变换,卷积,拉普拉斯变换的简单应用。
第八章:傅里叶变换学时:8傅里叶积分及收敛的条件,傅里叶变换,傅里叶逆变换,傅里叶变换的性质,卷积,互相关函数,-函数及其傅里叶变换,傅里叶变换的简单应用。
高等数学的主要内容是实函数的微积分,复变函数实际上是将微积分推广到复数域上,研究的内容基本和微积分类似,微分、积分、级数等,几何理论等等,复函数有很多性质和实函数性质类似,但也有很多是本质的不同,学习复变函数要注意复变函数和实变函数的区别和联系,抓住这些就更容易学好这门课。
复变函数是一门优美的学科,并且在实际中有大量的应用,比如力学、电学、信号等,所以学好之后会有很大好处。
定积分我可以理解成求面积,不定积分我可以理解成求原函数,不过这个复变的积分我就看不懂了,请指教...最佳答案恩,本质上是一种转化思想,把复杂的实数域积分问题转化为简单的复变函数问题,如t(伽马)函数,广义积分等,这些在是属于很难计算的可以用留数定理很容易求解,并且用共性映射的一些定理,可以解决在实数域看似无法解决的问题,如俄国的茹柯夫斯基在设计飞机的时候,就用复变函数论解决了飞机机翼的结构问题,他在运用复变函数论解决流体力学和航空力学方面的问题上也做出了贡献,你有兴趣可以查相关资料,至于定义,只要反复看书,反复做题,基本上没问题,但要注意与实数域的不定积分和二重积分相联系、相区别定积分我可以理解成求面积,不定积分我可以理解成求原函数,不过这个复变的积分我就看不懂了,请指教... 恩,本质上是一种转化思想,把复杂的实数域积分问题转化为简单的复变函数问题,如t(伽马)函数,广义积分等,这些在是属于很难计算的可以用留数定理很容易求解,并且用共性映射的一些定理,可以解决在实数域看似无法解决的问题,如俄国的茹柯夫斯基在设计飞机的时候,就用复变函数论解决了飞机机翼的结构问题,他在运用复变函数论解决流体力学和航空力学方面的问题上也做出了贡献,你有兴趣可以查相关资料,至于定义,只要反复看书,反复做题,基本上没问题,但要注意与实数域的不定积分和二重积分相联系、相区别复数中的欧拉公式是什么?在高数中又有什么应用?诚挚感谢!此函数将两种截然不同的函数---指数函数与三角函数联系起来,被誉为数学中的“天桥”。
数学史上的五朵金花是什么?其中把复数中的两种表示方法包括进去了的欧拉公式,联系上了三角函数和指数函最佳答案e^ix=cosx+isinx,e是自然对数的底,i是虚数单位。
它将三角函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位。
欧拉公式表示复数那一块什么意思?最佳答案此函数将两种截然不同的函数---指数函数与三角函数联系起来,被誉为数学中的“天桥”。
复变函数中的欧拉公式定义域浏览次数:412次悬赏分:0 | 解决时间:2010-11-11 10:30 | 提问者:灰碳不眠1、欧拉公式中e^(ix)=cosx+isinx,这里的x是只能取实数不能取负数吗?*2、计算sin i正解:在复变函数中 sinz=[e^(iz)-e(-iz)]/(2i) 带入z=i 则sin i=[e^(-1)-e]/(2i)=i*[e-e^(-1)]/2错误解: (im z 表示对z求虚部) sinz= im (cosz +isinz)=im[e^(iz)]则sin i=im [e^(i*i)]= im e^(-1)=0请问这个错误解到底错在哪里是因为 sinz=im [e^(iz)]是错的吗?因为这里欧拉公式要求z为实数?还有sinz=[e^(iz)-e(-iz)]/(2i) 的证明是将等号右边的算式用欧拉公式展开还是将右边用taylor级数展开证明?因为sin z 的z可以取虚数,如果是用欧拉公式展开,那公式里的z也是虚数,那么也就是说欧拉公式的中的z 是复数范围内的。
