最优控制综述
- 格式:doc
- 大小:166.63 KB
- 文档页数:6
最优控制问题介绍最优控制问题是现代控制理论的核心内容之一,它研究的主要问题是如何在满足一定约束条件下,使得某一性能指标达到最优。
这类问题广泛存在于各个领域,如航天工程、经济管理、生态系统等。
通过对最优控制问题的研究,我们可以更加科学、合理地进行决策,实现资源的优化配置,提高系统的运行效率。
一、最优控制问题的基本概念最优控制问题通常可以描述为一个动态系统的优化问题。
在这个问题中,我们需要找到一个控制策略,使得系统从初始状态出发,在给定的时间内,通过控制输入,使得系统的某一性能指标达到最优。
这个性能指标可以是时间最短、能量消耗最小、误差最小等。
为了解决这个问题,我们首先需要建立系统的数学模型。
这个模型应该能够准确地描述系统的动态行为,包括状态方程、输出方程以及约束条件等。
然后,我们需要定义一个性能指标函数,这个函数描述了我们希望优化的目标。
最后,我们通过求解一个优化问题,找到使得性能指标函数达到最优的控制策略。
二、最优控制问题的分类根据系统的动态特性和性能指标函数的不同,最优控制问题可以分为多种类型。
其中,最常见的包括线性二次型最优控制问题、最小时间控制问题、最小能量控制问题等。
1. 线性二次型最优控制问题:这类问题中,系统的动态特性是线性的,性能指标函数是状态变量和控制输入的二次型函数。
这类问题在实际应用中非常广泛,因为许多实际系统都可以近似为线性系统,而二次型性能指标函数可以方便地描述许多实际优化目标。
2. 最小时间控制问题:在这类问题中,我们的目标是使得系统从初始状态到达目标状态的时间最短。
这类问题通常出现在对时间要求非常严格的场合,如火箭发射、紧急制动等。
3. 最小能量控制问题:这类问题的目标是使得系统在完成指定任务的过程中消耗的能量最小。
这类问题在能源有限的系统中尤为重要,如无人机、电动汽车等。
三、最优控制问题的求解方法求解最优控制问题的方法主要有两种:解析法和数值法。
1. 解析法:解析法是通过求解系统的动态方程和性能指标函数的极值条件,得到最优控制策略的解析表达式。
自动控制原理最优控制知识点总结自动控制原理是现代工程领域中一个非常重要的学科,广泛应用于工业生产、交通运输、航空航天等各个领域。
在自动控制原理中,最优控制是一个关键的概念和方法,它旨在通过优化系统的性能指标,实现系统的最佳控制效果。
本文将对自动控制原理中的最优控制知识点进行总结。
一、最优控制的基本概念最优控制是在给定约束条件下,通过设计最优控制器使系统的性能指标达到最佳的控制方法。
其中,性能指标主要包括系统的稳定性、响应速度、误差稳态和鲁棒性等方面。
最优控制的目标是通过优化控制器参数和系统的状态变量,使系统的性能指标最小化或最大化。
二、最优控制的数学模型最优控制的数学模型主要包括动态模型和性能指标两个方面。
动态模型描述了系统的演化过程,可以是线性模型或非线性模型;性能指标则是对系统性能的衡量,可以是能量消耗、误差平方和、状态变量变化率等。
最常用的数学工具是拉格朗日乘子法、泛函分析、动态规划等。
三、最优控制的方法最优控制的方法包括最优化理论、动态规划、变分法等。
其中,最优化理论是最常用的方法之一,主要通过求解极值问题来设计最优控制器。
动态规划则是一种递推算法,通过将大问题分解成小问题,并利用最优性原理逐步求解最优控制器。
变分法则是通过对系统状态和控制器函数进行变分,并通过求解欧拉-拉格朗日方程来得到最优系统。
四、最优控制的应用最优控制在各个领域都有广泛的应用。
在工业生产中,最优控制可以提高生产过程的效率和质量;在交通运输中,最优控制可以优化交通流量和减少交通拥堵;在航空航天中,最优控制可以提高飞行器的性能和安全性。
此外,最优控制还应用于经济学、生物学、环境科学等其他领域。
五、最优控制的发展趋势随着科技的发展和应用领域的不断扩展,最优控制领域也在不断发展和创新。
未来的研究方向主要包括多目标最优控制、非线性最优控制、鲁棒最优控制等。
同时,随着计算机技术的进步,最优控制算法也将得到进一步改进和优化。
总结:自动控制原理中的最优控制是一个重要的概念和方法,通过优化系统的性能指标,实现系统的最佳控制效果。
/系统的数学模型,物理约束条件及性能指标。
数学描述:设被控对象的状态方程及初始条件为()[(),(),],(0)0x t f x t u t t x t x ==;其中,()x t X Rn ∈⊂为状态向量,X 为状态向量的可容许集;()u t Rm ∈Ω⊂为控制向量,Ω为控制向量的可容许集。
试确定容许的最优控制*()u t 和最优状态轨迹*()x t ,使得系统实现从初始状态(0)x t 到目标集[(),]0x tf tf ψ=的转移,同时使得性能指标0[(),][(),(),]tft J x tf tf L x t u t t dt ϕ=+⎰达到极值。
系统状态方程形式(连续,离散)(2)最优控制形式(开环,闭环) (3)实际应用(时间,燃料,能量,终端) (4)终端条件(固定,自由) (5)被控对象形目标函数及约束条件组成的静态优化问题可以描述为:在满足一系列约束条件的可行域中,确定一组优化变量,(极大值或极小值)。
