3-4 生活中的优化问题举例
- 格式:doc
- 大小:50.50 KB
- 文档页数:5
§3.4生活中的优化问题举例学习目标1.了解导数在解决实际问题中的作用.2.掌握利用导数解决简单的实际生活中的优化问题.知识点生活中的优化问题1.生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.2.利用导数解决优化问题的实质是求函数最值.3.解决优化问题的基本思路:上述解决优化问题的过程是一个典型的数学建模过程.1.生活中常见到的收益最高、用料最省等问题就是数学中的最大、最小值问题.(√) 2.解决应用问题的关键是建立数学模型.(√)类型一几何中的最值问题例1请你设计一个包装盒如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得ABCD四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E,F在AB上是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x cm.(1)若广告商要求包装盒侧面积S 最大,则x 应取何值?(2)若广告商要求包装盒容积V 最大,则x 应取何值?并求出此时包装盒的高与底面边长的比值.考点 几何类型的优化问题 题点 几何体体积的最值问题解 (1)由题意知包装盒的底面边长为2x cm , 高为2(30-x )cm,0<x <30,所以包装盒侧面积为S =42x ×2(30-x ) =8x (30-x )≤8×⎝⎛⎭⎪⎫x +30-x 22=8×225,当且仅当x =30-x ,即x =15时,等号成立, 所以若广告商要求包装盒侧面积S 最大,则x =15. (2)包装盒容积V =2x 2·2(30-x ) =-22x 3+602x 2(0<x <30),所以V ′=-62x 2+1202x =-62x (x -20). 令V ′>0,得0<x <20; 令V ′<0,得20<x <30.所以当x =20时,包装盒容积V 取得最大值,此时包装盒的底面边长为202cm ,高为102cm ,包装盒的高与底面边长的比值为1∶2.反思与感悟 面积、体积(容积)最大,周长最短,距离最小等实际几何问题,求解时先设出恰当的变量,将待求解最值的问题表示为变量的函数,再按函数求最值的方法求解,最后检验.特别注意:在列函数关系式时,要注意实际问题中变量的取值范围,即函数的定义域. 跟踪训练1 已知圆柱的表面积为定值S ,当圆柱的容积V 最小时,圆柱的高h 的值为________.考点 几何类型的优化问题 题点 几何体体积的最值问题 [答案]6πS 3π[解析] 设圆柱的底面半径为r ,则S 圆柱底=2πr 2, S 圆柱侧=2πrh ,∴圆柱的表面积S =2πr 2+2πrh , ∴h =S -2πr 22πr.又圆柱的体积V =πr 2h =r2(S -2πr 2)=rS -2πr 32,V ′(r )=S -6πr 22,令V ′(r )=0,得S =6πr 2,∴h =2r , ∵V ′(r )只有一个极值点, ∴当h =2r 时圆柱的容积最小. 又r =S6π,∴h =2S 6π=6πS 3π. 即当圆柱的容积V 最小时, 圆柱的高h 为6πS 3π. 类型二 实际生活中的最值问题 命题角度1 利润最大问题例2 某集团为了获得更大的收益,每年要投入一定的资金用于广告促销.经调查,每年投入广告费t (百万元),可增加销售额-t 2+5t (百万元)(0≤t ≤3).(1)若该公司将当年的广告费控制在3百万元之内,则应投入多少广告费,才能使该公司由此获得的收益最大?(2)现该公司准备共投入3百万元,分别用于广告促销和技术改造,经预测,每投入技术改造费x 百万元,可增加的销售额为-13x 3+x 2+3x (百万元).请设计一个资金分配方案,使该公司由此获得的收益最大.(收益=销售额-投入) 考点 函数类型的优化问题 题点 利用导数求解最大利润问题解 (1)设投入t (百万元)的广告费后增加的收益为f (t )(百万元),则有f (t )=(-t 2+5t )-t =-t 2+4t =-(t -2)2+4(0≤t ≤3),∴当t =2时,f (t )取得最大值4,即投入2百万元的广告费时,该公司由此获得的收益最大.(2)设用于技术改造的资金为x (百万元),则用于广告促销的资金为(3-x )(百万元),又设由此获得的收益是g (x )(百万元),则g (x )=⎝⎛⎭⎫-13x 3+x 2+3x +[-(3-x )2+5(3-x )]-3=-13x 3+4x +3(0≤x ≤3),∴g ′(x )=-x 2+4,令g ′(x )=0,解得x =-2(舍去)或x =2.又当0<x <2时,g ′(x )>0;当2<x ≤3时,g ′(x )<0,∴当x =2时,g (x )取得最大值,即将2百万元用于技术改造,1百万元用于广告促销,该公司由此获得的收益最大.反思与感悟 解决此类有关利润的实际应用题,应灵活运用题设条件,建立利润的函数关系,常见的基本等量关系有: (1)利润=收入-成本.(2)利润=每件产品的利润×销售件数.跟踪训练2 某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式y =ax -3+10(x -6)2,其中3<x <6,a 为常数.已知销售价格为5元/千克时,每日可售出该商品11千克. (1)求a 的值;(2)若该商品的成本为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.考点 函数类型的优化问题 题点 利用导数求解最大利润问题解 (1)因为当x =5时,y =11,所以a2+10=11,所以a =2.(2)由(1)可知,该商品每日的销售量 y =2x -3+10(x -6)2, 所以商场每日销售该商品所获得的利润f (x )=(x -3)⎣⎢⎡⎦⎥⎤2x -3+10(x -6)2=2+10(x -3)(x -6)2,3<x <6.从而f ′(x )=10[(x -6)2+2(x -3)(x -6)] =30(x -4)(x -6).于是,当x 变化时,f ′(x ),f (x )的变化情况如下表:由上表可得,x =4是函数f (x )在区间(3,6)内的极大值点,也是最大值点. 所以当x =4时,函数f (x )取得最大值,且最大值为42.答 当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大. 命题角度2 用料(费用)最省问题例3 某网球中心欲建连成片的网球场数块,用128万元购买土地10000平方米,该中心每块球场的建设面积为1000平方米,球场的总建筑面积的每平方米的平均建设费用与球场数有关,当该中心建球场x 块时,每平方米的平均建设费用(单位:元)可近似地用f (x )=800⎝⎛⎭⎫1+15ln x 来刻画.