§4.1 信号分解为正交函数
- 格式:ppt
- 大小:248.00 KB
- 文档页数:10
第四章:傅立叶变换和系统的频域一、信号分解为正交函数 (一)、完备正交函数 1正交函数:实正交函数:设φ1(t) φ2(t)是定义在(t 1,t 2)内的两个实函数,若∫φ1(t ),t 2t 1φ2(t)dt =0,则称是函数的正交条件。
若∫φ1(t),t 2t 1φ2*dt =∫φ1*(t),t 2t 1φ2dt =0满足实函数的正交条件,则称φ1(t) φ2(t)在(t1,t 2)内正交。
复函数正交::设φ1(t) φ2(t)是定义在(t 1,t 2)内的两个复函数,若,则称是复函数的共轭条件。
则称φ1(t) φ2(t)在(t 1,t 2)内正交。
2、正交函数集若n 个实函数{φi (t )}(i=1,2,3,…….)在区间(t 1,t 2)内满足实函数正交条件∫φi (t ),t 2t 1φj(t)dt ={0,i ≠jK i ,i =j,则{φi (t )}(i=1,2,3,…….)在(t 1,t 2)内是正交实函数。
≈复正交函数集:若n 个复函数{φi (t )}(i=1,2,3,…….)在区间(t 1,t 2)内满足复函数正交条件∫φi (t ),t 2t 1φj*(t)dt ={0,i ≠jK i ,i =j,则{φi (t )}(i=1,2,3,…….)在(t 1,t 2)内是复正交函数集。
3、完备正交函数集:若正交函数集{φi (t )}(i=1,2,3,…….)之外不存在g t (t )与φi (t )正交,则{φi (t )}(i=1,2,3,…….)是完备正交函数集。
4、完备正交函数集举例: a、三角函数集 b 、复指数函数集 c 、沃尔什函数(二)信号正交分解f (t )≈C 1φ1(t )+ C 2φ2(t )+……..+ C n φn (t )=∑C j n j=1φj (t),求系数C j 1、 求误差的均方值最小:2ε= Cj1t 1−t 2∫f (t )−∑C j n j=1φj (t)t 2t 1二、三角傅里叶级数(周期信号在一个周期内展开)1、满足狄利克雷条件f(t)=a02+∑(a n cos nΩt+b n sin nΩt)∞n=1a0 2=1T∫f(t)dt=f(t)π2−π2(f(t)在一个周期内方均值;直流分量)a n=2T∫f(t)cos nΩt dt,n=0,1,2,…T2−T2b n=2T∫f(t)sin nΩt dt,n=0,1,2,…T2−T22、三角傅里叶级数第二种表示方法:3、f(t)=A02+∑(A n cos(nΩt+φn)∞n=1A n=√a n2+b n2(A0=a)φn=tan−1b na nA02直流分量;(A n cos(nΩt+φn)n次谐波分量三角傅里叶级数的特点:A n和a n是nΩ的偶函数;b n和φn是nΩ的奇函数。
信号空间:将信号看做空间里的向量内积:(jiang2)内积为0—正交范数:(jiang3)/zh-cn/%E6%AD%A3%E4%BA %A4/jsjy/kc/xhyjs/chap6/chap6_1/chap6_1_1.htm第一讲信号的正交分解把实际的信号分解为信号单元是信号分析和处理中常用的方法。
一方面,信号的分解使我们能了解它的性质与特征,有助于我们从中提取有用的信息,这一点,在信号的傅里叶变换中就已经体现出来了。
另一方面,把信号分解之后,可以按照我们的意愿对它进行改造,对于信号压缩、分析等都有重要的意义。
信号分解的方法有很多。
例如,对一离散信号,我们可把它分解成一组函数的组合,即,式中,。
但这种分解无实用意义,因为的权重即是信号自己。
另一种分解的方法是把N点数据看成是N维空间的一个向量,我们选择该空间的单位基向量作为分解的“基”,也就是按照这种分解方法,各正交向量的权仍是信号自己的各个分量,也无太大意义,但这一分解已经体现了“正交”分解的概念。
一般,我们可把信号看成N维空间中的的一个元素,可以是连续信号,也可以是离散信号。
N可以是有限值也可以是无穷大。
设是由一组向量所张成,即这一组向量可能是线性相关的,也可能是线性独立的。
如果它们线性独立,我们则称它们为空间中的一组“基”。
各自可能是离散的,也可能是连续的,这视而定。
这样,我们可将按这样一组向量作分解,即(6-1-1)式中是分解系数,它们是一组离散值。
因此,上式又称为信号的离散表示(Discrete Representation)。
如果是一组两两互相正交的向量,则(6-1-1)式称为的正交展开(或正交分解)。
分解系数是在各个基向量上的投影。
若N=3,其含意如图6-1-1所示。
图6-1-1 信号的正交分解为求分解系数,我们设想在空间中另有一组向量:,这一组向量和满足:(6-1-2)这样,用和(6-1-1)式两边做内积,我们有,即:(6-1-3a)或(6-1-3b)(6-1-3a)式对应连续时间信号,(6-1-3b)式对应离散时间信号。