数控机床维修技术及发展趋势
- 格式:doc
- 大小:126.50 KB
- 文档页数:21
机床数控技术的发展现状与趋势机床数控技术是一种将数字化信息传输到机床控制系统上,通过程序控制机床进行加工的技术.前若信息技术的迅猛发展和制造业的转型升线,风床数控技术得到J'广泛的应用,成为现代制造业的重要技术手段之一。
在国家“中国制造2025”战略的推动下,机床数控技术正迎来新轮的发展机遇,本文将就机床数控技术的发展现状与趋势迸行深入探讨.1.技术水平逐步提升近年来,随芥数控技术的不断进步,机床数控技术的水平也在不断提高。
从数控设备的加工精度、稳定性、速度等方面来看,都取得r较大的进步.尤其是在高速、高精度、高效加工方面,数控技术已经能鲂满足大部分工件的加工需求,成为工业制造中不可或浓的也要技术。
2.产必结构不断优化随着用户需求的不断提高,机床数控技术的产品结构也在不断进行询整和优化.数控机床的外观设计、操作界面、加工程序等都得到了更加科学合理的设计,提商了用户的使用体的,使得机床数控技术更和贴近实际生产需要.3.应用葩围不断扩大机床数控技术在不同领域的应用也不断扩大,不仅在传统的机械加工领域得到广泛应用,同时也在航空航天、汽车制造、电子信息等岛新技术领域发挥着史:要作用,随着人工智能、大数据等新技术的不断融合,机床数控技术的应用苑国将会更加广泛.-1.产业集聚效应凸显驰着机•床数控技术的不断发展,相应的产业集聚效应也Il益凸显,在我国,已经形成r以机床数控技术为核心的产业链,涵龙/数控设备制造'数控系统开发、自动化生产线集成等领域,形成了完整的产业生态链.这种产业集群的发展不仅促进了机床数控技术的不断进步,同时也推动了整个制造业的开线,二、机床数控技术的发展趋势1.智能化发展趋势明显髓石人工智能、大数据等技术的广泛应用,机床数控技术正朝石智能化方向发展。
未来的数控机床将具备更加智能的自动化功能,能终实现自主识别、自主修友、自主调整等功能.这将大大提高机床的生产效率和稳定性,推动整个制造业的智能化转型。
数控未来发展趋势随着科技的不断进步,数控技术在制造业领域发挥着越来越重要的作用。
数控技术的未来发展趋势有以下几个方面:一、智能化发展随着人工智能和大数据技术的快速发展,数控技术也将朝着智能化方向发展。
未来的数控系统将能够自主学习和优化加工过程,根据不同零件的特点和加工需求,自动调整工艺参数,提高生产效率和产品质量。
人机交互界面也将更加友好和智能化,不再需要复杂的编程操作,普通工人也能够轻松操作数控设备。
二、柔性化制造传统的数控设备通常是针对特定产品的加工需求进行设计和制造,不具备制造多种不同产品的能力。
未来的数控设备将更加柔性化,能够根据需求进行快速调整和转换,实现多品种、小批量的生产。
这将大大提高生产线的灵活性和响应能力,满足客户个性化需求,提高企业竞争力。
三、集成化发展未来的数控设备将趋向于集成化发展,通过不同设备的连接和协作,实现整个生产线的无缝连接。
这将形成一个数字化工厂,通过数据传输和共享,实现生产过程的可视化和追溯。
同时,数控设备还将与企业的ERP和MES等管理系统进行集成,实现生产计划和执行的无缝对接,提高生产效率和管理水平。
四、绿色化制造随着环境保护意识的增强,未来的数控设备将更加注重环保和节能。
通过优化工艺参数和切削条件,减少能源消耗和废料产生;采用环保材料和加工工艺,减少对环境的污染;同时,数控设备的自动化和智能化特性,也将减少人为操作误差,提高资源利用效率。
五、虚拟化与网络化未来的数控技术将与虚拟现实和云计算等技术相结合,实现虚拟化制造。
通过虚拟仿真和数字化建模,可以在计算机上预先模拟产品制造的全过程,以找出潜在问题和改进方案,减少实际制造中的不确定性和风险。