为了使该球场每平方米的综合费用最省(综合费用是建设费用与购地费用之和),该网球中心应建几个球场? 考点 函数类型的优化问题 题点 利用导数解决费用最省问题解 设建成x 个球场,则1≤x ≤10,每平方米的购地费用为128×1041000x =1280x (元),因为每平方米的平均建设费用(单位:元)可近似地用f (x )=800⎝⎛⎭⎫1+15ln x 来表示, 所以每平方米的综合费用为g (x )=f (x )+1280x =800+160ln x +1280x (x >0),所以g ′(x )=160(x -8)x 2(x >0),令g ′(x )=0,则x =8,当0<x <8时, g ′(x )<0,当x >8时,g ′(x )>0,所以当x =8时,函数取得极小值,且为最小值. 故当建成8个球场时,每平方米的综合费用最省.反思与感悟 费用、用料最省问题是日常生活中常见的问题之一,解决这类问题要明确自变量的意义以及最值问题所研究的对象.正确书写函数表达式,准确求导,结合实际作答. 跟踪训练3 某地建一座桥,两端的桥墩已建好,这两墩相距m 米,余下工程只需建两端桥墩之间的桥面和桥墩.经测算,一个桥墩的工程费用为256万元;距离为x 米的相邻两墩之间的桥面工程费用为(2+x )x 万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为y 万元. (1)试写出y 关于x 的函数关系式;(2)当m =640米时,需新建多少个桥墩才能使y 最小? 考点 函数类型的优化问题 题点 利用导数解决费用最省问题 解 (1)设需新建n 个桥墩,则(n +1)x =m , 即n =mx-1,所以y =f (x )=256n +(n +1)(2+x )x =256⎝⎛⎭⎫m x -1+m x (2+x )x =256mx+m x +2m -256. (2)由(1)知,f ′(x )=-256m x 2+1212mx -=m 2x 232512x ⎛⎫- ⎪⎝⎭.令f ′(x )=0,得32x =512, 所以x =64.当0<x <64时,f ′(x )<0,f (x )在区间(0,64)内为减函数; 当64<x <640时,f ′(x )>0,f (x )在区间(64,640)内为增函数, 所以f (x )在x =64处取得最小值. 此时n =m x -1=64064-1=9.故需新建9个桥墩才能使y 最小.1.某公司的盈利y (元)和时间x (天)的函数关系是y =f (x ),且f ′(100)=-1,这个数据说明在第100天时( ) A .公司已经亏损 B .公司的盈利在增加 C .公司的盈利在逐渐减少D .公司有时盈利有时亏损 考点 函数类型的优化问题 题点 利用导数求解最大利润问题 [答案] C[解析] 因为f ′(100)=-1,所以函数图象在x =100处的切线的斜率为负值,说明公司的盈利在逐渐减少.2.已知某厂家生产某种产品的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为y =-13x 3+36x +126,则使该生产厂家获取最大年利润的年产量为( )A .11万件B .9万件C .7万件D .6万件考点 函数类型的优化问题 题点 利用导数求解最大利润问题 [答案] D[解析] 由y ′=-x 2+36=0, 解得x =6或x =-6(舍去). 当0<x <6时,y ′>0; 当x >6时,y ′<0, ∴在x =6时y 取最大值.3.用长为18m 的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2∶1,则该长方体的最大体积为( ) A .2m 3 B .3m 3 C .4m 3D .5m 3 考点 几何类型的优化问题 题点 几何体体积的最值问题 [答案] B[解析] 设长方体的宽为x (m),则长为2x (m),高为h =18-12x 4=92-3x (m)⎝⎛⎭⎫0<x <32,故长方体的体积为V (x )=2x 2⎝⎛⎭⎫92-3x=9x 2-6x 3⎝⎛⎭⎫0<x <32, 从而V ′(x )=18x -18x 2=18x (1-x ),令V ′(x )=0,解得x =1或x =0(舍去).当0<x <1时,V ′(x )>0;当1<x <32时,V ′(x )<0, 故在x =1处V (x )取得极大值,并且这个极大值就是V (x )的最大值,从而最大体积V =V (1)=9×12-6×13=3(m 3).4.容积为256的方底无盖水箱,它的高为________时最省材料.考点 函数类型的优化问题题点 利用导数解决费用最省问题[答案] 4[解析] 设水箱高为h ,底面边长为a ,则a 2h =256,其表面积为S =a 2+4ah =a 2+4a ·256a 2=a 2+210a. 令S ′=2a -210a 2=0,得a =8. 当0<a <8时,S ′<0;当a >8时,S ′>0,故当a =8时,S 最小,此时h =2882=4. 5.某商品每件成本9元,售价30元,每星期卖出432件.如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低额x (单位:元,0≤x ≤21)的平方成正比.已知当商品单价降低2元时,每星期多卖出24件.(1)将一个星期的商品销售利润表示成x 的函数;(2)如何定价才能使一个星期的商品销售利润最大?考点 函数类型的优化问题题点 利用导数求解最大利润问题解 (1)设商品降价x 元,则每星期多卖的商品数为kx 2.若记商品在一个星期的获利为f (x ),则有f(x)=(30-x-9)(432+kx2)=(21-x)(432+kx2).由已知条件,得24=k×22,于是有k=6.所以f(x)=-6x3+126x2-432x+9072,x∈[0,21].(2)由(1)得f′(x)=-18x2+252x-432=-18(x-2)(x-12).当x变化时,f′(x),f(x)的变化情况如下表:故当x=12时,f(x)取得极大值.因为f(0)=9072,f(12)=11664.所以当定价为30-12=18(元)时,才能使一个星期的商品销售利润最大.1.利用导数解决生活中优化问题的一般步骤(1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系式y=f(x).(2)求函数的导函数f′(x),解方程f′(x)=0.(3)比较函数在区间端点和使f′(x)=0的点的函数值的大小,最大(小)者为最大(小)值.2.正确理解题意,建立数学模型,利用导数求解是解答应用问题的主要思路.另外需要特别注意:(1)合理选择变量,正确写出函数[解析]式,给出函数定义域;(2)与实际问题相联系;(3)必要时注意分类讨论思想的应用.。
