最小费用最大流问题问题5
- 格式:ppt
- 大小:2.25 MB
- 文档页数:4
网络流:最小费用最大流(最简单的算法)最小费用流在OI 竞赛中应当算是比较偏门的内容,但是NOI2008 中employee 的突然出现确实让许多人包括zkw 自己措手不及。
可怜的zkw 当时想出了最小费用流模型,可是他从来没有实现过,所以不敢写,此题0 分。
zkw 现在对费用流的心得是:虽然理论上难,但是写一个能AC 题的费用流还算简单。
先贴一个我写的employee 程序:只有不到70 行,费用流比最大流还好写~程序代码:C++#include <cstdio>#include <cstring>using namespace std;const int maxint=~0U>>1;int n,m,pi[550]={0},cost=0;bool v[550]={0};struct etype{int t,c,u;etype *next,*pair;etype(){}etype(int t_,int c_,int u_,etype* next_):t(t_),c(c_),u(u_),next(next_){}void* operator new(unsigned,void* p){return p;}} *e[550],*eb[550];int aug(int no,int m){if(no==n)return cost+=pi[1]*m,m;v[no]=true;for(etype *&i=e[no];i;i=i->next)if(i->u && !v[i->t] && pi[i->t]+i->c==pi[no])if(int d=aug(i->t,m<i->u?m:i->u))return i->u-=d,i->pair->u+=d,d;return 0;}bool modlabel(){int d=maxint,c;for(int i=1;i<=n;++i)if(v[i])for(etype *j=eb[i];j;j=j->next)if(j->u && !v[j->t])if((c=j->c-pi[i]+pi[j->t])<d)d=c;if(d==maxint)return false;for(int i=1;i<=n;++i)if(v[i])pi[i]+=d,e[i]=eb[i];return true;}int main(){freopen("costflow.in","r",stdin);freopen("costflow.out","w",stdout);scanf("%d %d",&n,&m);etype *Pe=new etype[m+m];while(m--){int s,t,c,u;scanf("%d%d%d%d",&s,&t,&u,&c);e[s]=new(Pe++)etype(t, c,u,e[s]);e[t]=new(Pe++)etype(s,-c,0,e[t]);e[s]->pair=e[t];e[t]->pair=e[s];}memmove(eb,e,sizeof(e));do do memset(v,0,sizeof(v));while(aug(1,maxint));while(modlabel());printf("%d\n",cost);return 0;}程序代码:CB大牛翻译的PASCALvarn,m,i,l,s,t,c,cost,u:longint;v:array[0..600]of boolean;dis:array[0..600]of longint;e_n,e_t,e_c,e_u,e_p,e_x:array[0..250000]of longint;function min(a,b:longint):longint;beginif a>b then exit(b);exit(a);end;procedure addedge(s,t,c,u,k:longint);begininc(l);e_n[l]:=e_n[s];e_n[s]:=l;//下一条边e_t[l]:=t;//边的另一端e_c[l]:=c;//边的费用e_u[l]:=u;//边的容量e_p[l]:=l+k;//对应的边end;procedure build(s,t,c,u:longint);beginaddedge(s,t,c,u,1);addedge(t,s,-c,0,-1);end;function aug(no,m:longint):longint;vari,d:longint;beginif