《 信号与线性系统》
第3章 信号分析
2. 复指数傅里叶级数
指数函数具有如下关系
e e dt T
t 0 T jnt jnt * t0
e
t 0 T t0
jmt
e dt 0
jnt *
mn
t 因此,指数函数 e jn, n 0,1,2, 为一完备的 正交函数集
《 信号与线性系统》
第3章 信号分析
根据欧拉公式
cos
1 j e e j 2
且考虑到An是n或频率的偶函数,而 n 是奇函数
a0 1 f (t ) An e j nt n An e j nt n 2 2 n 1 1 1 jnt An e j nt n An e 2 n 2 n
则该函数集就称为区间(t1, t2)上的正交函数集。 如果
t2
t1
0 * gi (t ) g j (t )dt 1
则称该函数集为归一化正交函数集。
《 信号与线性系统》
第3章 信号分析
例如,三角函数集 { 1,cosΩt,cos2Ωt,…,cosmΩt,…,sinΩt,sin2Ωt,…,sinnΩt,… } 在区间(t0,t0+T)(式中T=2π/Ω)组成正交函数集,而且 是完备的正交函数集。这是因为
《 信号与线性系统》
第3章 信号分析
3.3 信号表示为傅里叶级数
1.三角傅里叶级数
周期为T的函数f(t)都可分解为无限个正弦和余弦函 数的代数和,即f(t)在(t0, t0+T)区间的三角傅里叶级 数展开。 f(t)应满足狄利克雷条件。