四年级生活中的优化问题举例教案教案标题:四年级生活中的优化问题举例教案教学目标:1. 了解和理解优化问题的概念。
2. 能够应用优化问题的解决方法,解决生活中的实际问题。
3. 培养学生的问题解决能力和创新思维。
教学重点:1. 理解优化问题的定义和特点。
2. 学会将生活中的实际问题转化为数学模型。
3. 运用数学方法解决优化问题。
教学准备:1. 教师准备:白板、黑板笔、教学课件。
2. 学生准备:课本、练习册、铅笔、尺子。
教学过程:Step 1: 导入(5分钟)教师通过提问和讨论引导学生思考,激发学生对优化问题的兴趣和好奇心。
例如:“你们有没有遇到过需要在一定条件下寻找最佳解决方案的问题呢?可以举个例子。
”Step 2: 概念讲解(10分钟)教师通过课件或黑板笔画出一个图形,如一个长方形花坛,解释什么是优化问题。
然后,教师向学生解释优化问题的定义和特点,即在给定的条件下,寻找最佳解决方案。
Step 3: 举例说明(15分钟)教师给出几个与学生生活相关的优化问题的例子,如:1. 一个学生要从家里走到学校,他应该选择哪条路线才能用最短的时间到达?2. 一个学生想买一本书,他应该选择哪家书店才能以最低的价格购买到?3. 一个学生想要制作一个最大的正方形海报,他应该如何剪裁纸张才能使得剩余的废纸最少?教师与学生一起分析这些问题,引导学生思考如何将这些问题转化为数学模型,并解决这些问题的最佳策略。
Step 4: 解决问题(20分钟)教师指导学生运用数学方法解决上述的优化问题。
教师可以提供一些解题思路和方法,如列出方程、绘制图形等。
学生根据教师的指导,独立或小组合作解决问题。
Step 5: 总结(5分钟)教师与学生一起总结本节课所学内容,强调优化问题的重要性和实际应用。
鼓励学生将所学知识应用到更多生活场景中。
Step 6: 作业布置(5分钟)教师布置相关的练习作业,要求学生运用所学知识解决更多的优化问题。
鼓励学生在实际生活中积极思考并解决优化问题。
第三章 导数及其应用 3.4 生活中的优化问题举例A 级 基础巩固 一、选择题1.把长为12 cm 的细铁丝截成两段,各自摆成一个正三角形,那么这两个正三角形的面积之和的最小值是( )A.323 cm 2 B .4 cm 2 C .3 2 cm 2D .2 3 cm 2解析:设一个正三角形的边长为x cm ,则另一个正三角形的边长为(4-x )cm ,则这两个正三角形的面积之和为S =34x 2+34(4-x )2=32[(x -2)2+4]≥23(cm 2).答案:D2.某公司生产一种产品,固定成本为20 000元,每生产一单位的产品,成本增加100元,若总收入R 与年产量x (0≤x ≤390)的关系是R (x )=-x 3900+400x ,0≤x ≤390,则当总利润最大时,每年生产的产品单位数是( )A .150B .200C .250D .300解析:由题意可得总利润P (x )=-x 3900+300x -20 000,0≤x ≤390,由P ′(x )=0,得x =300.当0≤x <300时,P ′(x )>0;当300<x ≤390时,P ′(x )<0,所以当x =300时,P (x )最大.答案:D3.将8分为两个非负数之和,使其立方和最小,则这两个数为( ) A .2和6 B .4和4 C .3和5D .以上都不对解析:设一个数为x ,则另一个数为8-x ,其立方和y =x 3+(8-x )3=83-192x +24x 2且0≤x ≤8,y ′=48x -192.令y ′=0,即48x -192=0,解得x =4.当0≤x <4时,y ′<0;当4<x ≤8时,y ′>0,所以当x =4时,y 取得微小值,也是最小值.答案:B4.做一个容积为256 m 3的方底无盖水箱,所用材料最省时,它的高为( ) A .6 m B .8 m C .4 m D .2 m解析:设底面边长为x m ,高为h m .则有x 2h =256, 所以h =256x 2.所用材料的面积设为S m 2,则有S =4x ·h +x 2=4x ·256x 2+x 2=256×4x +x 2.S ′=2x -256×4x 2,令S ′=0得x =8,因此h =25664=4(m).答案:C5.假如圆柱截面的周长l 为定值,则体积的最大值为( )A.⎝ ⎛⎭⎪⎫l 63π B.⎝ ⎛⎭⎪⎫l 33π C.⎝ ⎛⎭⎪⎫l 43π D.14⎝ ⎛⎭⎪⎫l 43π 解析:设圆柱的底面半径为r ,高为h ,体积为V ,则4r +2h =l ,所以 h =l -4r 2,V =πr 2h =l 2πr 2-2πr 3⎝ ⎛⎭⎪⎫0<r <l 4. 则V ′=l πr -6πr 2,令V ′=0,得r =0或r =l6,而r >0,所以 r =l6是其唯一的极值点.所以 当r =l6时,V 取得最大值,最大值为⎝ ⎛⎭⎪⎫l 63π.答案:A 二、填空题6.某商品每件的成本为30元,在某段时间内,若以每件x 元出售,可卖出(200-x )件,当每件商品的定价为________元时,利润最大.解析:由题意知,利润S (x )=(x -30)(200-x )=-x 2+230x -6000(30≤x ≤200),所以S ′(x )=-2x +230,令S ′(x )=0,解得x =115.当30≤x <115时,S ′(x )>0;当115<x ≤200时,S ′(x )<0,所以当x =115时,利润S (x )取得极大值,也是最大值.答案:1157.已知某矩形广场面积为4万平方米,则其周长至少为________米.解析:设广场的长为x 米,则宽为40 000x 米,于是其周长为y =2⎝ ⎛⎭⎪⎫x +40 000x (x>0),所以y ′=2⎝ ⎛⎭⎪⎫1-40 000x 2, 令y ′=0,解得x =200(x =-200舍去),这时y =800.当0<x <200时,y ′<0;当x >200时,y ′>0.所以当x =200时,y 取得最小值,故其周长至少为800米.答案:8008.做一个无盖的圆柱形水桶,若要使其体积是27π,且用料最省,则圆柱的底面半径为________.解析:设圆柱的底面半径R ,母线长为L ,则V =πR 2L =27π,所以L =27R 2.要使用料最省,只需使圆柱表面积最小.S 表=πR 2+2πRL =πR 2+2π·27R,令S ′表=2πR -54πR2=0,得R =3,即当R =3时,S 表最小.答案:3 三、解答题9.如图,要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18 000 cm 2,四周空白的宽度为10 cm ,两栏之间的中缝空白的宽度为5 cm.怎样确定广告的高与宽的尺寸(单位:cm),能使矩形广告面积最小?解:设广告的高和宽分别为x cm ,y cm ,则每栏的高和宽分别为x -20,y -252,其中x >20,y >25.