数学描述:min (),,:n nf x x R f R R ∈→,..()0,:;()0,:n m n l s tg x g R R h x h R R =→≥→静态最优化问题,也称为参数最优化问题,它的三个基本要素是优化变量、目标函数和约束条件,其本质是解决函数,也称为最优控制问题,它的三个基本要素是被控对象数学模型、物理约束条件和性能指标,其本质是解 多变量目标函数沿着初始搜索点的负梯度方向搜索,函数值下降最快,又称最速下降法;(2)多变量无约束。
根据具体的最优换问题构造合适的惩罚函数,将多变量有约束最优化问题转换为一系列多变量无约束最优化问题,从而采用合适;(2)多变量有约束(外点法:等式约,不等式约束;内点法:不等式约束)。
通过构造拉格朗日函数,将原多变量有约束最优化问题转化为一个多变量无约束最优化问题,从而采用合适的无约束方法继(等式约束,不等式约束)。
梯度定义12()()()()f x x f x f x f x xx ∂⎡⎤⎢⎥∂∂⎢⎥=∇=⎢⎥∂∂⎢⎥∂⎣⎦,Hessian 矩阵22221212222212()()f f x x x f x H x x f f x x x ⎡⎤∂∂⎢⎥∂∂∂∂⎢⎥==⎢⎥∂∂∂⎢⎥∂∂∂⎢⎥⎣⎦,最优梯度法(无约束):迭代(1)()()()()k k k k x x f x α+=-∇,()()()()()()()()()()()k T k k k T k k f x f x f x H x f x α∇∇=∇∇,终止误差()()()k p k f x ε=-∇≤ 例:(),(0),()f x f x H x ∇∇;(0)[(0)(0)]f x T f x α=∇•∇/[(0)(0)]T f x H f x ∇••∇;(1)(0)(0)(0)x x f x α=-•∇;()f xk ε∇<,()x k 是极()0,()0x x =≥g h (1) 等式约束:(,)()()T H x f x x λ=+λg ,利用1210,0,0,0,0n mH H H H Hx x xλλ∂∂∂∂∂=====∂∂∂∂∂解出极大值点或极小值点。
控制系统最优控制控制系统的最优控制是现代控制理论中的重要概念,它涉及到如何选择控制器参数以实现系统的最优性能。
最优控制的目标是在满足系统约束条件的前提下,找到使系统性能指标达到最佳的控制策略。
一、最优控制的基本原理最优控制是建立在最优化理论的基础上的,它通常采用控制系统的数学模型和性能指标来描述。
最优控制问题可以分为两种,一种是在给定一定约束条件下,寻找使性能指标最优的控制策略;另一种是在给定一定性能指标的前提下,寻找满足约束条件的最优控制策略。
二、最优控制的方法1. 最优控制方法的分类最优控制方法可以分为两类:一类是基于解析方法的最优化控制,一类是基于数值方法的最优化控制。
基于解析方法的最优化控制是通过对系统模型进行分析和推导,建立最优性能指标的数学表达式,并求解出最优参数;基于数值方法的最优化控制是通过数值计算来求解最优性能指标。
2. 最优控制方法的应用最优控制方法广泛应用于各种工程领域,特别是自动控制和优化领域。
例如,在飞行器控制中,最优控制可以用来设计实现最优的自动驾驶系统;在化工过程中,最优控制可以用来实现最优的生产过程,提高生产效率和降低成本;在经济系统中,最优控制可以用来实现最优的资源分配策略,提高经济效益。
三、最优控制的挑战和发展方向虽然最优控制方法在理论和应用上取得了重要进展,但仍存在一些挑战和问题需要解决。
其中一些挑战包括:非线性系统最优控制的求解难题、多目标最优控制问题的研究等。
未来最优控制的发展方向包括:结合机器学习和优化算法,实现更智能化的最优控制;开发新的数学工具和算法,提高最优控制的求解效率和精度。
结论最优控制是现代控制理论中的重要内容,它关注如何选择控制策略以实现系统的最优性能。
最优控制方法可以通过解析方法和数值方法来求解最优性能指标,已广泛应用于各个工程领域。
然而,最优控制仍然面临一些挑战,需要进一步研究和创新。
未来的发展方向包括结合机器学习和优化算法,以及开发新的数学工具和算法来提高最优控制的效率和精度。
最优控制问题求解方法综述最优控制问题方法综述班级:姓名:学号:最优控制问题方法综述一、最优控制(optimal control)的一般性描述:最优控制是现代控制理论的核心,它研究的主要问题是:根据已建立的被控对象的时域数学模型或频域数学模型,选择一个容许的控制律,使得被控对象按预定的要求运行,并使给定的某一性能指标达到最优值。
使控制系统的性能指标实现最优化的基本条件和综合方法。
可概括为:对一个受控的动力学系统或运动过程,从一类允许的控制方案中找出一个最优的控制方案,使系统的运动在由某个初始状态转移到指定的目标状态的同时,其性能指标值为最优。
这类问题广泛存在于技术领域或社会问题中。
例如,确定一个最优控制方式使空间飞行器由一个轨道转换到另一轨道过程中燃料消耗最少。
最优控制理论是50年代中期在空间技术的推动下开始形成和发展起来的。