no=n then begininc(cost,m*dis[1]);exit(m);end;v[no]:=true;i:=e_x[no];while i<>0 do beginif (e_u[i]>0)and(not v[e_t[i]])and(dis[e_t[i]]+e_c[i]=dis[no]) then begind:=aug(e_t[i],min(m,e_u[i]));if d>0 then begindec(e_u[i],d);inc(e_u[e_p[i]],d);e_x[no]:=i;exit(d);end;end;i:=e_n[i];end;e_x[no]:=i;exit(0);end;function modlabel:boolean;vard,i,j:longint;begind:=maxlongint;for i:=1 to n do if v[i] then beginj:=e_n[i];while j<>0 do beginif (e_u[j]>0)and(not v[e_t[j]])and(e_c[j]-dis[i]+dis[e_t[j]]<d) then d:=e_c[j]-dis[i]+dis[e_t[j]];j:=e_n[j];end;end;if d=maxlongint then exit(true);for i:=1 to n do if v[i] then beginv[i]:=false;inc(dis[i],d);end;exit(false);end;beginassign(input,'coflow.in');reset(input);assign(output,'coflow.out');rewrite(output);readln(n,m);l:=n;for m:=m downto 1 do beginreadln(s,t,u,c);build(s,t,c,u);end;repeatfor i:=1 to n do e_x[i]:=e_n[i];while aug(1,maxlongint)>0 do fillchar(v,sizeof(v),0);until modlabel;writeln(cost);close(output);end.这里使用的是连续最短路算法。
北京联合大学实验报告项目名称: 运筹学专题实验报告学院: 自动化专业:物流工程班级: 1201B 学号:2012100358081 姓名:管水城成绩:2015 年 5 月 6 日实验三:使用matlab求解最小费用最大流算问题一、实验目的:(1)使学生在程序设计方面得到进一步的训练;,学习Matlab语言进行程序设计求解最大流最小费用问题。
二、实验用仪器设备、器材或软件环境计算机,Matlab R2006a三、算法步骤、计算框图、计算程序等1.最小费用最大流问题的概念。
在网络D(V,A)中,对应每条弧(vi,vj)IA,规定其容量限制为cij(cij\0),单位流量通过弧(vi,vj)的费用为dij(dij\0),求从发点到收点的最大流f,使得流量的总费用d(f)为最小,即mind(f)=E(vi,vj)IA2。
求解原理。
若f是流值为W的所有可行流中费用最小者,而P是关于f的所有可扩充链中费用最小的可扩充链,沿P以E调整f得到可行流fc,则fc是流值为(W+E)的可行流中的最小费用流.根据这个结论,如果已知f是流值为W的最小费用流,则关键是要求出关于f 的最小费用的可扩充链。
为此,需要在原网络D的基础上构造一个新的赋权有向图E(f),使其顶点与D的顶点相同,且将D中每条弧(vi,vj)均变成两个方向相反的弧(vi,vj)和(vj,vi)1新图E(f)中各弧的权值与f中弧的权值有密切关系,图E(f)中各弧的权值定义为:新图E(f)中不考虑原网络D中各个弧的容量cij。
为了使E(f)能比较清楚,一般将长度为]的弧从图E(f)中略去.由可扩充链费用的概念及图E(f)中权的定义可知,在网络D中寻求关于可行流f的最小费用可扩充链,等价于在图E(f)中寻求从发点到收点的最短路.因图E(f)中有负权,所以求E(f)中的最短路需用Floyd算法。
1.最小费用流算法的框图描述。
