静定梁与静定刚架习题课
- 格式:ppt
- 大小:1.54 MB
- 文档页数:49
第3章 静定梁与静定刚架
3.1 复习笔记【知识框架】
【重点难点归纳】
一、单跨静定梁 ★★★★
1.内力
表3-1-1 内力的基本概念
图3-1-1
图3-1-22.内力与外力间的微分关系及积分关系(1)由平衡条件导出的微分关系式
计算简图如图3-1-3所示,微分关系式为
(Ⅰ)
d d d d d d s
s N
F q x
x M F
x F p x
x ⎧=⎪⎪⎪=
⎨⎪⎪=-⎪⎩-()()
图3-1-3
(2)荷载与内力之间的积分关系
如图3-1-4
所示,结合式(Ⅰ)可得梁的内力积分公式,积分公式及其几何意义见表3-1-2。
图3-1-4
表3-1-2 内力的积分公式及几何意义
3.叠加法作弯矩图
表3-1-3 常用叠加法及其作图步骤
图3-1-5
图3-1-6
二、多跨静定梁 ★★★★
多跨静定梁是由构造单元(如简支梁、悬臂梁)多次搭接而成的几何不变体系,其计算简图见图3-1-7,几何构造、计算原则、传力关系见表3-1-4。
长沙理工结构力学期末考试题库和答案第二章静定梁与钢架结构力学超静定第二章静定梁及静定刚架一、判断题1.静定结构在荷载作用下产生的内力与杆件弹性常数、截面尺寸无关。
( O )2.计算位移时,对称的静定结构是指杆件几何尺寸、约束、刚度均对称的结构。
( O ) 3.静定结构在支座移动、变温及荷载分别作用下,均产生位移和内力。
( X )4.几何不变体系一定是静定结构。
( X )25.图示结构 MK = ql/2(内侧受拉)。
( X )q6.图示结构中 AB 杆弯矩为零。
( X ) q7.图示结构中 |MAC|=|MBD|。
( O )|8.图示结构中 |MAC|=|MBD。
( O )l9.图示结构 M 图的形状是正确的。
( X ) M 图 10.图示结构|MC|=0 。
( O)11.图示结构中 A、B 支座反力均为零。
d二、选择题12.静定结构有变温时:( C )A. 无变形,无位移,无内力;B. 有变形,有位移,有内力;C. 有变形,有位移,无内力;D. 无变形,有位移,无内力。
13.静定结构在支座移动时:( D )A. 无变形,无位移,无内力;B. 有变形,有位移,有内力;C. 有变形,有位移,无内力; D 无变形,有位移,无内力。
O )(14.静定结构的内力计算与( A )A. EI 无关;B. EI 相对值有关;C. EI 绝对值有关;D. E 无关, I 有关。
15.图示结构MA 、MC (设下面受拉为正)为:( C )A.MA =0 ,MC=Pa/2 ;B.MA =2Pa ,MC=2Pa ;C.MA =Pa ,MC=Pa ;D.MA =-Pa,MC=Pa 。
16.图示结构 MA、 MB (设以内侧受拉为正)为:( DA. MA=-Pa , MB =Pa;B. MA=0 , MB =-Pa ;C. MA=Pa ,MB =Pa ;D.MA=0 , MB =Pa 。
17.图示结构 B 点杆端弯矩(设内侧受拉为正)为:( C )A.MBA = Pa, MBC = -Pa ;B.MBA = MBC = 2Pa;C. MBA = MBC = Pa ;D.MBA = MBC = 0 。
【1】 梁AB 一端为固定端支座,另一端无约束,这样的梁称为悬臂梁。
它承受均布荷载q 和一集中力P 的作用,如图4-9(a )所示。
已知P =10kN , q =2kN/m ,l =4m ,︒=45α,梁的自重不计,求支座A 的反力。
【解】:取梁AB 为研究对象,其受力图如图4-9(b )所示。
支座反力的指向是假定的,梁上所受的荷载和支座反力组成平面一般力系。
在计算中可将线荷载q 用作用其中心的集中力2qlQ =来代替。
选取坐标系,列平衡方程。