美国学者R.贝尔曼1957年动态规划和前苏联学者L.S.庞特里亚金1958年提出的极大值原理,两者的创立仅相差一年左右。
对最优控制理论的形成和发展起了重要的作用。
线性系统在二次型性能指标下的最优控制问题则是R.E.卡尔曼在60年代初提出和解决的。
从数学上看,确定最优控制问题可以表述为:在运动方程和允许控制范围的约束下,对以控制函数和运动状态为变量的性能指标函数(称为泛函)求取极值(极大值或极小值)。
解决最优控制问题的主要方法有古典变分法(对泛函求极值的一种数学方法)、极大值原理和动态规划。
最优控制已被应用于综合和设计最速控制系统、最省燃料控制系统、最小能耗控制系统、线性调节器等。
研究最优控制问题有力的数学工具是变分理论,而经典变分理论只能够解决控制无约束的问题,但是工程实践中的问题大多是控制有约束的问题,因此出现了现代变分理论。
现代变分理论中最常用的有两种方法。
一种是动态规划法,另一种是极小值原理。
它们都能够很好的解决控制有闭集约束的变分问题。
值得指出的是,动态规划法和极小值原理实质上都属于解析法。
最优控制总结最优控制是指在满足系统约束条件的前提下,设计一个最优控制策略来使系统达到最优性能水平的一种方法。
它在制造工业、金融等领域都有广泛的应用,在未来的智能制造、智能交通等领域也将发挥重要作用。
下面将对最优控制的基本概念、方法和应用进行总结。
一、最优控制的基本概念最优控制的目标是使系统达到最优性能水平,所以它需要满足一些基本要求。
最优控制要求系统有确定的数学模型,可以用数学方程式描述系统的状态和演变过程。
而且,最优控制需要考虑系统所受到的各种限制条件,比如控制输入、系统状态变量等等。
最优控制还需要一定的优化目标,比如可以最小化系统的能量消耗、最大化系统的性能表现等等。
二、最优控制的方法最优控制的方法有很多种,常用的方法有经典控制理论和现代控制理论。
1. 经典控制理论经典控制理论采用状态空间模型,通过设计合适的控制器来实现系统的最优控制。
经典控制理论包括PID控制、根轨迹设计和频域法等方法。
现代控制理论采用优化理论和控制理论相结合的方法,通过数学建模和计算机数值计算,实现系统最优控制。
现代控制理论包括线性二次型控制、最优控制和自适应控制等方法。
最优控制可以应用于各种领域,包括工业制造、金融、交通等。
下面介绍几个典型的应用场景。
1. 工业制造工业制造领域是最优控制的一个重要应用场景。
最优控制可以用于工艺控制、机器人控制等方面。
比如,在化学工业生产过程中,最优控制可以帮助控制流量、温度等参数,保证产品的质量和生产效率。
2. 金融3. 交通交通领域是最优控制的另一个重要应用场景。
最优控制可以用于交通路网的控制、交通信号灯的控制等方面。
比如,在城市交通中,最优控制可以实现交通信号灯的智能控制,缓解拥堵情况。
四、最优控制的发展趋势最优控制是一个重要的控制领域,它在未来的智能制造、智能交通等领域都将有广泛的应用。
最优控制的发展趋势主要有以下几点:1. 智能化随着计算机技术和人工智能技术的不断发展,最优控制也在向智能化方向发展。
控制理论中的最优控制与鲁棒控制最优控制与鲁棒控制控制理论是研究如何设计和实现控制系统以满足一定要求的系统工程学科。
在控制理论中,最优控制和鲁棒控制是两个重要的概念。
最优控制旨在找到能使系统性能达到最佳的控制策略,而鲁棒控制则关注设计一种能使系统对参数扰动和外部干扰具有稳定性和鲁棒性的控制器。
本文将从最优控制和鲁棒控制的定义、应用以及优缺点等方面进行论述。
一、最优控制最优控制是控制理论中的一个重要分支,主要研究如何寻找使系统性能达到最优的控制策略。
最优控制可以分为静态最优控制和动态最优控制两种情况。
静态最优控制是指在系统的特定状态下,通过调整控制信号来使系统性能达到最优。
典型的例子是线性二次型控制器,它通过求解二次代价函数的最小值来确定最优的控制策略。
静态最优控制在很多工程领域都有广泛应用,如经济学、交通规划等。
动态最优控制是指在给定一段时间内,通过对系统状态和控制信号的优化,使得系统性能达到最优。
这种控制方法一般使用优化算法来求解,如动态规划、最优控制和近似优化等。
动态最优控制在航天、自动驾驶和机器人等领域有重要应用。
最优控制的优点是能够使系统性能达到最佳,同时也考虑了系统性能与控制信号的代价之间的平衡。
然而,最优控制的计算复杂度较高,需要大量的计算和运算资源。
二、鲁棒控制鲁棒控制是控制理论中的又一个重要分支,主要研究如何设计一种能使系统对参数不确定性和外部干扰具有稳定性和鲁棒性的控制器。
鲁棒控制通过考虑系统参数的范围和不确定性来设计控制器,使得系统具有更好的稳定性和容错性。
鲁棒控制常用的方法包括H∞鲁棒控制、μ合成和自适应控制等。
H∞鲁棒控制是一种通过最大化系统灵敏度函数的最小鲁棒稳定性来设计控制器的方法。
μ合成是一种基于μ合成算法以及线性矩阵不等式(LMI)的优化方法,用于求解复杂的鲁棒控制问题。
自适应控制则通过实时调整控制器参数来适应系统参数的变化。
鲁棒控制的优点是能使系统对参数不确定性和外部干扰具有鲁棒性和稳定性,适用于实际工程系统中存在参数不确定性和外部干扰的情况。