两栏面积之和为2(x -20)· y -252=18 000,由此得y =18 000x -20+25.广告的面积S =xy =x ⎝ ⎛⎭⎪⎪⎫18 000x -20+25=18 000x x -20+25x , 所以 S ′=18 000[(x -20)-x ](x -20)2+25=-360 000(x -20)2+25. 令S ′>0得x >140,令S ′<0得20<x <140.所以 函数在(140,+∞)上单调递增,在(20,140)上单调递减,所以 S (x )的最小值为S (140).当x =140时,y =175.即当x =140,y =175时,S 取得最小值24 500,故当广告的高为140 cm ,宽为175 cm 时,可使广告的面积最小.10.现有一批货物由海上从A 地运往B 地,已知轮船的最大航行速度为35海里/时,A 地到B 地之间的航行距离约为500海里,每小时的运输成本由燃料费和其余费用组成,轮船每小时的燃料费与轮船速度的平方成正比(比例系数为0.6),其余费用为每小时960元.(1)把全程运输成本y (元)表示为速度x (海里/时)的函数; (2)为了使全程运输成本最小,轮船应以多大速度航行?解:(1)依题意得y =500x (960+0.6x 2)=480 000x +300x ,且由题意知函数的定义域为(0,35],即y =480 000x+300x (0<x ≤35).(2)由(1)得y ′=-480 000x 2+300,令y ′=0,解得x =40或x =-40(舍去).由于函数的定义域为(0,35],所以函数在定义域内没有极值点.又当0<x ≤35时,y ′<0,所以函数y =480 000x +300x 在(0,35]上单调递减,故当x =35时,函数y=480 000x +300x 取得最小值.故为了使全程运输成本最小,轮船应以35海里/时的速度航行.B 级 力量提升1.某公司的盈利y (元)和时间x (天)的函数关系是y =f (x ),且f ′(100)=-1,这个数据说明在第100天时( )A .公司已经亏损B .公司的盈利在增加C .公司的盈利在渐渐削减D .公司有时盈利有时亏损解析:由于f ′(100)=-1,所以函数图象在x =100处的切线的斜率为负值,说明公司的盈利在渐渐削减.答案:C2.某公司租地建仓库,每月土地占用费y 1(万元)与仓库到车站的距离成反比,而每月库存货物的运费y 2(万元)与仓库到车站的距离成正比.假如在距离车站10千米处建仓库,y 1和y 2分别为2万元和8万元,那么要使这两项费用之和最小,仓库应建在离车站________千米处.解析:依题意可设每月土地占用费y 1=k 1x ,每月库存货物的运费y 2=k 2x ,其中x 是仓库到车站的距离,k 1,k 2是比例系数.于是由2=k 110,得k 1=20;由8=10k 2,得k 2=45.因此,两项费用之和为y =20x +4x5(x >0),y ′=-20x 2+45,令y ′=0,得x =5或x =-5(舍去).当0<x <5时,y ′<0;当x >5时,y ′>0.因此,当x =5时,y 取得微小值,也是最小值.故当仓库建在离车站5千米处时,两项费用之和最小.答案:53.某公司生产某种产品的固定成本为20 000元,每生产1吨该产品需增加投入100元,已知总收益满足函数R (x )=⎩⎨⎧400 x -12x 2(0≤x ≤400),80 000(x >400),其中x 是该产品的月产量(单位:吨). (1)将利润表示为月产量的函数f (x );(2)当月产量为何值时,该公司所获利润最大?最大利润为多少元? 解:(1)f (x )=⎩⎪⎨⎪⎧-12x 2+300x -20 000(0≤x ≤400),60 000-100x (x >400).(2)当0≤x ≤400时,f ′(x )=-x +300, 当0≤x <300时,f ′(x )>0,f (x )是增函数; 当x >300时,f ′(x )<0,f (x )是减函数;所以 当x =300时,f (x )取得极大值,也是最大值,且最大值为25 000. 当x >400时,f (x )=60 000-100x ,易知f (x )是减函数, 所以 f (x )<60 000-100×400=20 000<25 000, 综上,当x =300时,f (x )有最大值25 000.即当月产量为300吨时,利润最大,最大利润为25 000元.。
探讨数学最优化问题在现实生活中的应用
数学最优化问题是现实生活中非常重要的一个领域。
它可以帮助我们在各种情况下找到最优解决方案,从而提高效率和效益。
以下将探讨数学最优化问题在现实生活中的应用。
1. 交通规划
在城市交通规划中,数学最优化问题可以帮助交通规划者确定哪些道路需要扩建或改建,以及如何设计路网、规划交叉口等问题。
通过对交通流量、拥堵状况等各种因素进行分析,可以通过建模求解来找到最优化的解决方案,以缓解交通拥堵问题,提高交通运输效率。
2. 财务分析
在企业财务分析中,数学最优化问题可以帮助企业确定最佳的经营策略和资金投资方案。
通过对市场需求、资产收益、风险等因素进行建模,利用各种优化算法求解,可以找到企业最优的经营策略和投资组合,从而最大化企业的盈利和效益。
3. 电力系统
在电力系统设计和管理中,数学最优化问题可以帮助工程师确定最佳的发电机容量、输电线路布局、电力市场展望等问题。
通过对电力供需、电力负载、电力成本等各种因素进行分析和建模,可以利用各种最优化算法求解目标函数,以达到最大化电力系统效益的目的。
4. 生产系统
在工业生产中,数学最优化问题可以帮助企业确定最佳的生产计划、生产布局、零部件库存管理等问题。
通过对资源利用率、工人效率、成本效益等因素进行建模,可以通过最优化求解来找到最佳的生产策略和生产规划,以提高生产效率和效益。
5. 医疗系统。
教学设计生活中的节约问题——数学优化问题举例大兴一中张秀春一.内容和内容解析随着低碳生活逐步深入,节约问题成了人们最为关注的问题了。
而数学中的“优化问题”是现实生活中常碰到的节约问题,比如速度最快、距离最小、费用最低、用料最省、效率最高、增长率、膨胀率等。
而解决方法可以多样,学生较为熟悉的是线性规划问题,二次函数最值问题,或结合函数图象解决最值以及用导数求函数的单调性、最值等。
线性规划是利用数学为工具,来研究在一定的人、财、物、时、空等资源条件下,如何精打细算巧安排,用最少的资源取得最大的效益,即解决节约问题。
它在工程设计、经济管理、科学研究等方面的应用非常广泛。
而本节内容主要是应用线性规划和导数解决生活中的节约问题,使学生体会线性规划、导数在解决生活中的节约问题的广泛作用和强大实力。
教材主要在效率、利润、最大容量三个方面举例说明。
