结构力学章节习题及参考答案
- 格式:doc
- 大小:5.47 MB
- 文档页数:64
第三章 静定结构的位移计算一、判断题:1、虚位移原理等价于变形谐调条件,可用于求体系的位移。
2、按虚力原理所建立的虚功方程等价于几何方程。
3、在非荷载因素(支座移动、温度变化、材料收缩等)作用下,静定结构不产生内力,但会有位移且位移只与杆件相对刚度有关。
4、求图示梁铰C 左侧截面的转角时,其虚拟状态应取:A.;;B.D.C.=1=15、功的互等、位移互等、反力互等和位移反力互等的四个定理仅适用于线性变形体系。
6、已知M p 、M k 图,用图乘法求位移的结果为:()/()ωω1122y y EI +。
M kM p21y 1y 2**ωω( a )M =17、图a 、b 两种状态中,粱的转角ϕ与竖向位移δ间的关系为:δ=ϕ 。
8、图示桁架各杆E A 相同,结点A 和结点B 的竖向位移均为零。
Aaa9、图示桁架各杆EA =常数,由于荷载P 是反对称性质的,故结点B 的竖向位移等于零。
二、计算题:10、求图示结构铰A 两侧截面的相对转角ϕA ,EI = 常数。
qlll /211、求图示静定梁D 端的竖向位移 ∆DV 。
EI = 常数 ,a = 2m 。
a a a10kN/m12、求图示结构E 点的竖向位移。
EI = 常数 。
ll l /3/3q13、图示结构,EI=常数 ,M =⋅90kN m , P = 30kN 。
求D 点的竖向位移。
P 3m3m3m14、求图示刚架B 端的竖向位移。
q15、求图示刚架结点C 的转角和水平位移,EI = 常数 。
q16、求图示刚架中D点的竖向位移。
EI = 常数。
l/217、求图示刚架横梁中D点的竖向位移。
EI = 常数 。
18、求图示刚架中D点的竖向位移。
E I = 常数 。
qll/219、求图示结构A、B两截面的相对转角,EI = 常数 。
l/3l/320、求图示结构A 、B 两点的相对水平位移,E I = 常数。
ll21、求图示结构B 点的竖向位移,EI = 常数 。
结构力学章节已整理版在线测试题试题库及解答第四章影响线一、单项选择题1、平行弦梁式桁架(上、下节间对齐),当上弦承载和下弦承载时影响线不同的是那个A、上弦杆轴力影响线B、斜杆轴力影响线C、下弦杆轴力影响线D、竖杆轴力影响线2、带有静定部分的超静定梁,超静定部分的内力影响线的特点是A、在整个结构上都是曲线B、在整个结构上都是直线C、在静定部分上是直线,在超静定部分上是曲线D、在静定部分上是曲线,在超静定部分上是直线3、带有静定部分的超静定梁,静定部分的内力影响线的特点是A、在静定部分上是直线,在超静定部分上是零线B、在静定部分上是零线,在超静定部分上是直线C、在整个结构上都是曲线D、在整个结构上都是直线4、带有静定部分的超静定梁,静定部分的反力影响线的特点是A、在静定部分上是直线,在超静定部分上是零线B、在静定部分上是零线,在超静定部分上是直线C、在整个结构上都是曲线D、在整个结构上都是直线5、带有静定部分的超静定梁,超静定部分的支座反力影响线的特点是A、在静定部分上是直线,在超静定部分上是曲线B、在静定部分上是曲线,在超静定部分上是直线C、在整个结构上都是直线D、在整个结构上都是曲线6、简支梁C截面弯矩影响线中K点的竖标表示P=1作用在A、K点时产生的K截面的弯矩B、K点时产生的C截面的弯矩C、C点时产生的K截面的弯矩D、C点时产生的C截面的弯矩7、简支梁C截面剪力影响线中K点的竖标表示P=1作用在A、K点时产生的K截面的剪力B、K点时产生的C截面的剪力C、C点时产生的K截面的剪力D、C点时产生的C截面的剪力8、悬臂梁固定端截面的弯矩影响线的最大竖标在A、自由端截面为正值B、固定端截面为负值C、固定端截面为正值D、自由端截面为负值9、简支梁的弯矩影响线是A、一条直线B、三角形C、两条平行线D、抛物线10、外伸梁支座反力影响线形状特征是A、一条直线B、两条直线组成的折线C、两条平行线D、抛物线11、简支梁的反力影响线形状特征是A、一条直线B、三角形C、两条平行线D、抛物线12、外伸梁支座间的截面剪力影响线的形状特征是A、一条直线B、两条直线组成的折线C、两条平行线D、抛物线13、简支梁的剪力影响线的形状特征是A、一条直线B、三角形C、抛物线D、两条平行线14、外伸梁支座间的截面弯矩影响线是A、一条直线B、两条直线组成的折线C、两条平行线D、抛物线15、简支梁在结点荷载作用下,某节间截面K 