最优控制问题综述报告一、最优控制简介最优控制是现代控制理论的重要组成部分,它研究的主要问题是:在满足一定约束条件下,寻求最优控制策略,使得性能指标取极大值或极小值。
最优控制是使控制系统的性能指标实现最优化的基本条件和综合方法。
可概括为:对一个受控的动力学系统或运动过程,从一类允许的控制方案中找出一个最优的控制方案,使系统的运动在由某个初始状态转移到指定的目标状态的同时,其性能指标值为最优。
最优控制是最优化方法的一个应用。
从数学意义上说,最优化方法是一种求极值的方法,即在一组约束为等式或不等式的条件下,使系统的目标函数达到极值,即最大值或最小值。
所谓最优控制问题,就是指在给定条件下,对给定系统确定一种控制规律,使该系统能在规定的性能指标下具有最优值。
也就是说最优控制就是要寻找容许的控制作用(规律)使动态系统(受控系统)从初始状态转移到某种要求的终端状态,且保证所规定的性能指标(目标函数)达到最大(小)值。
其本质是变分学问题。
二、产生背景及发展最优控制理论是研究和解决从一切可能的控制方案中寻找最优解的一门学科,基本内容和常用方法包括动态规划、最大值原理和变分法。
这方面的开创性工作主要是由贝尔曼(R.E.Bellman)提出的“动态规划”和庞特里亚金等人提出的“极大值原理”,到了60年代,卡尔曼等人又提出了可控制性及可观测性概念,建立了最优估计理论。
它以20世纪60年代空间飞行器的制导为背景。
它最初的研究对象是由导弹、航天、航海中的制导、导航等自动控制技术、自动控制理论、数字计算技术等领域所总结出来的一类按某个性能指标达到最大或最小的控制问题。
1948年维纳发表了题为《控制论—关于动物和机器中控制与通讯的科学》的论文,第一次科学的提出了信息、反馈和控制的概念,为最优控制理论的诞生和发展奠定了基础。
钱学森1954年所着的《工程控制论》,直接促进了最优控制理论的发展和形成。
1960年,最大值原理、动态规划方法和最优线性调节器的理论被公认为最优控制理论的三大里程碑,标志着最优控制理论的诞生。
控制系统最优控制器在现代工业和工程领域,控制系统起到至关重要的作用,它可以帮助我们实现对各种系统的稳定性和性能的控制和优化。
而控制系统最优控制器则是控制系统中的一个关键概念,它可以帮助我们设计出最佳的控制策略,以达到系统的最佳性能。
一、最优控制简介最优控制是控制理论中的一个重要分支,它的目标是在给定的约束条件下,使系统达到最佳的性能。
最优控制问题可以基于不同的标准进行定义,比如最小化能耗、最大化系统稳定性等等。
最优控制的核心思想是通过优化算法来求解控制问题,得到最佳的控制策略。
二、最优控制器的设计最优控制器的设计是实现最优控制的关键步骤。
在最优控制理论中,常用的方法有线性二次型控制、最小二乘法、模型预测控制等。
这些方法基于不同的数学原理和算法,在不同的应用场景下有不同的适用性。
1. 线性二次型控制(LQR)线性二次型控制是最优控制中常用的一种方法,它通过最小化系统输出和期望输出之间的误差的平方和来设计控制器。
线性二次型控制具有数学理论良好、计算简单的优点,广泛应用于工业控制中。
2. 最小二乘法控制(LSE)最小二乘法控制是一种基于最小二乘法原理的最优控制方法。
它通过最小化系统输出和期望输出之间的误差的平方和,来求解控制器的参数。
最小二乘法控制适用于系统存在随机扰动或测量误差的情况下。
3. 模型预测控制(MPC)模型预测控制是一种基于模型的最优控制方法,它通过建立系统的数学模型,并利用模型对未来系统行为进行预测,来制定最佳的控制策略。
模型预测控制具有很强的适应性,可以应对复杂的系统和动态环境变化。
三、最优控制实例应用最优控制器的设计和应用涉及到多个领域,下面我们将以自动驾驶车辆的控制为例,来说明最优控制的实际应用。
自动驾驶车辆是一个复杂的控制系统,目标是实现车辆的安全、高效和舒适的行驶。
在自动驾驶系统中,最优控制器起到了至关重要的作用。
通过对车辆的感知和环境的分析,最优控制器能够实时地生成最佳的行驶策略,包括速度控制、转向控制等,以实现车辆的最佳性能。
控制系统的最优控制方法控制系统的最优控制方法在工程领域中具有重要意义。
最优控制是指在给定系统模型和性能指标的条件下,通过调整系统参数和控制策略,使得系统的性能达到最佳状态。
本文将详细介绍最优控制的基本原理、常用方法以及应用领域。
一、最优控制的基本原理最优控制的基本原理是通过优化算法和数学方法,求解给定系统模型下的最优控制策略。
最优控制问题通常可以建模为一个最优化问题,其中包括系统动力学方程、性能指标和约束条件。
最优化问题可以采用不同的数学方法求解,如动态规划、最优化理论、变分法等。
在最优控制理论中,最为经典的方法是动态规划。
动态规划通过将整个控制问题划分为多个子问题,并利用递推关系求解最优控制策略。
动态规划方法具有较高的计算效率和较好的最优性能,被广泛应用于各类控制系统中。
二、常用的最优控制方法1. 动态规划方法动态规划方法是最优控制中最常用的方法之一。
它通过将系统的控制历史分解为多个阶段,并利用递推关系求解最优控制策略。
动态规划方法适用于线性和非线性系统,能够考虑多个性能指标和约束条件。
2. 最优化理论方法最优化理论方法是指利用最优化算法求解最优控制问题。