从教学内容分析,教材例题与学生生活经验有一定的差距离,问题信息量大,数学建模要求高,在具体的教学中,可以设置有一定梯度和接近学生生活中的节约问题,提高学生的学习兴趣,同时告诉学生如何去思考解决这类问题的一般思路。
二、教学目标:1、知识目标:(1)进一步了解线性规划的意义以及线性约束条件、线性目标函数、可行解、可行域、最优解等概念;巩固线性规划问题的一般解法(即图解法);会求线性目标函数的最大值、最小值。
(2)巩固导数的相关概念、性质及导数的意义,用导数求实际问题的最大值、最小值。
理解什么是数学中的优化问题。
2、能力目标:培养学生建模能力及提高学生解决实际问题的能力;同时渗透数形结合、化归的数学思想方法,培养学生的节约意识和“用数学” 的意识及创新能力。
3、情感目标:通过对物资调运、产品安排、下料问题等问题的调查、研究,培养学生的节约意识和习惯,倡导学生的低碳生活,使学生了解社会主义市场经济,建立市场经济意识,焕发学生振兴中华的责任感。
三.教学难点和重点分析重点:线性规划、导数的应用,了解生活中的节能问题,熟练掌握生活中常遇到的“效率最高”,“容量最大”,“利润最大”的解决方案。
3.4 生活中的优化问题举例学习目标:1.使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用2.提高将实际问题转化为数学问题的能力重点:利用导数解决生活中的一些优化问题.难点:利用导数解决生活中的一些优化问题教材助读:求解应用问题的方法:解决实际应用问题的关键在于建立数学模型和目标函数,把问题情境译为数学语言,找出问题的主要关系,并把问题的主要关系近似化,形式化,抽象成数学问题,再划归为常规问题,选择合适的数学方法求解.合作探究展示点评探究一:磁盘的最大存储量问题计算机把数据存储在磁盘上.磁盘是带有磁性介质的圆盘,并有操作系统将其格式化成磁道和扇区.磁道是指不同半径所构成的同心轨道,扇区是指被同心角分割所成的扇形区域.磁道上的定长弧段可作为基本存储单元,根据其磁化与否可分别记录数据0或1,这个基本单元通常被称为比特(bit).为了保障磁盘的分辨率,磁道之间的宽度必需大于m,每比特所占用的磁道长度不得小于n.为了数据检索便利,磁盘格式化时要求所有磁道要具有相同的比特数.问题:现有一张半径为R的磁盘,它的存储区是半径介于r与R之间的环形区域.(1)是不是r越小,磁盘的存储量越大?(2)r为多少时,磁盘具有最大存储量(最外面的磁道不存储任何信息)?探究二:节省材料问题圆柱形金属饮料罐的容积一定时,它的高与底与半径应怎样选取,才能使所用的材料最省?当堂检测1.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图象可能是( )2.若商品的年利润y (万元)与年产x (百万件)的函数关系式y =-x 3+27x +123(x >0),则获得最大利润时的年产量为( )A .1百万件B .2百万件C .3百万件D .4百万件3.某箱子的容积与底面边长x 的关系为V (x )=x 2·(60-x2)(0<x <60),则当箱子的容积最大时,箱子底面边长为( )A .30B .40C .50D .354.如图,内接于抛物线y =1-x 2的矩形ABCD 中,A ,B 在抛物线上运动,C ,D 在x 轴上运动,则此矩形的面积的最大值是________.5.某种圆柱形的饮料罐的容积一定时,如何确定它的高与底面半径,才使得所用材料最省?6.某物流公司购买了一块长AM=30米,宽AN=20米的矩形地形AMPN,规划建设占地如图中矩形ABCD的仓库,其余地方为道路和停车场,要求顶点C在地块对角线MN 上,B,D分别在边AM,AN上,假设AB长度为x米.(1)要使仓库占地ABCD的面积不少于144平方米,AB长度应在什么范围内?(2)若规划建设的仓库是高度与AB长度相同的长方体建筑,问AB长度为多少时仓库的库容最大?(墙体及楼板所占空间忽略不计)7.某种商品每件进价12元,售价20元,每天可卖出48件.若售价降低销售量可以增加,且售价降低x(0≤x≤8)元时,每天多卖出的件数与x2+x成正比.已知商品售价降低3元时,一天可多卖出36件.(1)试将该商品一天的销售利润表示成x的函数;(2)该商品售价为多少元时,一天的销售利润最大?——★参考答案★——:探究一:磁盘的最大存储量问题解:由题意知:存储量=磁道数×每磁道的比特数.设存储区的半径介于r 与R 之间,由于磁道之间的宽度必需大于m ,且最外面的磁道不存储任何信息,故磁道数最多可达R rm-.由于每条磁道上的比特数相同,为获得最大存储量,最内一条磁道必须装满,即每条磁道上的比特数可达2rnπ.所以,磁盘总存储量()f r =R r m -×2r n π2()r R r mnπ=- (1)它是一个关于r 的二次函数,从函数[解析]式上可以判断,不是r 越小,磁盘的存储量越大.(2)为求()f r 的最大值,计算()0f r '=.()2()2f r R r mnπ'=- 令()0f r '=,解得2R r =当2R r <时,()0f r '>;当2Rr >时,()0f r '<. 因此2R r =时,磁盘具有最大存储量.此时最大存储量为224R mn π.探究二:节省材料问题解:设圆柱的高为h ,底半径为R , 则表面积S =2πRh +2πR 2由V =πR 2h ,得2Vh R π=,则 S (R )= 2πR 2V R π+ 2πR 2=2V R +2πR 2 令 22()Vs R R'=-+4πR =0解得,R,从而h =2V Rπ=即h =2R因为S (R )只有一个极值,所以它是最小值. 答:当罐的高与底直径相等时,所用材料最省. 当堂检测1.[答案]A[解析]加速过程,路程对时间的导数逐渐变大,图象下凸;减速过程,路程对时间的导数逐渐变小,图象上凸,故选A .2.[答案]C[解析]依题意得,y ′=-3x 2+27=-3(x -3)(x +3),当0<x <3时,y ′>0;当x >3时,y ′<0.因此,当x =3时,该商品的年利润最大.3.[答案]B [解析]V ′(x )=(30x 2-x 32)′=60x -32x 2,x ∈(0,60).令V ′(x )=0,得x =40. ∴当x =40时,箱子的容积有最大值.4.[解析]设CD =x ,则点C ⎝⎛⎭⎫x 2,0,B ⎝⎛⎭⎫x 2,1-x24, ∴矩形ABCD 的面积S =f (x )=x ·⎝⎛⎭⎫1-x 24=-14x 3+x ,x ∈(0,2). 由f ′(x )=-34x 2+1=0,得x =23时,f (x )有最大值439.[答案]4395.解:设圆柱的高为h ,底半径为R ,则表面积 S (R )=2πRh +2πR 2, 又V =πR 2h ,则h =VπR2,∴S (R )=2πR ·V πR 2+2πR 2=2VR +2πR 2,由S ′(R )=-2VR2+4πR =0,解得R =3V 2π,从而h =VπR 2=2 3V 2π,即h =2R ,当R <3V 2π时,S ′(R )<0;当R >3V2π时,S ′(R )>0.