同时,数控设备也将通过互联网实现远程监控和调整,实现远程操作和维护。
总之,未来的数控技术将朝着智能化、柔性化、集成化、绿色化和虚拟化方向发展。
这将为制造业带来巨大的变革和发展机遇,提高生产力和竞争力。
同时,也需要加强相关技术的研发和培训,培养更多的数控专业人才,以应对未来的挑战。
数控机床未来发展趋势随着制造业的不断发展和技术的进步,数控机床在未来的发展中将持续迎来新的趋势。
以下是数控机床未来发展的几个趋势:1. 智能化:随着人工智能技术的不断发展,数控机床将更加智能化。
通过将人工智能应用于数控机床中,可以实现自动调整工艺参数、自适应切削等功能。
智能化的数控机床可以提高生产效率、降低人工成本,提高产品质量。
2. 自动化:随着机器人技术的不断发展,数控机床与机器人的结合将成为未来的趋势。
通过与机器人的自动化配合,可以实现自动装夹、自动换刀、自动测量等功能,提高生产效率和产品质量。
3. 网络化:数控机床将更加网络化,实现远程监控和管理。
通过将数控机床与互联网连接,可以实时监测生产状态、进行远程维修和调试,提高生产效率和运营管理水平。
4. 精度和稳定性提高:随着加工精度和产品质量要求的不断提高,数控机床将在未来进一步提高精度和稳定性。
通过采用更加精密的传感器、控制系统和执行机构等技术,可以实现更高的加工精度和更稳定的运行。
5. 环保节能:对于数控机床的环保要求也越来越高。
未来的数控机床将更加注重节能减排和资源循环利用。
通过采用高效节能的电机、控制系统和加工方法等技术,可以实现能源的最大利用和减少废弃物的产生。
6. 多功能化:数控机床将趋向于多功能化。
未来的数控机床将不仅仅局限于单一的加工任务,同时可以实现多种不同的加工操作。
通过改变工装和工艺参数,数控机床可以适应不同的加工需求,提高生产灵活性和适应性。
7. 定制化:随着消费需求的个性化越来越强烈,数控机床将向定制化方向发展。
未来的数控机床可以通过软件和控制系统的调整,实现对产品的个性化加工,满足消费者不同的需求。
总之,数控机床未来的发展趋势是向智能化、自动化、网络化、高精度、环保节能、多功能化和定制化发展的。
这些趋势将推动数控机床技术不断创新和进步,为制造业带来更大的效益和发展空间。
谈谈数控技术的发展趋势1数控技术发展趋势1.1性能发展方向(1)高速高精高效化。
速度、精度和效率是机械制造技术的关键性能指标。
由于采用了高速CPU芯片、RISC芯片、多CPU控制系统以及带高分辨率绝对式检测元件的交流数字伺服系统,同时采取了改善机床动态、静态特性等有效措施,机床的高速高精高效化已大大提高。
(2)柔性化。
包含两方面:数控系统本身的柔性,数控系统采用模块化设计,功能覆盖面大,可裁剪性强,便于满足不同用户的需求;群控系统的柔性,同一群控系统能依据不同生产流程的要求,使物料流和信息流自动进行动态调整,从而最大限度地发挥群控系统的效能。
(3)工艺复合性和多轴化。
以减少工序、辅助时间为主要目的的复合加工,正朝着多轴、多系列控制功能方向发展。
数控机床的工艺复合化是指工件在一台机床上一次装夹后,通过自动换刀、旋转主轴头或转台等各种措施,完成多工序、多表面的复合加工。
数控技术轴,西门子880系统控制轴数可达24轴。
(4)实时智能化。
人工智能则试图用计算模型实现人类的各种智能行为。
人工智能正向着具有实时响应的、更现实的领域发展,而实时系统也朝着具有智能行为的、更加复杂的应用发展,由此产生了实时智能控制这一新的领域。
在数控技术领域,实时智能控制的研究和应用正沿着几个主要分支发展:自适应控制、模糊控制、神经网络控制、专家控制、学习控制、前馈控制等。