最优化理论方法包括线性规划、非线性规划、凸优化等。
这些方法通过数学优化算法,寻找系统模型下的最优控制策略。
3. 变分法方法变分法方法是一种计算变分问题的方法,用于求解最优控制问题中的变分方程。
通过对系统的状态和控制变量进行变分,将最优控制问题转化为求解变分方程的问题。
变分法方法通常适用于连续时间系统的最优控制问题。
三、最优控制的应用领域最优控制方法在各个工程领域中都有广泛的应用。
以下为一些常见的应用领域:1. 自动驾驶系统自动驾驶系统是一种复杂的控制系统,需要通过最优控制方法实现高效且安全的自动驾驶。
最优控制方法可以优化自动驾驶中的车辆动态、路径规划和交通流控制等问题。
2. 机器人控制机器人控制是利用最优控制方法实现机器人动作规划和控制的过程。
综述非线性系统最优控制理论近年来,最优控制理论[1,2]的研究,无论在深度和广度上,都有了很大的发展,已成为系统与控制领域最热门的研究课题之一,取得了许多研究成果。
同时,也在与其他控制理论相互渗透,出现了许多新的最优控制方式,形成了更为实用的学科分支。
例如鲁棒最优控制[3]、随机最优控制[4]、分布参数系统的最优控制[5]、大系统的次优控制[6]、离散系统的最优控制及最优滑模变结构控制[7,8]等。
而对于非线性系统,其最优控制求解相当困难,需要求解非线性HJB方程或非线性两点边值问题,除简单情况外[9],这两个问题都无法得到解析解。
因此,许多学者都致力于寻求近似的求解方法[10~13],通过近似解得到近似的最优控,即次优控制。
1、非线性最优控制理论研究成果分类目前,较为流行的近似最优控制求解方法主要有以下几类[6][13]。
1)幂级数展开法:幂级数展开方法通过一个幂级数来构造控制律,得到序列形式的近似最优解,或者将系统中的非线性项以幂级数形式分解,或者通过引进一个临时变量并围绕它展开。
将上式代入HJB方程求得级数近似解,也可利用Adomian分解将非线性项进行分解,由此寻求非线性HJB方程级数的近似解。
2)Galerkin逐次逼近方法:由动态规划得到的一般性偏微分HJB方程,引入一个迭代过程来求解一般非线性HJB方程的一个近似解序列。
3)广义正交多项式级数展开法:其主要思想是将最优控制问题中的状态变量,控制输入,性能指标和各个参数分别用广义正交多项式展开,利用广义正交多项式的积分、乘积运算阵将描述系统的微分方程转化为一系列的代数方程。
然后,得到,T非奇异时由得到的控制律是一个多项式级数解。
该方法将最优控制问题转化为代数极值问题,从而避免了求解时变非线性Riccati方程。
4)有限差分和有限元方法:经典的有限差分和有限元方法可以用来近似求解非线性HJB方程。
近年来,这类方法用来近似求取非线性HJB方程的粘性解。
第7章最优控制原理总结第7章的最优控制原理是指在动态系统中,通过分析系统的状态和控制输入,确定最佳的控制策略,以达到系统的最优性能。
这一原理在工程、经济和生态等领域都有广泛的应用。
本文将从最优控制的基本概念、最优控制方法以及最优控制的应用方面进行总结。
最优控制的基本概念包括系统模型、性能指标和约束条件。
系统模型描述了动态系统的行为,可以通过微分方程或差分方程表示。
性能指标用来衡量系统的性能,可以是一些状态的值、系统的能耗等。
约束条件是系统在控制过程中必须满足的限制条件,例如系统的输入上下限、状态的约束等。
最优控制方法主要包括动态规划、变分法和数值优化等。
动态规划是一种通过将问题分解为一系列子问题来求解最优控制策略的方法。
通过选取最优子问题解来确定最优策略,并使用递推算法进行求解。
变分法是一种通过构建泛函,并通过最小化泛函来求解最优控制策略的方法。
通过求解欧拉-拉格朗日方程,得到最优控制策略的微分方程,并通过求解微分方程得到最优策略。
数值优化是一种通过数值计算方法求解最优化问题的方法。
通过建立优化模型,将最优控制问题转化为最优化问题,并应用优化算法进行求解。
最优控制在实际应用中有广泛的应用。
在工程领域,最优控制可以应用于飞行器、机器人和自动控制系统等。
例如,对于无人机飞行控制问题,可以通过最优控制方法来实现自动飞行,提高飞行性能。
在经济领域,最优控制可以应用于经济模型和金融产品的定价等。
例如,在股票市场中,可以通过最优控制方法来确定最佳交易策略,以最大化利润。
在生态领域,最优控制可以应用于生态系统的保护和管理等。
例如,通过最优控制方法来优化捕鱼策略,保护渔业资源。
最优控制原理的研究还面临一些挑战和问题。
首先,最优控制问题的求解往往需要耗费大量的计算资源和时间。
因此,如何提高求解效率是一个重要的问题。
其次,最优控制的求解通常需要对系统进行建模,而模型的准确性对最优控制的效果有重要影响。
因此,如何建立准确的系统模型也是一个关键问题。
最优控制问题求解方法综述作者:王忠晶来源:《中国科技博览》2014年第36期[摘要]最优控制理论是研究和解决从一切可能的控制方案中寻找最优解的一门学科,解决最优控制问题的主要方法有古典变分法、极小值原理和动态规划。
最优控制理论已被应用于综合和设计最速控制系统、最省燃料控制系统、最小能耗控制系统、线性调节器等。