因此,当R =3V2π时,S (R )有极小值,且是S (R )的最小值.答:当罐高与底的直径相等时,所用材料最省. 6.解:(1)依题意三角形NDC 与三角形NAM 相似, ∴DC AM =ND NA ,即x 30=20-AD 20,AD =20-23x , 矩形ABCD 的面积为S =20x -23x 2,定义域为0<x <30,要使仓库占地ABCD 的面积不少于144平方米, 即20x -23x 2≥144,化简得x 2-30x +216≤0,解得12≤x ≤18, ∴AB 长度应在[12,18]内.(2)仓库体积为V =20x 2-23x 3(0<x <30)V ′=40x -2x 2=0,得x =0,或x =20, 当0<x <20时V ′>0;当20<x <30时V ′<0, ∴x =20时V 取最大值8 0003米3,即AB 长度为20米时仓库的库容量最大.7.解:(1)由题意,可设每天多卖出的件数为k (x 2+x ),则36=k (32+3),解得k =3. 又每件商品的利润为(20-12-x )元,每天卖出的商品件数为48+3(x 2+x ), ∴该商品一天的销售利润为 f (x )=(8-x )[48+3(x 2+x )]=-3x 3+21x 2-24x +384(0≤x ≤8).(2)f ′(x )=-9x 2+42x -24=-3(x -4)(3x -2). 令f ′(x )=0,可得x =23或x =4.当x 变化时,f ′(x )、f (x )的变化情况如下表: ↘↘故当商品售价为16元时,一天销售利润最大,最大值为432元.。
3.4 生活中的优化问题举例1.掌握应用导数解决实际问题的基本思路.(重点)2.灵活利用导数解决实际生活中的优化问题,提高分析问题,解决问题的能力.(难点)[基础·初探]教材整理优化问题阅读教材P101第一自然段,完成下列问题.1.优化问题(1)生活中经常会遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.(2)用导数解决优化问题的实质是求函数的最值.2.用导数解决优化问题的基本思路甲工厂八年来某种产品年产量与时间(单位:年)的函数关系如图3-4-1所示:图3-4-1现有下列四种说法:①前四年该产品产量增长速度越来越快;②前四年该产品产量增长速度越来越慢;③第四年后该产品停止生产;④第四年后该产品年产量保持不变.其中说法正确的有()A.①④B.②④C.①③D.②③【解析】由图象可知,②④是正确的.【答案】 B[小组合作型]先在四个角分别截去一个小正方形,然后把四边翻转90°角,再焊接而成(如图3-4-2).问该容器的高为多少时,容器的容积最大?最大容积是多少?【导学号:97792051】图3-4-2【精彩点拨】设自变量(高)为x―→根据长方体的体积公式建立体积关于x的函数―→利用导数求出容积的最大值―→结论【自主解答】设容器的高为x cm,容器的容积为V(x)cm3,则:V(x)=x(90-2x)(48-2x)=4x3-276x2+4 320x(0<x<24).所以V′(x)=12x2-552x+4 320=12(x2-46x+360)=12(x-10)(x-36).令V′(x)=0,得x=10或x=36(舍去).当0<x<10时,V′(x)>0,即V(x)是增加的;当10<x<24时,V′(x)<0,即V(x)是减少的.因此,在定义域(0,24)内,函数V (x )只有当x =10时取得最大值,其最大值为V (10)=19 600(cm 3).因此当容器的高为10 cm 时,容器的容积最大,最大容积为19 600 cm 3.1.求几何体面积或体积的最值问题,关键是分析几何体的几何特征,根据题意选择适当的量建立面积或体积的函数,然后再用导数求最值.2.实际问题中函数定义域确定的方法(1)根据图形确定定义域,如本例中长方体的长、宽、高都大于零; (2)根据问题的实际意义确定定义域,如人数必须为整数,销售单价大于成本价、销售量大于零等.[再练一题]1.已知矩形的两个顶点位于x 轴上,另两个顶点位于抛物线y =4-x 2在x 轴上方的曲线上,求这个矩形面积最大时的长和宽.【解】 设矩形边长AD =2x (0<x <2), 则|AB |=y =4-x 2,则矩形面积为S =2x (4-x 2)=8x -2x 3(0<x <2), ∴S ′=8-6x 2,令S ′=0, 解得x 1=233,x 2=-233(舍去).当0<x <233,S ′>0,当233<x <2时,S ′<0, 所以,当x =233时,S 取得最大值, 此时S max =3239.即矩形的边长分别为433,83时,矩形的面积最大.10 000平方米,该中心每块球场的建设面积为1 000平方米,球场的总建筑面积的每平方米的平均建设费用与球场数有关,当该中心建球场x 块时,每平方米的平均建设费用(单位:元)可近似地用f (x )=800⎝ ⎛⎭⎪⎫1+15ln x 来刻画.为了使该球场每平方米的综合费用最省(综合费用是建设费用与购地费用之和),该网球中心应建几个球场?【精彩点拨】 先求每平方米的购地费用,综合费用是建设费用与购地费用之和.【自主解答】 设建成x 个球场,则1≤x ≤10,每平方米的购地费用为128×1041 000x =1 280x 元,因为每平方米的平均建设费用(单位:元)可近似地用f (x )=800⎝ ⎛⎭⎪⎫1+15ln x 来表示,所以每平方米的综合费用为g (x )=f (x )+1 280x =800+160ln x +1 280x (x >0),所以g ′(x )=160(x -8)x 2(x >0),令g ′(x )=0,则x =8,当0<x <8时,g ′(x )<0,当x >8时,g ′(x )>0,所以x =8时,函数取得极小值,且为最小值. 故当建成8个球场时,每平方米的综合费用最省.实际生活中用料最省、费用最低、损耗最小、最节省时间等问题都需要利用导数求解相应函数的最小值.根据f ′(x )=0求出极值点(注意根据实际意义舍去不合适的极值点)后,函数在该点附近满足左减右增,则此时唯一的极小值就是所求函数的最小值.[再练一题]2.甲、乙两地相距400千米,汽车从甲地匀速行驶到乙地,速度不得超过100千米/时,已知该汽车每小时的运输成本P (元)关于速度v (千米/时)的函数关系是P =119 200v 4-1160v 3+15v .(1)求全程运输成本Q (元)关于速度v 的函数关系式;(2)为使全程运输成本最少,汽车应以多大速度行驶?并求此时运输成本的最小值.