截面剪力影响线的轮廓是A、主梁的虚位移图B、纵梁的虚位移图C、横梁的虚位移图D、两条平行线16、由主从结构的受力特点可知:附属部分的内力影响线在基本部分上A、全为零B、全为正C、全为负D、可正可负17、外伸梁上K截面内力影响线在K截面以里是全为零 B、全为正C、全为负D、可正可负18、由主从结构的受力特点可知:附属部分的反力影响线在基本部分上A、全为零B、全为正C、全为负D、可正可负19、结构上某量值的影响线的量纲是A、该量值的量纲B、该量值的量纲/[力]C、该量值的量纲×[力]D、该量值的量纲/[长度]二、多项选择题1、简支梁C截面的剪力影响线上,C左的竖标是a,C右的竖标是b,下列论述正确的是A、a为P=1在C左时产生的C截面剪力B、b为P=1在C右时产生的C截面剪力C、a为P=1在C点时产生的C左截面剪力D、b 为P=1在C点时产生的C右截面剪力E、a为P=1在C右时产生的C截面剪力标准答案 AB2、外伸梁伸臂上的截面剪力影响线是A、在该截面以外是一条斜直线B、在该截面以外是一条水平线C、在该截面以里是一条斜直线D、在该截面以里是一条水平线E、在该截面以里是零线标准答案 BE3、外伸梁伸臂上的截面弯矩影响线是A、在该截面以外是一条斜直线B、在该截面以外是一条水平线C、在该截面以里是一条斜直线D、在该截面以里是一条水平线E、在该截面以里是零线标准答案 AE4、外伸梁支座反力影响线的特点是A、一条直线B、两条直线组成的折线C、两条平行线D、该支座竖标为1E、其他支座竖标为零标准答案 ADE5、外伸梁支座间的截面剪力影响线是A、两条直线组成的折线B、一条直线C、两条平行线D、抛物线E、在支座处竖标为零标准答案 CE 、外伸梁支座处截面弯矩影响线的形状特点是A、在该支座处竖标为零B、另支座处竖标为零C、该支座以外是一条直线D、该支座以里是零线E、一条直标准答案 ABCD6、外伸梁支座间的截面弯矩影响线的特点是A、在支座处竖标为零B、抛物线C、两条平行线D、两条直线组成的折线E、一条直线标准答案 AD7、下列哪些影响线在相邻节点之间必为一直线A、静定桁架B、超静定桁架C、静定梁在节点荷载作用下D、超静定梁在节点荷载作用下E、静定刚架标准答案 ABCD8、带有静定部分的超静定梁,静定部分的内力影响线的特点是A、在整个结构上都是曲线B、在整个结构上都是直线C、在静定部分上是直线D、在超静定部分上是零线E、在静定部分上是零线F、在超静定部分上是直线标准答案 CD9、带有静定部分的超静定梁,超静定部分的内力影响线的特点是A、在整个结构上都是曲线B、在整个结构上都是直线C、在静定部分上是直线D、在超静定部分上是曲线E、在静定部分上是曲线F、在超静定部分上是直线标准答案 CD10、绘制影响线的方法有A、静力法B、机动法C、力法D、力位移法E、力矩分配法标准答案 AB11、下列哪些量值的影响线是无量纲的A、支座反力B、剪力C、弯矩D、轴力E、约束力矩标准答案 ABD12、下列哪些量值的影响线是长度量纲A、支座反力B、剪力C、弯矩D、轴力E、约束力矩标准答案 CE13、简支梁的影响线的特点是A、反力影响线是一条直线B、弯矩影响线是折线C、剪力影响线是平行线D、内力影响线是直线E、反力影响线是曲线标准答案 ABC14、简支梁在直接荷载和结点荷载作用下哪些量值的影响线相同A、左支座反力B、右支座反力C、结点处弯矩D、非结点处弯矩E、非结点处剪力标准答案 ABC15、伸臂梁上哪些量值的影响线可由相应简支梁的影响线想伸臂上延伸得到A、支座反力B、两支座间截面剪力C、两支座间截面弯矩D、伸臂上截面剪力E、伸臂上截面弯矩标准答案 ABC三、判断题1、简支梁C截面弯矩影响线中K点的竖标表示P=1作用在K点时产生的K截面的弯矩。