同时,这篇综述也阐释了几种常见方法之间的关系。
中图分类号:C935 文献标识码:A 文章编号:1009-914X(2014)36-0043-011、最优控制问题基本介绍最优控制是使控制系统的性能指标实现最优化的基本条件和综合方法,是现代控制理论的核心之一,是从大量实际问题中提炼出来的。
它所研究的问题可以概括为:对一个受控的动力学系统或运动过程,从一类允许的控制方案中找出一个最优的控制方案,使系统的运动在由某个初始状态转移到指定的目标状态的同时,其性能指标最优。
最优控制是最优化方法的一个应用。
从数学意义上说,最优化方法是一种求极值的方法,即在一组约束为等式或不等式的条件下,使系统的目标函数达到极值,即最大值或最小值。
从经济意义上说,是在一定的人力、物力和财力资源条件下,是经济效果达到最大(如产值、利润),或者在完成规定的生产或经济任务下,使投入的人力、物力和财力等资源为最少。
控制理论发展到今天,经历了古典控制理论和现代控制理论两个重要发展阶段,现已进入了以大系统理论和智能控制理论为核心的第三个阶段。
对于确定性系统的最优控制理论,实际是从20世纪50年代才开始真正发展起来的,它以1956年原苏联数学家庞特里亚金(Pontryagin)提出的极大值原理和1957年贝尔曼提出的动态规划法为标志。
时至今日,随着数字技术和电子计算机的快速发展,最优控制的应用已不仅仅局限于高端的航空航天领域,而更加渗入到生产过程、军事行动、经济活动以及人类的其他有目的的活动中,对于国民经济和国防事业起着非常重要的作用。
对于静态优化的方法,解决的主要是如何求解函数的极值问题;变分法则被用来求解泛函的极值问题;极小值原理的方法,适用于类似最短时间控制、最少燃料控制的问题。
非线性系统最优控制理论综述
非线性系统最优控制理论综述
非线性系统,其最优控制求解相当困难,寻求近似的最优控求解方法是当下解决这一问题的.主要途径.目前,比较成熟的最优控制求解方法主要有七类,本文对这七种方法进行了详细的阐述,并对其优缺点进行了客观的对比.
作者:马玲珑付玲芳作者单位:马玲珑(内蒙古科技大学,内蒙古,包头,014010)
付玲芳(中国移动通信集团内蒙古有限公司包头分公司,内蒙古,包头,014010)
刊名:科技信息英文刊名:SCIENCE & TECHNOLOGY INFORMATION 年,卷(期): 2010 ""(19) 分类号:关键词:非线性最优控制。
摘要:非线性系统,其最优控制求解相当困难,寻求近似的最优控求解方法是当下解决这一问题的主要途径。
目前,比较成熟的最优控制求解方法主要有七类,本文对这七种方法进行了详细的阐述,并对其优缺点进行了客观的对比。
论文关键词:非线性,最优控制近年来,最优控制理论[1,2]的研究,无论在深度和广度上,都有了很大的发展,已成为系统与控制领域最热门的研究课题之一,取得了许多研究成果。
同时,也在与其他控制理论相互渗透,出现了许多新的最优控制方式,形成了更为实用的学科分支。
例如鲁棒最优控制[3]、随机最优控制[4]、分布参数系统的最优控制[5]、大系统的次优控制[6]、离散系统的最优控制及最优滑模变结构控制[7,8]等。
而对于非线性系统,其最优控制求解相当困难,需要求解非线性HJB方程或非线性两点边值问题,除简单情况外[9],这两个问题都无法得到解析解。
因此,许多学者都致力于寻求近似的求解方法[10~13],通过近似解得到近似的最优控,即次优控制。
1、非线性最优控制理论研究成果分类目前,较为流行的近似最优控制求解方法主要有以下几类[6][13]。
1)幂级数展开法:幂级数展开方法通过一个幂级数来构造控制律,得到序列形式的近似最优解,或者将系统中的非线性项以幂级数形式分解,或者通过引进一个临时变量并围绕它展开。
将上式代入HJB方程求得级数近似解,也可利用Adomian分解将非线性项进行分解,由此寻求非线性HJB方程级数的近似解。
2)Galerkin逐次逼近方法:由动态规划得到的一般性偏微分HJB方程,引入一个迭代过程来求解一般非线性HJB方程的一个近似解序列。
3)广义正交多项式级数展开法:其主要思想是将最优控制问题中的状态变量,控制输入,性能指标和各个参数分别用广义正交多项式展开,利用广义正交多项式的积分、乘积运算阵将描述系统的微分方程转化为一系列的代数方程。
然后,得到,T非奇异时由得到的控制律是一个多项式级数解。
该方法将最优控制问题转化为代数极值问题,从而避免了求解时变非线性Riccati方程。
最优控制综述摘要:本文主要阐述了关于最优控制问题的基本概念。
最优控制理论是研究和解决从一切可能的控制方案中寻找最优解的一门学科,解决最优控制问题的主要方法有古典变分法、极大值原理和动态规划,同时本文也介绍了最优控制理论在几个研究领域中的应用,并对最优控制理论做了一定的总结。