【解】 (1)Q =P ·400v =⎝ ⎛⎭⎪⎫119 200v 4-1160v 3+15v ·400v =⎝ ⎛⎭⎪⎫119 200v 3-1160v 2+15·400 =v 348-52v 2+6 000(0<v ≤100). (2)Q ′=v 216-5v ,令Q ′=0,则v =0(舍去)或v =80, 当0<v <80时,Q ′<0; 当80<v ≤100时,Q ′>0,∴v =80千米/时时,全程运输成本取得极小值,即最小值,且Q min =Q (80)=2 0003(元).[探究共研型]探究 【提示】 关于利润问题常用的两个等量关系: ①利润=收入-成本;②利润=每件产品的利润×销售件数.某生产饮料的企业拟投入适当的广告费对产品进行促销,在一年内,预计年销量Q (万件)与广告费x (万元)之间的函数关系为Q =3x +1x +1(x ≥0),已知生产此产品的年固定投入为3万元,每生产1万件此产品需再投入32万元.若每件产品售价为“年平均每件成本的150%”与“年平均每件所占广告费的50%”之和,则(1)试将年利润y(万元)表示为年广告费x(万元)的函数.如果年广告费投入100万元,那么企业是亏损还是盈利?(2)当年广告费投入多少万元时,企业年利润最大?【精彩点拨】(1)利用题中等量关系列出y与x的函数关系式,将x=100代入所求关系式判断y>0还是y<0;(2)先求出(1)中函数关系式的导函数,再利用导数求最值.【自主解答】(1)由题意,每年销售Q万件,成本共计为(32Q+3)万元.销售收入是(32Q+3)·150%+x·50%,∴年利润y=年收入-年成本-年广告费=12(32Q+3-x)=12⎝⎛⎭⎪⎫32×3x+1x+1+3-x=-x2+98x+352(x+1)(x≥0),∴所求的函数关系式为:y=-x2+98x+352(x+1)(x≥0).因为当x=100时,y<0,所以当年广告费投入100万元时,企业亏损.(2)由y=f(x)=-x2+98x+352(x+1)(x≥0),得f′(x)=-x2-2x+632(x+1)2(x≥0).令f′(x)=0,则x2+2x-63=0.∴x=-9(舍去)或x=7.又∵当x∈(0,7)时,f′(x)>0;当x∈(7,+∞)时,f′(x)<0,∴f(x)极大值=f(7)=42.又∵在(0,+∞)上只有一个极值点,∴f(x)max=f(x)极大值=f(7)=42.故当年广告费投入7万元时,企业年利润最大.1.利润最大问题是生活中常见的一类问题,一般根据“利润=收入-成本”或“利润=每件产品利润×销售件数”建立函数关系式,再用导数求最大值.2.解答此类问题时,要认真理解相应的概念,如:成本、利润、单价、销售量、广告费等等,以免因概念不清而导致解题错误.[再练一题]3.某工厂生产某种产品,已知该产品的月生产量x (吨)与每吨产品的价格p (元/吨)之间的关系式为p =24 200-15x 2,且生产x 吨产品的成本为R =50 000+200x (元).问该工厂每月生产多少吨产品才能使利润达到最大?最大利润是多少?(利润=收入-成本)【导学号:97792052】【解】 每月生产x 吨时的利润为 f (x )=⎝ ⎛⎭⎪⎫24 200-15x 2x -(50 000+200x )=-15x 3+24 000x -50 000(x ≥0). 由f ′(x )=-35x 2+24 000=0, 解得x 1=200,x 2=-200(舍去).因为f (x )在[0,+∞)内只有一个点x =200使f ′(x )=0, 故它就是最大值点,且最大值为 f (200)=-15×2003+24 000×200-50 000 =3 150 000(元).所以每月生产200吨产品时利润达到最大,最大利润为315万元.1.要做一个圆锥形漏斗,其母线长为20 cm ,要使其体积最大,则其高为( )A.2033 cmB.100 cmC.20 cmD.203 cm【解析】 设圆锥的高为h cm , 则V =13π(400-h 2)×h , 所以V ′(h )=13π(400-3h 2). 令V ′(h )=0,得h 2=4003, 所以h =2033.故选A. 【答案】 A2.某产品的销售收入y 1(万元)是产品x (千台)的函数:y 1=17x 2(x >0);生产总成本y 2(万元)也是x 的函数:y 2=2x 3-x 2(x >0),为使利润最大,应生产( )A.9千台B.8千台C.6千台D.3千台【解析】 利润函数y =y 1-y 2=18x 2-2x 3(x >0),求导得y ′=36x -6x 2,令y ′=0,得x =6或x =0(舍去).因0<x <6时,y =18x 2-2x 3递增, x >6时,y =18x 2-2x 3递减, ∴x =6时利润最大,故选C. 【答案】 C3.把长度为16的线段分成两段,各围成一个正方形,则它们的面积和的最小值为________.【解析】 设其中一段长为x ,则另一段长为16-x ,设两正方形的面积分别为S 1,S 2,面积之和为S ,则S =S 1+S 2=⎝ ⎛⎭⎪⎫x 42+⎝⎛⎭⎪⎫16-x 42=116x 2+116x 2-2x +16 =18x 2-2x +16(0<x <16). 令S ′=14x -2=0,得x =8.即x=8时,S有最小值,最小值为8.【答案】84.某商品一件的成本为30元,在某段时间内,若以每件x元出售,可卖出(200-x)件,当每件商品的售价为________元时,利润最大.【解析】利润为S(x)=(x-30)(200-x)=-x2+230x-6 000,S′(x)=-2x +230,由S′(x)=0得x=115,这时利润达到最大.【答案】1155.某造船公司年最高造船量是20艘,已知造船x艘的产值函数为R(x)=3 700x+45x2-10x3(单位:万元),成本函数为C(x)=460x+5 000(单位:万元).求:(1)利润函数P(x)(提示:利润=产值-成本)的解析式;(2)年造船量安排多少艘时,可使造船公司的年利润最大?【导学号:97792053】【解】(1)P(x)=R(x)-C(x)=-10x3+45x2+3 240x-5 000(x∈N且x∈[1,20]).(2)P′(x)=-30x2+90x+3 240=-30(x+9)(x-12)(x∈N且x∈[1,20]),当1≤x≤12时,P′(x)>0,P(x)单调递增;当12<x≤20时,P′(x)<0,P(x)单调递减;∴x=12时,P(x)取最大值,即年造船12艘时,造船公司的年利润最大.。
能力拓展提升
一、选择题
11.某公司生产一种产品,固定成本为20 000元,每生产一单位的产品,成本增加100元,若总收入R 与年产量x (0≤x ≤390)的关系是R (x )=-x 3
9 000+400x,0≤x ≤390,则当总利润最大时,每年生产的产品单位数是( )
A .150
B .200
C .250
D .300
[答案] D
[解析] 由题意可得总利润P (x )=-x 3
900+300x -20 000,0≤x ≤390.由P ′(x )=0,得x =300.