第三章 静定结构的位移计算一、判断题:1、虚位移原理等价于变形谐调条件,可用于求体系的位移。
2、按虚力原理所建立的虚功方程等价于几何方程。
3、在非荷载因素(支座移动、温度变化、材料收缩等)作用下,静定结构不产生内力,但会有位移且位移只与杆件相对刚度有关。
4、求图示梁铰C 左侧截面的转角时,其虚拟状态应取:A.;;B.D.C.=15、功的互等、位移互等、反力互等和位移反力互等的四个定理仅适用于线性变形体系。
6、已知M p 、M k 图,用图乘法求位移的结果为:()/()ωω1122y y EI +。
M kM p21y 1y 2**ωω( a )M =17、图a、b两种状态中,粱的转角ϕ与竖向位移δ间的关系为:δ=ϕ。
8、图示桁架各杆E A相同,结点A和结点B的竖向位移均为零。
a a9、图示桁架各杆EA =常数,由于荷载P是反对称性质的,故结点B的竖向位移等于零。
二、计算题:10、求图示结构铰A两侧截面的相对转角ϕA,EI = 常数。
ql l l/211、求图示静定梁D端的竖向位移∆DV。
EI=常数,a= 2m 。
a a a10kN/m12、求图示结构E点的竖向位移。
EI=常数。
ll l l /32 /3/3q13、图示结构,EI=常数 ,M =⋅90kN m , P = 30kN 。
求D 点的竖向位移。
P 3m3m3m14、求图示刚架B 端的竖向位移。
q15、求图示刚架结点C 的转角和水平位移,EI = 常数 。
q16、求图示刚架中D 点的竖向位移。
EI = 常数 。
l/217、求图示刚架横梁中D点的竖向位移。
EI = 常数。
18、求图示刚架中D点的竖向位移。
EI =常数。
qll l/2219、求图示结构A、B两截面的相对转角,EI=常数。
l/23l/320、求图示结构A、B两点的相对水平位移,E I= 常数。
ll21、求图示结构B点的竖向位移,EI =常数。
l lﻩ22、图示结构充满水后,求A、B两点的相对水平位移。
构造力学习题第2章平面体系的几何组成分析2-1~2-6 试确定图示体系的计算自由度。
题2-1图题2-2图题2-3图题2-4图题2-5图题2-6图2-7~2-15 试对图示体系进展几何组成分析。
假设是具有多余约束的几何不变体系,那么需指明多余约束的数目。
题2-7图题2-8图题2-9图题2-10图题2-11图题2-12图题2-13图题2-14图题2-15图题2-16图题2-17图题2-18图题2-19图题2-20图题2-21图2-11=W2-1 9-W=2-3 3-W=2-4 2-W=2-5 1-W=2-6 4-W=2-7、2-8、2-12、2-16、2-17无多余约束的几何不变体系2-9、2-10、2-15具有一个多余约束的几何不变体系2-11具有六个多余约束的几何不变体系2-13、2-14几何可变体系为2-18、2-19 瞬变体系2-20、2-21具有三个多余约束的几何不变体系第3章静定梁和静定平面刚架的内力分析3-1 试作图示静定梁的内力图。
〔a〕〔b〕(c) (d)习题3-1图3-2 试作图示多跨静定梁的内力图。
〔a〕〔b〕(c)习题3-2图3-3~3-9 试作图示静定刚架的内力图。
习题3-3图习题3-4图习题3-5图习题3-6图习题3-7图习题3-8图习题3-9图3-10 试判断图示静定构造的弯矩图是否正确。