关键字:最优控制;最优化;最优控制理论Abstract: This article mainly elaborated on the basic concept of optimal control problems. Optimal control theory is studied and solved from all possible solutions to find the optimal solution of a discipline, to solve optimal control problems of the main methods are classical variational method, with the maximum principle and dynamic programming principle. At the same time, this paper also introduces the application of optimal control theory in several research fields, and a summary of optimal control theory.Key Words: Optimal control; optimization; optimal control theory1.引言最优控制是现代控制理论的重要组成部分,它研究的主要问题是:在满足一定约束条件下,寻求最优控制策略,使得性能指标取极大值或极小值。
最优控制是使控制系统的性能指标实现最优化的基本条件和综合方法。
可概括为:对一个受控的动力学系统或运动过程,从一类允许的控制方案中找出一个最优的控制方案,使系统的运动在由某个初始状态转移到指定的目标状态的同时,其性能指标值为最优。
最优控制是最优化方法的一个应用。
从数学意义上说,最优化方法是一种求极值的方法,即在一组约束为等式或不等式的条件下,使系统的目标函数达到极值,即最大值或最小值。
最优控制理论是研究和解决从一切可能的控制方案中寻找最优解的一门学科,基本内容和常用方法包括动态规划、最大值原理和变分法。
这方面的开创性工作主要是由贝尔曼(R.E.Bellman)提出的“动态规划”和庞特里亚金等人提出的“极大值原理”,到了60年代,卡尔曼(Kalman)等人又提出了可控制性及可观测性概念,建立了最优估计理论。
这方面的先期工作应该追溯到维纳(N.Wiener)等人奠基的控制论(Cybernetics)。
最优控制理论的实现离不开最优化技术。
控制系统最优化问题,包括性能指标的合理选择以及最优化控制系统的设计,而性能指标在很大程度上决定了最优控制性能和最优控制形式。
最优化技术就是研究和解决最优化问题,主要包括两个需要研究和解决的方面:一个是如何将最优化问题表示为数学模型;另一个是如何根据数学模型尽快求出其最优解。
2. 最优控制问题的描述控制系统的最优控制问题一般提法为:对于某个由动态方程描述的系统,在某初始和终端状态条件下,从系统所允许的某控制系统集合中寻找一个控制,使得给定的系统的性能目标函数达到最优。
2.1系统状态的始端条件和终端条件始端和终端条件却给出了系统状态在系统控制开始和结束时刻的约束条件。
端点条件一般有三种类型:固定端、自由端和可变端。
固定端就是时间和状态值都是固定的端点。
例如初始时间0t 及其初始状态()0x t 都固定就称始端固定条件,而终端时间f t 及其终端状态()f x t 都固定就称终端固定条件。
一般来说,两端固定是最简单的情况。
自由端是指端点时间固定,但端点状态值不受任何限制的端点。
有始端自由和终端自由两种。
可变端就是端点时间及其状态值都可变的端点。
但一般它满足一定条件,如满足:初始状态为:()00x t x =终端状态x(f t )可用如下约束条件表示 ()1,0f f N x t t ⎡⎤=⎣⎦或()2,0f f N X t t ⎡⎤≤⎣⎦。
2.2 最优控制问题的分类① 按状态方程分类:连续最优化系统、离散最优化系统。
② 按控制作用实现方法分类:开环最优控制系统、闭环最优控制系统。
③ 按性能指标分类:最小时间控制问题、最少燃料控制问题、线性二次型性能 指标最优控制问题、非线性性能指标最优控制问题。
④ 按终端条件分类:固定终端最优控制问题、自由终端(可变)最优控制问题、终端时间固定最优控制问题、终端时间可变最优控制问题。
⑤ 按应用领域来分:终端控制问题、调节器问题、跟踪问题、伺服机构问题、 效果研究问题、最小时间问题、最少燃料问题。
3.最优控制的求解方法3.1变分法变分法是求解泛函极值的一种经典方法,也是解决最优控制问题的本质方法,是研究最优控制问题的一种重要工具。
掌握变分法的基本原理,还有助于理解以最小值原理和动态规划等最优控制理论的思想和内容。
对于没有对泛函的极值函数附加任何条件的求解方法,即无约束条件下的求解方法,我们可以利用欧拉方程求解,在一般性情况下,我们可以利用一下步骤求解:求以下泛函极值问题:R x dt t t x t x L J tf t ∈=⎰•,]),(),([0,其中)(t x 是二阶连续可微函数,满足固定边界条件,f f x t x x t x ==)(,)(00。
其求解的欧拉方程为,0=∂∂-∂∂•xL dt d x L ,也可以扩展为如下欧拉方程:0=---•••i i i i i i x x x x x t x L L L L ,由欧拉方程则可求得最优控制曲线。