)(kN 07.7707.010cos 0cos - 0A A →=⨯====∑ααP X P X X)(kN 07.11707.010242sin 2 0sin 2 0A A ↑=⨯+⨯=+==--=∑ααP ql Y P qlY Y )( m kN 28.404707.0108423sin 83 0sin 422ql 022A A ⋅=⨯⨯+⨯⨯=⋅+==⋅-⎪⎭⎫⎝⎛+-=∑l P ql m l P l l m M A αα力系既然平衡,则力系中各力在任一轴上的投影代数和必然等于零,力系中各力对任一点之矩的代数和也必然为零。
因此,我们可以列出其它的平衡方程,用来校核计算有无错误。
校核028.40407.114424242A A B =+⨯-⨯⨯=+⋅-⨯=∑m l Y l ql M 可见,Y A 和m A 计算无误。
【2】 钢筋混凝土刚架,所受荷载及支承情况如图4-12(a )所示。
已知kN 20 m,kN 2 kN,10 kN/m,4=⋅===Q m P q ,试求支座处的反力。
【解】:取刚架为研究对象,画其受力图如图4-12(b )所示,图中各支座反力指向都是假设的。
本题有一个力偶荷载,由于力偶在任一轴上投影为零,故写投影方程时不必考虑力偶,由于力偶对平面内任一点的矩都等于力偶矩,故写力矩方程时,可直接将力偶矩m 列入。
设坐标系如图4-12(b )所示,列三个平衡方程)(kN 3446106 06 0A A ←-=⨯--=--==++=∑q P X q P X X)(kN 296418220310461834 036346 0B B A ↑=⨯++⨯+⨯=+++==⨯--⨯-⨯-⨯=∑q m Q P Y q m Q P Y M)(kN 92920 00B A B A ↓-=-=-==-+=∑Y Q Y Q Y Y Y校核3462203102)9(6)34(6363266 C=⨯⨯+-⨯+⨯+-⨯--⨯=⨯+-++-=∑qmQPYXMAA说明计算无误。
第3章静定梁与静定刚架复习思考题1.用叠加法作弯矩图时,为什么是竖标的叠加,而不是图形的拼合?答:因为有时叠加弯矩图时的基线与杆轴不重合,如果用图形拼合,不能完全保证叠加后弯矩值是实际同一点的两个弯矩相加后的值。
2.为什么直杆上任一区段的弯矩图都可以用简支梁叠加法来作?其步骤如何?答:(1)因为根据内力分析可以求出直杆任一区段两端的内力,所以直杆任一区段两端均可以看成两端有外力(集中力或集中力偶)的简支梁。
(2)设有直杆任一区段简支梁AB,具体步骤如下①分解作用区段AB上的荷载;②分别作出分解荷载下的弯矩图;③求解出区段AB两端的弯矩M A和M B;④将两端弯矩M A和M B绘出并连以直线(虚线);⑤以步骤④中的虚线为基线叠加各个分解荷载下的弯矩图(竖标叠加),得最终弯矩图。
3.试判断图3-1所示刚架中截面A、B、C的弯矩受拉边和剪力、轴力的正负号。
图3-1答:轴力以受压为负,受拉为正;剪力以使截面顺时针旋转为正。
(1)截面A:左边受拉,剪力为负,轴力为负;(2)截面B:右边受拉,剪力为正,轴力为正;(3)截面C:左边受拉,剪力为正,轴力为正。
4.怎样根据静定结构的几何构造情况(与地基按两刚片、三刚片规则组成,或具有基本部分与附属部分等)来确定计算反力的顺序和方法?答:(1)与地基按两刚片,例如简支梁,支座反力只有三个,对某一端点取矩直接解除约束反力。
(2)与地基按三刚片规则组成,例如三铰刚架,支座反力有四个,考虑结构整体的三个平衡方程外,还需再取刚架的左半部(或右半部,一般取外荷载较少部分)为隔离体建立一个平衡方程方可求出全部反力。
(3)具有基本部分与附属部分时,按先附属后基本的计算顺序,求解支座反力。
5.当不求或少求反力而迅速作出弯矩图时,有哪些规律可以利用?答:当不求或少求反力而迅速作出弯矩图时,如下规律可以利用(1)结构上若有悬臂部分及简支梁部分(含两端铰接直杆承受横向荷载)弯矩图可先行绘制出;(2)直杆的无荷区段弯矩图为直线和铰处弯矩为零;(3)刚结点的力矩平衡条件;(4)外力与杆轴重合时不产生弯矩;(5)外力与杆轴平行及外力偶产生的弯矩为常数;(6)对称性的合理利用;(7)区段叠加法作弯矩图。
说明:(1) 总成绩构成:平时作业20分,机考20分,期末考试60分,合计共100分。
(2) 机考题型分二类,一、判断题(10分);二、选择题(10分)。