麻烦告知一下错误解到底错在哪里最佳答案错误解:(im z 表示对z求虚部)sinz= im (cosz +isinz)=im [e^(iz)]= z 是复数, 所以 cosz, sinz 都是复数; 要取那个虚部 ?则sin i=im [e^(i*i)]= im e^(-1)=0= 函数要求解后才代入数值; 哪能代入后再求解 ?复变函数论里的欧拉公式应用e^ix=cosx+isinx,反过来怎么用,比如1-2i等于什么?浏览次数:343次悬赏分:50 | 解决时间:2010-12-3 09:29 | 提问者:jialuffy最佳答案a+bi=√(a^2+b^2)e^(iarctan(b/a))欧拉公式cosx+isinx=e^ix是怎么推算出sinx=(e^ix-e^ix)/2i的及cosx=(e^ix+e^ix)/2的?浏览次数:639次悬赏分:0 | 提问时间:2010-1-3 20:36 | 提问者:987805740推荐答案e^ix=cosx+isinx,e是自然对数的底,i是虚数单位。
将公式里的x换成-x,得到:e^-ix=cosx-isinx,然后采用两式相加减的方法得到:sinx=(e^ix-e^-ix)/(2i),cosx=(e^ix+e^-ix)/2.欧拉公式cosx+isinx=e^ix推倒出sinx=(e^ix-e^ix)/2i及cox=(e^ix+e^ix)/2的,请教高手写出论证过程?浏览次数:637次悬赏分:5 | 解决时间:2010-1-16 12:29 | 提问者:知987805740问题补充:由cosx+isinx=e^ix换算出cosx-isinx=e^-ix为何cosx没换成-cosx这种换算属高中知识吗,属哪一章节的内容?是将i换成-i吗?最佳答案你的公式应该出错了吧?sinx=(e^ix-e^ix)/2i应该是sinx=(e^ix-e^-ix)/2icosx=(e^ix+e^ix)/2应该是cosx=(e^ix+e^-ix)/2推导过程:因为cosx+isinx=e^ixcosx-isinx=e^-ix两式相加,得:2cosx=e^ix+e^-ix,把2除过去就可以得到cosx=(e^ix+e^-ix)/2两式相减,得:2isinx=e^ix-e^-ix,把2i除过去就可以得到sinx=(e^ix-e^-ix)/2i浏览次数:338次悬赏分:0 | 解决时间:2010-10-31 13:15 | 提问者:仪天枢问题补充:那替换应该用那个函数呢?最佳答案exptotrig[e^(-ix) + e^(ix)]指数形式到三角当然也可以自己对公式进行定义,然后用替换方法。
替换用自己定义的函数啊也可以用替换规则如:e^(-ix) + e^(ix) /. {e^(-ix) - cosx - isinx, e^(ix) - cosx + isinx}则结果是2 cosx欧拉公式e^ix=cosx+isinx是怎么推出来的浏览次数:1127次悬赏分:0 | 解决时间:2009-1-6 10:06 | 提问者:ruokang欧拉公式e^ix=cosx+isinx是怎么推出来的??问题补充:我只想知道相关的问题,麻烦你再说的详细一点好吗,xiexie精彩回答将函数y=e^x、y=sinx、y=cosx用幂级数展开,有e^x=exp(x)=1+x/1!+x^2/2!+x^3/3!+x^4/4!+…+x^n/n!+…1【篇二:工程数学模拟试b卷】xt>2005—2006学年夏学期(夏考)b卷连答案课程代码名称16040030工程数学学习中心年级专业(层次)06春电气工程与自动化专升本学号姓名请务必将答案写在答题纸上,写在试题卷上一律不批改,责任自负。
一、填空题(每空4分,共40分):1. ??(0.5?2k)e ,imz?_______0______。
设z?(i),那末rez?i2. 设f(z)?sin(1/z),那么函数f(z)除了点_外处处解析,且f?(z)=_?11cos()。