而对于有约束条件的泛函极值求解方法,可以通过Hamilton 方程,将有约束的泛函极值求解转化为无约束的泛函极值求解,从而解决最优控制问题。
其一般性情况下求解方法如下:设系统的状态方程为]),(),([t t u t x f x =•,],[0f t t t ∈,体统的始端和终端满足)(,)(00f t x x t x =是可变的,系统的性能指标[(),(),]f t J L x t u t t dt t =⎰。
Hamilton Function :T H L f λ=+。
通过求解协态方程(costate equation ):H xλ•∂=-∂ 极值条件(extremal condition ):0H x ∂=∂ 边界条件(boundary condition ):00(),(),0f f x t x x t t ξ⎡⎤==⎣⎦ 横截条件(),()0()()T T f f f f f ft H t x t x t t t ϕξϕξλυυ∂∂∂∂=+++=∂∂∂∂(这是f t 自由,末端约束的情况下得出的横截条件,不同情况下横截条件会不相同)来求解最优控制问题。
通过上面一般性情况可以求解简单的泛函极值问题,但是,变分法作为一种古典的求解最优控制的方法,只有当控制向量u (t )不受任何约束,其容许控制集合充满整个m 维控制空间,用古典变分法来处理等式约束条件下的最优控制问题才是行之有效的。
在许多实际控制问题中,控制函数的取值常常受到封闭性的边界限制,如方向舵只能在两个极限值范围内转动,电动机的力矩只能在正负的最大值范围内产生等。
因此,古典变分法对于解决许多重要的实际最优控制问题,是无能为力的。
3.2极小值原理利用前面介绍的变分法求解最优控制问题时)(t u 在一给定的开集上,而不受其他约束。
而在许多最优控制问题中,控制函数)(t u 却会受到某些限制。
例如控制量)(t u 的各个分量不大于某些给定的值,即m i a t u i i ,,2,1,|)(| =≤。
当控制量受到上述不等式约束并且最优控制取值于闭集性约束的边界时,则可以利用极小值原理进行求解。
利用极小值原理求解最优控制问题时,也是通过列出状态方程、协态方程、边界条件与横截条件、极小值条件方程来求解。
其中极小值条件方程与变分法中的极小值条件不同,为()()***,,min ,,u H x u H x u λλ∈Ω=。
在极小值原理中还有一个条件就是沿最有轨线哈密顿函数变化率******(),(),()0f f f H x t u t t λ⎡⎤=⎣⎦。
关于最小值原理的条件,有以下几点说面:最小值原理是对经典变分法的发展,最小值原理放宽了对控制函数的要求。
1)最小值原理没有提出哈密顿函数H 对控制函数可微的要求,因此其应用条件进一步扩宽了,并且最小值原理所求得的最优控制使哈密顿函数H 达到全局、绝对最大值。
2)最小值原理是最优控制问题的必要条件,并非充分条件。
3)利用最小值原理和经典变分法求解最优控制问题时,除了控制方程的形式不同外,其余条件都是相同的。
4)又最小值原理所得到的最优控制和最优控制轨线是一致的,只是协态变量是互为异号的。
3.3 动态规划动态规划是解决多阶段决策过程最优化问题的一种方法,是由贝尔曼提出的一种非线性规划方法,它将多阶段决策问题转化成一系列简单的最优化问题。
动态规划首先将复杂的问题分解成相互联系的若干阶段,每一阶段都是一个最优化子问题,然后逐阶段进行决策(确定与下段的关系),当所有阶段决策丢确定了,整个问题的决策也就确定了。
动态规划法原理简明,适用于计算机求解,在许多理论问题的研究中,都应用到动态规划的思路。
在离散系统的动态规划中,其一般求解方法如下:设有离散动态系统,(1)[(),(),],,,,0,1,,1n x k f x k u k k x f R u R k N +=∈∈=- 0(0),()N x x x N x ==,性能指标10[(),(),],,N N k J L x k u k k J L R -==∈∑11{()}[()]min{[(),(),]}[(),(),]N N N j N j u k k j k J V x j JL x k u k k L x k u k k --***--=====∑∑ 11{()}(0)(1)01[(0)]min{[(),(),]}min {[(0),(0),0][(),(),]}N N N N u k u u N k k J V x L x k u k k L x u L x k u k k --*-==∴===+∑∑在连续系统的动态规划中,其求解方法如下:给出被控系统状态方程可变给定,)(,)(],[,)(][,,],),(),([)(000,0f f f m f m n t x t x t x t t t R U t u t t t R u R x t t u t x f t x =∈∀∈∈∈∈∈=• 目标函数为:⎰+=f t t f f t t u t x L t t x J 0]),(),([]),([ψ,定义]),([t t x V 为状态)(t x ,时 间t 时刻J 的最优解。