(3) 机考题库一为判断题已有120题,机考题库二为选择题已有110题。
(4) 机考时,每位学生从题库一、二中各随机抽取6题,共作12题,每小题2分,满分20分。
机考时间为一节课(30分钟)A、B、C、D四选一选择题(已有110题,待补充)二、静定梁与刚架(已有19题)1.图示结构中,B点处两杆端的杆端弯矩(设内侧受拉为正)为:( C )A. M BA = Fa,M BC = -Fa;B. M BA =2Fa,M BC = -2Fa;C. M BA = M BC = Fa;D. M BA = M BC = 0。
2.图示结构BA杆B端的杆端弯矩M BA(设左侧受拉为正)为:( C )A. 2Fa;B. Fa;C. 3Fa;D. -3Fa。
3.图示结构杆端弯矩M BA(设左侧受拉为正)为:( B )A. -Fa;B. Fa;C. -2Fa;D. 2Fa。
4.静定结构的内力分布,与:( A )A. EI无关;B. EI相对值有关;C. EI绝对值有关;D. E无关,I有关。
5.图示结构C截面的弯矩M C(设下侧受拉为正)为:( B )A. M C = 0;B. M C = +Fa;C. M C = -Fa;D. M C = +Fa/2。
6.图示结构杆端A的弯矩M A(设下侧受拉为正)为:( B ) A. M A = 0;B. M A = +Fa;C. M A = -Fa;D. M A = +2Fa。
7.在图示结构中:( B )A. ABC段有内力;B. ABC段无内力;C. CDE段无内力;D. 全梁无内力。
8.图示结构中,支座A发生转动ϕ,则:( D )A. ABC部分有内力,CD部分有内力;B. ABC部分无内力,CD部分有内力;C. ABC部分有内力,CD部分无内力;D. ABC部分无内力,CD部分无内力。
§3-1 单跨静定梁1 反力的求解简支梁伸臂梁悬臂梁 三个支座反力,可由三个平衡方程求解2 截面法求内力轴力(N)—截面一侧所有外力沿杆轴方向投影的代数 和。
以拉为正,压为负。
N+N剪力(Q)—截面一侧所有外力沿垂直杆轴方向投影的 代数和。
使隔离体顺时针转为正,逆时针转为负。
Q+Q弯矩(M)—截面一侧所有外力对截面形心力矩的代数 和。
弯矩图画在杆件的受拉侧!!!截面法—将指定截面切开,取截面任一侧部 分为隔离体,利用平衡条件求得内力。
P1 A由∑X=0 得 HA 由∑MB=0 得 VAP2K由∑Y=0 得 VBBP1HA VA A K QM N步骤:先求反力,再求指定截面的内力。
隔离体与周围约束要全部截断,用相应的约束力代替。
约束力要符合约束力的性质: 链杆: 轴力受弯杆件:轴力、剪力、弯矩 只画隔离体本身所受的荷载与截断约束处的约束力。
未知力假设为正方向,已知外力按实际方向画出。
任 意 截 面{轴力=截面一侧所有轴线方向力的代数和 剪力=截面一侧所有垂直轴线方向力的代数和 弯矩=截面一侧所有力对截面取矩的代数和例:求M、 Q、 N值。
A FP1=10kN C2m 2m FP2=5kNB解:1) 求支反力FxA FP1=10kN FP2=5kN FyBFyA∑Fx=0 ∑MA=0 ∑Fy=0FxA=-5kN ( ) FyB =5kN ( ) FyA =5kN ( )2)取隔离体,求C左截面内力左部分为隔离体 MCL LA5kN 5kNCNCLQC∑ FX = 0 ∑ FY = 0 ∑MX = 0L N C = 5 KN L Q C = 5 KN L M C = 10 KN ⋅ m3)取隔离体,求C右截面内力 右部分为隔离体 NCRMCRCRB5kNQC∑ FX = 0 ∑ FY = 04)画内力图 M图10kN⋅ mR NC = 0 R Q C = −5 KN R M C = 10 KN ⋅ m∑MX=0Q N5kN5kNAaPb lBPb lPab lPa lq AlBql 2ql 82ql 2a m lm Aa l bBm lb m lm l内力图-表示结构上各 截面内力数值的图形 P 横坐标--截面的位置 A 纵坐标--内力的数值a l bPbB弯矩图—必须绘在 杆件受拉的一侧, 不须标正负号。