1.2 功能发展方向(1)用户界面图形化。
用户界面是数控系统与使用者之间的对话接口。
由于不同用户对界面的要求不同,因而开发用户界面的工作量极大,用户界面成为计算机软件研制中最困难的部分之一。
当前INTERNET、虚拟现实、科学计算可视化及多媒体等技术也对用户界面提出了更高要求。
图形用户界面极大地方便了非专业用户的使用,人们可以通过窗口和菜单进行操作,便于蓝图编程和快速编程、三维彩色立体动态图形显示、图形模拟、图形动态跟踪和仿真、不同方向的视图和局部显示比例缩放功能的实现。
机床数控技术的发展趋势机床数控技术是制造业中的核心技术之一, 随着现代信息技术的快速发展,机床数控技术已经进入了一个全新的发展阶段。
本文将详细介绍机床数控技术的发展趋势。
一、智能化发展趋势机床数控技术越来越趋向智能化发展,包括了人工智能、机器学习和大数据分析等新技术,这使得机床数控系统具有更强大的信息处理和判断能力,实现了更高效、更智能的生产流程控制。
比如人工智能技术的应用可以将加工错误和杂质分辨出来,避免损坏车刀。
二、高速化发展趋势随着工业技术的高速发展,机床数控技术的高速化发展也越来越明显。
高速化不仅体现在机床加工速度上的提高,而且还包括将制造流程压缩到最小,以节约时间和材料等方面。
三、多样化发展趋势在许多行业中,个性化要求不断增加,机床数控技术的发展趋势也越来越多样化。
传统机床在加工特殊形状时往往需更换刀具,而随着数控技术的不断升级,机床多轴控制能力将增强,而机床加工的灵活性也将有所提升。
四、自适应化发展趋势随着机床数控技术的不断发展,自适应化将成为机床数控技术的重要发展趋势。
自适应化技术使机床能够自动调整加工条件,使其更有效和精准地加工工件。
例如使用力传感器实时监测切削力大小来控制和优化切削参数,提高加工效率和质量。
五、绿色环保发展趋势随着我们越来越意识到环境保护的重要性,机床数控技术也朝着绿色环保方向发展。
即机床在生产过程中产生的废料、废水和废气进行全面减排。
例如使用先进的刀具材料和切削工艺减少切削清洗的需求,降低排放物。
六、无人化发展趋势无人机床或者无人化生产线将成为机床数控技术的巨大趋势。
已经有许多企业开始实现机床自动化生产线,完全无人值班。
货物的输送和材料的切削都不需要人工干预。
总之,机床数控技术正在逐渐提高制造业的效率和生产能力。
从智能化、高速化、多样化、自适应、绿色环保到无人化,机床数控技术的发展趋势可以说是多角度的和全面的。
技术的不断进步, 能够推动制造业的全球发展,使制造业进入更加繁荣和持续的增长状态。
数控技术现状及发展趋势数控技术是指利用数学模型和计算机编程控制机械设备进行加工和制造的技术,它是先进制造技术的重要组成部分。
随着工业自动化和制造业智能化的加速发展,数控技术在现代制造业中的应用越来越广泛,成为了推动中国制造向高端、智能化方向转型升级的重要手段之一。
一、数控技术现状数控技术已广泛应用于航空航天、机械制造、汽车、电子、医疗器械等领域。
目前,中国数控机床行业生产的数控机床制造技术和设备水平已经进入世界先进行列,除了满足国内消费者的需求之外,还在国际市场上有着强大的竞争力。
随着工业自动化和制造业智能化的不断推进,数控技术已经成为现代制造业中不可或缺的一部分。
从国内数控机床产业的发展来看,数控机床制造企业数量、产品种类和数量、市场份额及技术水平都在稳步提高,许多企业已经在产业链上形成了具备核心竞争力的业务模式。
二、数控技术的发展趋势1.数字化、智能化、网络化随着人工智能、物联网、云计算技术的迅速发展,数控机床也在数字化、智能化和网络化方向上快速前行。
数控机床不再是单纯的机械设备,它们开始拥有更多的智能功能,例如自适应、自诊断、自巡检等,以及通过互联网可以实现远程监控、远程诊断、远程维保等。