图一2.计算最小费用最大流MATLAB源代码,文件名为mp_mc.mfunction[Mm,mc,Mmr]=mp_mc(a,c)A=a; %各路径最大承载流量矩阵C=c; %各路径花费矩阵Mm=0; %初始可行流设为零mc=0; %最小花费变量mcr=0;mrd=0;n=0;while mrd~=inf %一直叠代到以花费为权值找不到最短路径for i=1:(size(mcr’,1)—1)if a(mcr(i),mcr(i+1))==infta=A(mcr(i+1),mcr(i))—a(mcr(i+1),mcr(i)); elseta=a(mcr(i),mcr(i+1));endn=min(ta,n);%将最短路径上的最小允许流量提取出来endfor i=1:(size(mcr’,1)-1)if a(mcr(i),mcr(i+1))==infa(mcr(i+1),mcr(i))=a(mcr(i+1),mcr(i))+n;elsea(mcr(i),mcr(i+1))=a(mcr(i),mcr(i+1))—n;endendMm=Mm+n;%将每次叠代后增加的流量累加,叠代完成时就得到最大流量 for i=1:size(a,1)for j=1:size(a’,1)if i~=j&a(i,j)~=infif a(i,j)==A(i,j) %零流弧c(j,i)=inf;c(i,j)=C(i,j);elseif a(i,j)==0 %饱合弧c(i,j)=inf;c(j,i)=C(j,i);elseif a(i,j)~=0 %非饱合弧c(j,i)=C(j,i);c(i,j)=C(i,j);endendendend[mcr,mrd]=floyd_mr(c) %进行叠代,得到以花费为权值的最短路径矩阵(mcr)和数值(mrd)n=inf;end%下面是计算最小花费的数值for i=1:size(A,1)for j=1:siz e(A’,1)if A(i,j)==infA(i,j)=0;endif a(i,j)==infa(i,j)=0;endendendMmr=A—a; %将剩余空闲的流量减掉就得到了路径上的实际流量,行列交点处的非零数值就是两点间路径的实际流量for i=1:size(Mmr,1)for j=1:size(Mmr’,1)if Mmr(i,j)~=0mc=mc+Mmr(i,j)*C(i,j);%最小花费为累加各条路径实际流量与其单位流量花费的乘积endendend利用福得算法计算最短路径MATLAB源代码,文件名为floyd_mr。
bp算法例题
以下是BP算法的一些例题:
1. 最小生成树:
设网络有n个节点,有m条边,求网络中最小的生成树。
步骤:
- 设BP机初始状态为全0,初始权重为0
- 从根节点开始遍历网络,每次更新当前节点的最小权重向量,同时记录当前节点的前缀和
- 对于每个相邻节点,计算它的最小权重向量与当前节点的最小权重向量的商,得到当前节点的权重向量
- 根据权重向量更新生成树
- 重复步骤直到生成树为空
2. 最短路径问题:
设网络有n个节点,有m条边,求网络中从任意一个节点到另一个节点的最短路径。
步骤:
- 设BP机初始状态为全0,初始权重为0
- 从任何节点开始遍历网络,每次更新当前节点的最小权重向量,记录当前节点的前缀和
- 计算从当前节点到另一个节点的最短路径
- 根据最短路径更新权重向量,并返回最短路径
3. 最小费用最大流问题:
设网络有n个节点,有m条边,求网络中从任意一个节点去往另一个节点的最小费用最大流。
步骤:
- 设BP机初始状态为全0,初始权重为0
- 从任何节点开始遍历网络,每次更新当前节点的最小权重向量,记录当前节点的前缀和
- 计算从当前节点去往另一个节点的最小费用最大流
- 根据最小费用最大流更新权重向量,并返回最小费用最大流
这些例题只是BP算法的一些典型应用,实际上BP算法还可以用于解决其他类型的问题,例如网络拓扑优化、约束优化等。
最小费用最大流问题例题讲解
最小费用最大流问题(Minimum Cost Maximum Flow Problem)是一种在特定的多媒体网络中传送给定体积的流量,使总花费最小化的一种算法。
它能满足一些实际生活中的求解,比如电力系统的供求、工厂的物料的分配和两地之间的物品的运输问题,以及更加复杂的产品开发和行业分工中的分布问题等等。
最小费用最大流问题的目标是在满足给定的最大流量要求的前提下,找出具有最小成本的流量方案。
这种问题的解决步骤如下:
1. 在图形中定义网络:用图形表示整个网络,每条边的容量是边上的流量上限。
2. 尝试找出最大流量:在不超过容量限制的前提下,找出输出流量最大的允许方案,也就是最小费用最大流量。
3. 计算最小成本:对所有边的成本进行总结,计算出最小成本。
下面以一个最小费用最大流问题的例题来说明:
假设有一个三角形的网络,它由一个源点S、一个汇点T、一个中间点O以及三条边组成,边的名字分别是SO、OT、OS,它们的容量分别是10、15和5,费用分别是5、3和2。
要求我们在此条件下求解最小费用最大流问题。
解:首先,我们可以求出最大流量:在边SO的容量为10时,我们可以将费用最小的边OT累加,得到最大流量值为10+3=13。
接下来,计算最小费用:根据上述算法,所有边的费用应该都大于等于0,才能累加而得到最大流量。
也就是说,最小费用为
5+3+2=10。
最后,最小费用最大流问题的解为:最大流量13,最小成本10。
流水行船问题公式大全16个流水行船问题的本质是一种旅行商问题,即从一个源点出发,经过一系列指定的点,然后回到源点,路程最短、所需要耗费的距离最少。
流水行船问题主要用于求解运输问题,比如石油、采矿物质、农副产品或其他物资的运输。
为了流水行船问题能实现最优解,目前已有许多计算机程序可以解决这一问题。
其中最常用的就是经典的16个流水行船问题公式,这些公式通过应用优化算法解决了流水行船问题的最优解。
这16个公式的结构如下:1.小费用流量问题(MCFP):它是流水行船问题最常用的公式之一,它解决的问题是有一系列费用限制,要求求出价格最低的流量规划方案。
2.大流量问题(MFP):它是流水行船问题的第二常用公式,它解决的问题是有一系列限制条件,要求求出最大的流量规划方案。
3.小总费用问题(TCCP):它是流水行船问题的第三种公式,它解决的问题是有一系列条件,要求求出最小的总费用方案。
4.小费用环问题(MCIRP):它是流水行船问题的第四种公式,它解决的问题是有一系列费用限制,要求求出最低费用的环路规划方案。
5.小费用最大流量问题(MCMFP):它是流水行船问题的第五种公式,它解决的问题是有一系列费用限制,要求求出费用最低的最大流量规划方案。
6.少旅行商问题(MTP):它是流水行船问题的第六种公式,它解决的问题是有一系列旅行约束条件,要求求出最短的旅行规划方案。
7.小费用最短旅行商问题(MCTSP):它是流水行船问题的第七种公式,它解决的问题是有一系列费用限制,要求求出费用最低的最短旅行规划方案。
8.最小路径问题(SPP):它是流水行船问题的第八种公式,它解决的问题是求出最短路径规划方案,有一系列费用限制。
9.含模糊参数的最小费用流量问题(FMCFP):它是流水行船问题的第九种公式,它解决的问题是有一系列模糊参数的费用限制,要求求出最低的流量规划方案。
10.小费用流量约束条件下的最小路径问题(MCSPP):它是流水行船问题的第十种公式,它解决的问题是有一系列流量约束条件下的费用限制,要求求出最短路径规划方案。
最小费用最大流1.最大流问题1.1案例假设现在因为种种原因,我们只能通过地面线路来运输口罩物资,并且每一条线路是有流量限制的。
假设不考虑运输速度,并且源点S (杭州)的口罩物资产量是足够多的,我们需要求解汇点T(武汉)在不计速度的情况下能收到多少物资?对于这个流网络,我们可以轻松的获得汇点T的最大流量。
因为在这个图中,只有两条路径,分别是S → A → B → T和S → C → D → T两条路径来输送流量,前者最大流量是12 ,后者是4,所以最大流量总和是16。
1.2建模图1是连接产品产地Vs和销售地Vt的交通网,每一条弧代表两点间的运输线,弧旁的数字表示这条运输线的最大通过能力。
现在要求制定一个运输方案,使得从Vs运输到Vt的产品数量最多。
图1模型():(,):(,)max .,,,,s ,0,s.t 0,,V V st f c Vf f t f Vμυμυμυυμυυυμμυλμυμυλμλμμμυ∈∈≤∀∈⎧=⎪-=-=⎨⎪≠⎩≥∀∈∑∑其中λ表示总共运输量f μυ表示弧(),μυ中的实际流量(),c μυ表示弧(),μυ中的容量限制S,t 表示物质运输的起点和终点最大流问题的推广现实问题中的网络,不但边有容量,而且点也有容量。
例如运 输网络中表示中转站的点v, 点容量 c(v) 可表示该中转站能容纳的货物的数列。
对点有容量的网络 N ,流函数若满足对一点 v,流入v 的流量之和等于流出v 的流量之和,并且小于等于c(v),2.最小费用最大流问题上面我们介绍了一个网络上最短路以及最大流的算法,但是还没有考虑到网络上流的费用问题,在许多实际问题中,费用的因素很重要。
例如,在运输问题中,人们总是希望在完成运输任务的同时,寻求一个使总的运输费用最小的运输方案。
这就是下面要介绍的最小费用流问题。
在运输网络N = (s,t,V, A,U)中,设(),c μυ是定义在A上的非负函数,它表示通过弧(),μυ单位流的费用。