(a)(b)(c)(d)局部习题答案3-1〔a 〕m kN M B ⋅=80〔上侧受拉〕,kN F RQB 60=,kN F L QB 60-=〔b 〕m kN M A ⋅=20〔上侧受拉〕,m kN M B ⋅=40〔上侧受拉〕,kN F RQA 5.32=,kN F L QA 20-=,kN F LQB 5.47-=,kN F R QB 20=(c)4Fl M C =〔下侧受拉〕,θcos 2F F L QC =3-2 (a)0=E M ,m kN M F ⋅-=40〔上侧受拉〕,m kN M B ⋅-=120〔上侧受拉〕〔b 〕m kN M RH ⋅-=15(上侧受拉),m kN M E ⋅=25.11〔下侧受拉〕〔c 〕m kN M G ⋅=29(下侧受拉),m kN M D ⋅-=5.8(上侧受拉),m kN M H ⋅=15(下侧受拉) 3-3 m kN M CB ⋅=10〔左侧受拉〕,m kN M DF ⋅=8〔上侧受拉〕,m kN M DE ⋅=20〔右侧受拉〕 3-4 m kN M BA ⋅=120〔左侧受拉〕3-5 m kN M F ⋅=40〔左侧受拉〕,m kN M DC ⋅=160〔上侧受拉〕,m kN M EB ⋅=80(右侧受拉) 3-6 m kN M BA ⋅=60〔右侧受拉〕,m kN M BD ⋅=45〔上侧受拉〕,kN F QBD 46.28=3-7 m kN M C ⋅=70下〔左侧受拉〕,m kN M DE ⋅=150〔上侧受拉〕,m kN M EB ⋅=70(右侧受拉) 3-8 m kN M CB ⋅=36.0〔上侧受拉〕,m kN M BA ⋅=36.0〔右侧受拉〕 3-9 m kN M AB ⋅=10〔左侧受拉〕,m kN M BC ⋅=10〔上侧受拉〕 3-10 〔a 〕错误 〔b 〕错误 〔c 〕错误 〔d 〕正确第4章 静定平面桁架和组合构造的内力分析4-1 试判别习题4-1图所示桁架中的零杆。
第三章 静定结构的位移计算一、判断题:1、虚位移原理等价于变形谐调条件,可用于求体系的位移。
2、按虚力原理所建立的虚功方程等价于几何方程。
3、在非荷载因素(支座移动、温度变化、材料收缩等)作用下,静定结构不产生内力,但会有位移且位移只与杆件相对刚度有关。
4、求图示梁铰C 左侧截面的转角时,其虚拟状态应取:A.;; B.D.C.M =15、功的互等、位移互等、反力互等和位移反力互等的四个定理仅适用于线性变形体系。
6、已知M p 、M k 图,用图乘法求位移的结果为:()/()ωω1122y y EI +。
M k M p 21y 1y 2**ωω( a )M 17、图a 、b 两种状态中,粱的转角ϕ与竖向位移δ间的关系为:δ=ϕ 。
8、图示桁架各杆E A 相同,结点A 和结点B 的竖向位移均为零。
a a9、图示桁架各杆EA =常数,由于荷载P 是反对称性质的,故结点B 的竖向位移等于零。
二、计算题:10、求图示结构铰A 两侧截面的相对转角ϕA ,EI = 常数。
q l l l /211、求图示静定梁D 端的竖向位移 ∆DV 。
EI = 常数 ,a = 2m 。
a a a 10kN/m12、求图示结构E 点的竖向位移。
EI = 常数 。
l l l l /3 2 /3/3q13、图示结构,EI=常数 ,M =⋅90kN m , P = 30kN 。
求D 点的竖向位移。
P 3m 3m 3m14、求图示刚架B 端的竖向位移。
q15、求图示刚架结点C 的转角和水平位移,EI = 常数 。
16、求图示刚架中D点的竖向位移。
EI =常数。
l ll/217、求图示刚架横梁中D点的竖向位移。
EI=常数。
18、求图示刚架中D点的竖向位移。
E I = 常数。
qll l/l/2219、求图示结构A、B两截面的相对转角,EI=常数。
l/23l/320、求图示结构A、B两点的相对水平位移,E I = 常数。
ll21、求图示结构B点的竖向位移,EI = 常数。
结构力学各章自测题及答案结构力学自测题(第一单元)几何组成分析姓名学号一、是非题(将判断结果填入括弧:以O 表示正确,以X 表示错误)1、图中链杆1 和2 的交点O可视为虚铰。
