运筹学最小费用最大流流问题
- 格式:pptx
- 大小:199.38 KB
- 文档页数:26
北京联合大学实验报告项目名称: 运筹学专题实验报告学院: 自动化专业:物流工程班级: 1201B 学号:2012100358081 姓名:管水城成绩:2015 年 5 月 6 日实验三:使用matlab求解最小费用最大流算问题一、实验目的:(1)使学生在程序设计方面得到进一步的训练;,学习Matlab语言进行程序设计求解最大流最小费用问题。
二、实验用仪器设备、器材或软件环境计算机,Matlab R2006a三、算法步骤、计算框图、计算程序等1.最小费用最大流问题的概念。
在网络D(V,A)中,对应每条弧(vi,vj)IA,规定其容量限制为cij(cij\0),单位流量通过弧(vi,vj)的费用为dij(dij\0),求从发点到收点的最大流f,使得流量的总费用d(f)为最小,即mind(f)=E(vi,vj)IA2。
求解原理。
若f是流值为W的所有可行流中费用最小者,而P是关于f的所有可扩充链中费用最小的可扩充链,沿P以E调整f得到可行流fc,则fc是流值为(W+E)的可行流中的最小费用流.根据这个结论,如果已知f是流值为W的最小费用流,则关键是要求出关于f 的最小费用的可扩充链。
为此,需要在原网络D的基础上构造一个新的赋权有向图E(f),使其顶点与D的顶点相同,且将D中每条弧(vi,vj)均变成两个方向相反的弧(vi,vj)和(vj,vi)1新图E(f)中各弧的权值与f中弧的权值有密切关系,图E(f)中各弧的权值定义为:新图E(f)中不考虑原网络D中各个弧的容量cij。
为了使E(f)能比较清楚,一般将长度为]的弧从图E(f)中略去.由可扩充链费用的概念及图E(f)中权的定义可知,在网络D中寻求关于可行流f的最小费用可扩充链,等价于在图E(f)中寻求从发点到收点的最短路.因图E(f)中有负权,所以求E(f)中的最短路需用Floyd算法。
1.最小费用流算法的框图描述。
图一2.计算最小费用最大流MATLAB源代码,文件名为mp_mc.mfunction[Mm,mc,Mmr]=mp_mc(a,c)A=a; %各路径最大承载流量矩阵C=c; %各路径花费矩阵Mm=0; %初始可行流设为零mc=0; %最小花费变量mcr=0;mrd=0;n=0;while mrd~=inf %一直叠代到以花费为权值找不到最短路径for i=1:(size(mcr’,1)—1)if a(mcr(i),mcr(i+1))==infta=A(mcr(i+1),mcr(i))—a(mcr(i+1),mcr(i)); elseta=a(mcr(i),mcr(i+1));endn=min(ta,n);%将最短路径上的最小允许流量提取出来endfor i=1:(size(mcr’,1)-1)if a(mcr(i),mcr(i+1))==infa(mcr(i+1),mcr(i))=a(mcr(i+1),mcr(i))+n;elsea(mcr(i),mcr(i+1))=a(mcr(i),mcr(i+1))—n;endendMm=Mm+n;%将每次叠代后增加的流量累加,叠代完成时就得到最大流量 for i=1:size(a,1)for j=1:size(a’,1)if i~=j&a(i,j)~=infif a(i,j)==A(i,j) %零流弧c(j,i)=inf;c(i,j)=C(i,j);elseif a(i,j)==0 %饱合弧c(i,j)=inf;c(j,i)=C(j,i);elseif a(i,j)~=0 %非饱合弧c(j,i)=C(j,i);c(i,j)=C(i,j);endendendend[mcr,mrd]=floyd_mr(c) %进行叠代,得到以花费为权值的最短路径矩阵(mcr)和数值(mrd)n=inf;end%下面是计算最小花费的数值for i=1:size(A,1)for j=1:siz e(A’,1)if A(i,j)==infA(i,j)=0;endif a(i,j)==infa(i,j)=0;endendendMmr=A—a; %将剩余空闲的流量减掉就得到了路径上的实际流量,行列交点处的非零数值就是两点间路径的实际流量for i=1:size(Mmr,1)for j=1:size(Mmr’,1)if Mmr(i,j)~=0mc=mc+Mmr(i,j)*C(i,j);%最小花费为累加各条路径实际流量与其单位流量花费的乘积endendend利用福得算法计算最短路径MATLAB源代码,文件名为floyd_mr。
运筹学最大流问题例题摘要:1.运筹学最大流问题简介2.最大流问题的基本概念和方法3.最大流问题的求解步骤4.最大流问题在实际应用中的案例分享5.总结与展望正文:【提纲1:运筹学最大流问题简介】运筹学最大流问题是一种求解网络中最大流量的问题。