当0≤x ≤300时,p ′(x )>0;当300<x ≤390时,P ′(x )<0,所以当x =300时,P (x )最大,故选D.
12.三棱锥O -ABC 中,OA 、OB 、OC 两两垂直,OC =2x ,OA =x ,OB =y ,且x +y =3,则三棱锥O -ABC 体积的最大值为( )
A .4
B .8 C.43 D.8
3
[答案] C
[解析] V =13×2x 22·y =x 2y 3=x 2(3-x )3=3x 2-x
3
3(0<x <3),
V ′=6x -3x 2
3=2x -x 2=x (2-x ). 令V ′=0,得x =2或x =0(舍去). ∴x =2时,V 最大为4
3.
13.要制作一个圆锥形的漏斗,其母线长为20cm ,要使其体积最大,则高为( )
A.3
3cm B.103
3cm C.163
3cm D.2033cm
[答案] D
[解析] 设圆锥的高为x ,则底面半径为202-x 2, 其体积为V =1
3πx (400-x 2) (0<x <20), V ′=13π(400-3x 2),令V ′=0,解得x =2033. 当0<x <2033时,V ′>0;当203
3<x <20时,V ′<0 所以当x =203
3时,V 取最大值.
14.若一球的半径为r ,作内接于球的圆柱,则其圆柱侧面积最大值为( )
A .2πr 2
B .πr 2
C .4πr 2
D.12πr 2
[答案] A
[解析] 设内接圆柱的底面半径为r 1,高为t ,
则S =2πr 1t =2πr 12r 2-r 21=4πr 1r 2-r 2
1. ∴S =4πr 2r 21-r 41. 令(r 2r 21-r 41)′=0
得r 1=2
2r .
此时S =4π·22r ·r 2
-⎝ ⎛⎭
⎪⎫22r 2
=4π·22r ·2
2r =2πr 2. 二、填空题
15.做一个容积为256的方底无盖水箱,它的高为________时最省料.
[答案] 4
[解析] 设底面边长为x ,则高为h =256
x 2,其表面积为S =x 2+4×256x 2×x =x 2
+256×4x ,S ′=2x -256×4x 2,令S ′=0,则x =8,则当高h =256
64=4时S 取得最小值.
16.某厂生产某种产品x 件的总成本:C (x )=1 200+275x 3
,又产品单价的平方与产品件数x 成反比,生产100件这样的产品的单价为50元,总利润最大时,产量应定为________件.
[答案] 25
[解析] 设产品单价为a 元,又产品单价的平方与产品件数x 成反比,即a 2x =k ,
由题知a =500x .总利润y =500x -275x 3-1 200(x >0),y ′=250
x -
225x 2
,
由y ′=0,得x =25,x ∈(0,25)时,y ′>0,x ∈(25,+∞)时,y ′<0,所以x =25时,y 取最大值.
三、解答题
17.已知某厂生产x 件产品的成本为c =25 000+200x +140x 2(元). (1)要使平均成本最低,应生产多少件产品?
(2)若产品以每件500元售出,要使利润最大,应生产多少件产品?
[解析] (1)设平均成本为y 元,则
y =25 000+200x +1
40x 2
x =25 000x +200+x
40(x >0), y ′=⎝ ⎛⎭⎪⎫25 000x +200+x 40′=-25 000x 2+1
40. 令y ′=0,得x 1=1 000,x 2=-1 000(舍去). 当在x =1 000附近左侧时,y ′<0; 在x =1 000附近右侧时,y ′>0; 故当x =1 000时,y 取得极小值.
由于函数只有一个极小值点,那么函数在该点取得最小值,因此要使平均成本最低,应生产1 000件产品.
(2)利润函数为L =500x -(25 000+200x +x 2
40) =300x -25 000-x 2
40. ∴L ′=300-x
20.
令L ′=0,得x =6 000,当x 在6 000附近左侧时,L ′>0;当x 在6 000附近右侧时,L ′<0,故当x =6 000时,L 取得极大值.
由于函数只有一个使L ′=0的点,且函数在该点有极大值,那么函数在该点取得最大值.因此,要使利润最大,应生产6 000件产品.
18.已知圆柱的表面积为定值S ,求当圆柱的容积V 最大时圆柱的高h 的值.
[分析]将容积V表达为高h或底半径r的函数,运用导数求最值.由于表面积S=2πr2+2πrh,此式较易解出h,故将V的表达式中h消去可得V是r的函数.
[解析]设圆柱的底面半径为r,高为h,则S圆柱底=2πr2,
S圆柱侧=2πrh,∴圆柱的表面积S=2πr2+2πrh.
∴h=S-2πr2 2πr,
又圆柱的体积V=πr2h=r
2(S-2πr 2)=
rS-2πr3
2,V′=
S-6πr2
2,
令V′=0得S=6πr2,∴h=2r,
又r=S
6π,∴h=2
S
6π=
6πS
3π.
即当圆柱的容积V最大时,圆柱的高h为6πS 3π.。