()O2、两刚片或三刚片组成几何不变体系的规则中,不仅指明了必需的约束数目,而且指明了这些约束必须满足的条件。
()3、在图示体系中,去掉1 —5 ,3 —5 ,4 —5 ,2 —5 ,四根链杆后,得简支梁12 ,故该体系为具有四个多余约束的几何不变体系。
()123454、几何瞬变体系产生的运动非常微小并很快就转变成几何不变体系,因而可以用作工程结构。
()5、图示体系为几何可变体系。
()6、图示体系是几何不变体系。
()7、图示体系是几何不变体系。
()二、选择题(将选中答案的字母填入括弧内)1、图示体系虽有3 个多余约束,但为保证其几何不变,哪两根链杆是不能同时去掉的。
A. a 和e ;B. a 和b ;C. a 和c ;D. c 和e 。
()e bdc a2、欲使图示体系成为无多余约束的几何不变体系,则需在A 端加入:A.固定铰支座;B.固定支座;C.滑动铰支座;D.定向支座。
()A3、图示体系的几何组成为:A.几何不变,无多余约束;B.几何不变,有多余约束;C.瞬变体系;D.常变体系。
()4、(题同上)()5、(题同上)()6、(题同上)()三、填充题(将答案写在空格内)1、图示体系是____________________________________ 体系。
2.图示体系是____________________________________ 体系。
3.图示体系是____________________________________ 体系。
四、分析图示平面体系的几何组成。
1.2.( 图中未编号的点为交叉点。
)A B CDFE3.( 图中未画圈的点为交叉点。
)五.试分析图示体系的几何组成。
结构力学自测题(第二单元)静定梁、刚架内力计算姓名学号一、是非题(将判断结果填入括弧:以O 表示正确,以X 表示错误)1、在静定刚架中,只要已知杆件两端弯矩和该杆所受外力,则该杆内力分布就可完全确定。
结构力学课后习题答案结构力学是一门研究结构在外力作用下的内力、变形和稳定性的学科。
课后习题是帮助学生巩固理论知识和提高解题技巧的重要环节。
以下是一些结构力学课后习题的参考答案,供学习者参考:第一章:结构力学基础1. 静定结构与超静定结构的区别:静定结构是指在已知外力作用下,其内力和位移可以通过静力平衡方程和几何关系唯一确定的结构。
超静定结构则是指静力平衡方程和几何关系不足以唯一确定其内力和位移的结构。
2. 弯矩图的绘制方法:绘制弯矩图首先需要确定结构的支反力,然后通过截面平衡条件,逐步求出各截面的弯矩值,并将其绘制成图形。
第二章:静定梁的内力分析1. 简支梁的内力计算:对于简支梁,可以通过静力平衡条件和截面平衡条件来计算梁的内力,包括剪力和弯矩。
2. 悬臂梁的内力计算:悬臂梁的内力计算需要考虑梁端的外力和力矩,通过静力平衡条件求解。
第三章:静定桁架的内力分析1. 节点法的应用:节点法是通过在桁架的节点上施加平衡条件来求解节点的反力,进而求得杆件的内力。
2. 截面法的应用:截面法是通过选取桁架的某一截面,对该截面进行平衡分析,求得截面两侧杆件的内力。
第四章:静定拱的内力分析1. 三铰拱的内力计算:三铰拱的内力计算通常需要利用静力平衡条件和几何关系,计算出拱的反力和弯矩。
2. 双铰拱和无铰拱的内力特点:双铰拱和无铰拱的内力计算更为复杂,需要考虑更多的平衡条件和几何关系。
第五章:超静定结构的内力分析1. 力法的应用:力法是通过建立力的平衡方程来求解超静定结构的内力,通常需要引入多余未知力。
2. 位移法的应用:位移法是通过建立位移的平衡方程来求解超静定结构的内力,通常需要引入位移未知数。
第六章:结构的稳定性分析1. 欧拉临界载荷的计算:欧拉临界载荷是指细长杆件在轴向压力作用下失稳的临界载荷,可以通过欧拉公式计算。
2. 非线性稳定性分析:对于非线性问题,稳定性分析需要考虑材料的非线性特性和几何非线性,通常需要采用数值方法求解。