在有向图中,有一个发点(源)和一个收点(汇),其他点称为中间点。
给定每条边的容量,我们需要找到一条从发点到收点的路径,使得这条路径上的流量最大。
最大流问题在物流、交通、通信等领域具有广泛的应用。
【提纲2:最大流问题的基本概念和方法】在最大流问题中,我们需要了解以下几个基本概念:1.流量:表示在一条边上流动的单位数量。
2.容量:表示一条边能承受的最大流量。
3.增广链:从发点到收点的路径,路径上的每条边都有剩余容量。
求解最大流问题的基本方法是:1.初始化:将所有边的流量设为0。
2.寻找增广链:在图中寻找一条从发点到收点的路径,使得路径上的每条边都有剩余容量。
3.更新流量:将找到的增广链上的流量增加,同时更新路径上其他边的剩余容量。
4.重复步骤2和3,直到无法再找到增广链。
【提纲3:最大流问题的求解步骤】以下是求解最大流问题的具体步骤:1.构建网络图:根据题目给出的条件,构建有向图。
2.初始化:将所有边的流量设为0,记录发点和收点。
3.寻找增广链:使用深度优先搜索或广度优先搜索等算法,在图中寻找一条从发点到收点的路径。
4.更新流量:找到增广链后,将路径上的流量增加,同时更新路径上其他边的剩余容量。
5.重复步骤3和4,直到无法再找到增广链。
6.输出结果:最大流即为所有增广链上的流量之和。
【提纲4:最大流问题在实际应用中的案例分享】最大流问题在实际应用中具有广泛的价值,例如:1.物流配送:通过最大流问题优化配送路线,降低物流成本。
2.交通规划:通过最大流问题优化交通网络,提高出行效率。
3.通信网络:通过最大流问题优化网络资源分配,提高通信质量。
【提纲5:总结与展望】运筹学最大流问题是一种重要的优化问题,其在实际应用中具有广泛的价值。
运筹学课后习题及答案运筹学是一门应用数学的学科,旨在通过数学模型和方法来解决实际问题。
在学习运筹学的过程中,课后习题是非常重要的一部分,它不仅可以帮助我们巩固所学的知识,还可以提升我们的解决问题的能力。
下面,我将为大家提供一些运筹学课后习题及答案,希望对大家的学习有所帮助。
1. 线性规划问题线性规划是运筹学中的一个重要分支,它旨在寻找线性目标函数下的最优解。
以下是一个线性规划问题的例子:Max Z = 3x + 4ySubject to:2x + 3y ≤ 10x + y ≥ 5x, y ≥ 0解答:首先,我们可以画出约束条件的图形,如下所示:```y^|5 | /| /| /| /|/+-----------------10 x```通过观察图形,我们可以发现最优解点是(3, 2),此时目标函数取得最大值为Z = 3(3) + 4(2) = 17。
2. 整数规划问题整数规划是线性规划的一种扩展,它要求变量的取值必须是整数。
以下是一个整数规划问题的例子:Max Z = 2x + 3ySubject to:x + y ≤ 52x + y ≤ 8x, y ≥ 0x, y为整数解答:通过计算,我们可以得到以下整数解之一:x = 2, y = 3此时,目标函数取得最大值为Z = 2(2) + 3(3) = 13。
3. 网络流问题网络流问题是运筹学中的另一个重要分支,它研究的是在网络中物体的流动问题。
以下是一个网络流问题的例子:有一个有向图,其中有三个节点S、A、B和一个汇点T。
边的容量和费用如下所示:S -> A: 容量为2,费用为1S -> B: 容量为3,费用为2A -> T: 容量为1,费用为1B -> T: 容量为2,费用为3A -> B: 容量为1,费用为1解答:通过使用最小费用最大流算法,我们可以找到从源点S到汇点T的最小费用流量。
在该例中,最小费用为5,最大流量为3。
运筹学实验总结引言:运筹学是一门综合了数学、经济学和工程学等多学科知识的学科,它通过建立数学模型和运用各种优化方法,帮助我们在现实问题中寻找最优解决方案。
在这学期的运筹学课程中,我们进行了一系列实验。
这些实验不仅加深了对运筹学理论的理解,还提供了一种应用运筹学方法解决问题的实践平台。
在本文中,我将总结我参与的运筹学实验,并分享我的体会和收获。
实验一:线性规划问题求解在这个实验中,我们学习了线性规划的基本概念和求解方法。
我选择了一个典型的生产调度问题作为实验题目。
通过建立数学模型,并运用线性规划软件,我成功地解决了这个问题。
通过这个实验,我深刻理解了线性规划问题的本质,以及如何利用线性规划方法找到最优解。
实验二:整数规划问题求解整数规划是线性规划的扩展,它在决策问题中更加实用。
在这个实验中,我选择了货物配送路线问题作为研究对象。
通过构建整数规划模型,并运用求解软件,我得到了最佳的货物配送方案。
这个实验不仅对我的数学建模能力提出了要求,还培养了我的实际问题解决能力。
实验三:动态规划动态规划是一种重要的优化方法,它广泛应用于最优化问题的求解。
在这个实验中,我们学习了动态规划的基本原理和设计思想。
我选择了旅行商问题作为研究对象,通过建立递推关系和寻找最优子结构,我成功地解决了该问题。
这个实验让我意识到了动态规划方法的强大威力,同时也对我的算法设计能力提出了更高的要求。
实验四:模拟退火算法模拟退火算法是一种全局搜索优化算法,具有很强的应用能力。
在这个实验中,我选择了旅行商问题作为研究对象,通过模拟退火算法的迭代和优化,我得到了一个较好的解。
通过这个实验,我掌握了模拟退火算法的基本原理和实现过程,也了解到了算法的优越性。
实验五:遗传算法遗传算法是一种模拟自然选择和遗传机制的优化算法。
在这个实验中,我选择了装箱问题作为研究对象。
通过运用遗传算法的交叉、变异和适应度选择,我得到了一个较好的装箱方案。
这个实验不仅对我的算法设计能力提出了更高的要求,还让我意识到了遗传算法的创新性和解决复杂问题的能力。
运筹学最大流问题例题摘要:一、运筹学最大流问题的基本概念二、最大流问题的求解方法三、最大流问题例题详解四、总结与展望正文:一、运筹学最大流问题的基本概念运筹学最大流问题是一种在网络中寻找最大流量的问题。
给定一个有向图G(V,E),其中仅有一个点的入次为零,称为发点(源),记为vs;仅有一个点的出次为零,称为收点(汇),记为vt;其余点称为中间点。
对于G 中的每一条边(vi,vj),相应地给一个数cij(cij≥0),称为边(vi,vj)的容量。
最大流问题的目标是找到从源点到汇点的最大流量。
二、最大流问题的求解方法求解最大流问题的方法有很多,其中最著名的方法是Ford-Fulkerson 算法。
该算法的基本思想是寻找增广链,即在网络中找到一条从源点到汇点的路径,使得路径上的每条边的容量都没有被完全利用。
通过不断地寻找增广链并更新流量,最终可以得到最大流量。
另一种求解最大流问题的方法是最小费用最大流问题。
该方法通过将流量问题转化为费用问题,利用最小费用最大流问题的求解方法求解最大流问题。
在最小费用最大流问题中,每条边的容量被视为费用,目标是找到从源点到汇点的最大流量,同时使总费用最小。
三、最大流问题例题详解假设有如下网络图:```A -- 1 --B -- 2 --C -- 3 --D -- 4 --E -- 5 -- F| | | | | | | | | |4 3 2 1 0 -1 -2 -3 -4 -5```其中,箭头表示流向,数字表示容量。
从A 点到F 点的最大流量是多少?通过Ford-Fulkerson 算法,我们可以得到如下的增广链:A ->B ->C ->D ->E -> F该链的容量为:4 + 3 + 2 + 1 + 0 = 10当前流量为:4 + 3 + 2 + 1 = 10由于该链的容量等于当前流量,所以无法继续寻找增广链。
因此,从A 点到F 点的最大流量为10。
运筹学最大流问题例题一、问题描述在运筹学领域,最大流问题是一种重要的网络流问题,其目标是在给定有向图中,找到从源点到汇点的最大流量。
求解最大流问题可以应用于许多实际场景,比如物流调度、电力网络分配等。
二、问题分析最大流问题可以通过使用流网络模型来求解。
流网络由一组有向边和节点组成,其中每条边都带有一个容量值,代表该边所能通过的最大流量。
流量值表示通过该边的实际流量。
为了求解最大流问题,我们需要使用网络流算法,其中最著名的算法是Ford-Fulkerson算法和Edmonds-Karp算法。
这些算法通过不断寻找增广路径来增加流量,直到无法找到增广路径为止。
三、问题实例为了更好地理解最大流问题,以下是一个具体的例子:假设有一个物流网络,由多个节点和边构成。
每条边都带有一个容量值,表示该边所能通过的最大流量。
网络中有一个源点和一个汇点,我们需要找到从源点到汇点的最大流量。
节点和边的关系如下:源点 -> A: 容量为5源点 -> B: 容量为3A -> C: 容量为2A -> D: 容量为4B -> C: 容量为2B -> E: 容量为3C -> 汇点: 容量为4D -> 汇点: 容量为5E -> 汇点: 容量为3根据以上描述,我们可以通过使用Ford-Fulkerson算法来求解最大流问题。
算法的基本步骤如下:1. 初始化流网络,将所有边上的流量设为0。
2. 寻找增广路径:通过深度优先搜索或广度优先搜索,寻找从源点到汇点的一条路径,使得路径上的边上仍有剩余容量。
3. 计算路径上的最小容量值,即可通过的最大流量。
4. 更新路径上的边的流量,即增加最小容量值。
5. 重复步骤2-4,直到无法找到增广路径为止。
6. 最后,计算源点流出的总流量,即为最大流量。
通过以上例子,我们可以清楚地了解最大流问题的基本思想和求解步骤。
在实际应用中,可以根据具体情况使用不同的网络流算法来求解最大流问题。