2.多元化、柔性化随着市场需求的多元化和个性化,数控机床的多元化、柔性化需求也越来越大。
目前制造企业需要更加灵活、高效、定制化的生产设备来满足不断变化的市场需求,这为数控机床的多元化和柔性化提供了更多的发展机会。
3.智能化制造在智能化制造方面,数控机床已经开始与其他智能制造设备进行集成,形成完整的智能制造生产线,例如数字化车间、智能装备等。
它们不仅能够自适应生产,还能够自主维护和管理,使整个生产过程更加高效和协调。
4.绿色制造随着环保意识的不断提高,绿色制造成为了制造业发展的重要趋势。
在数控机床行业中,绿色制造主要体现在节能、降耗和依靠可再生能源上。
未来数控机床制造企业需要更加注重绿色生产,减少对环境的影响,保证可持续发展。
浅析数控机床的发展进程及趋势引言数控机床作为现代制造业中不可或缺的重要设备,在各个行业中发挥着巨大的作用。
随着科技的不断进步,数控机床的技术水平和生产效率也不断提高,不断满足工业发展的需求。
本文将从数控机床的发展历程、现状和发展趋势三个方面,探讨数控机床的发展。
数控机床的发展历程数控机床的起源可以追溯到20世纪50年代,当时的数控技术还处于萌芽阶段,机床控制系统主要采用电气、机械和液压等方式控制。
1958年,美国麻省理工学院的约翰·塞尔文率先发明了数控系统,从而开启了数控机床的发展历程。
1960年代到1970年代,数控机床的发展进入了快速发展期,主要体现在控制系统、动力系统、检测系统、刀具系统等方面的提高。
同时,数控机床也开始被广泛应用于制造业中,取代传统机床的地位逐渐被数控机床取代。
1980年代到1990年代,数控机床的技术水平得到了极大提高,特别是在控制系统、伺服系统、在线检测等方面的发展取得了巨大进展。
同时,随着计算机和网络技术的不断进步,数控机床也开始与信息技术融合,为生产线的自动化和智能化发展奠定了基础。
21世纪以来,随着自动化和智能化的加速发展,数控机床的发展进入了新阶段,目前已经成为了现代制造业中的重要设备之一。
数控机床的现状当前,全球数控机床市场呈现快速发展的态势。
根据国际市场研究机构的数据显示,全球数控机床市场总体规模增长持续稳定,行业竞争越来越激烈。
其中,中国是全球数控机床市场的主要市场之一,数控机床制造业已成为中国制造业的重要组成部分。
当前,数控机床技术水平不断提高,各自控制系统、切削工具和刀具、自动化和智能化技术的应用不断扩展,大大提高了生产效率和产品质量。
同样,数控机床产品的发展趋势也得到了不断提高。
具体表现在以下几方面。
数控机床的发展趋势1. 智能化发展随着人工智能技术的不断发展,数控机床的智能化发展势头也日渐强劲。
从数控机床控制系统到设备自主诊断和修复,从数控机床设备交互到人机协作,人工智能的应用将使数控机床得到智能化升级和转型升级。
数控车床技术发展现状及趋势一、本文概述数控车床,作为现代制造业的核心设备之一,其技术发展水平直接关系到加工精度、生产效率和产品质量。
随着科技的日新月异,数控车床技术也在持续进步,不断满足复杂多变的制造需求。
本文旨在探讨数控车床技术的当前发展现状,分析其内在的技术特点与优势,并展望未来的发展趋势。
通过深入研究数控车床的控制系统、驱动技术、加工工艺等关键领域,本文期望为相关行业的从业者和技术人员提供有价值的参考信息,推动数控车床技术的进一步创新和应用。
二、数控车床技术发展现状数控车床技术作为现代制造业的核心组成部分,经历了从简单的数控编程到高度集成化和智能化的变革。
目前,数控车床技术的发展现状主要体现在以下几个方面:数控系统智能化:随着人工智能和大数据技术的不断融入,数控车床的控制系统日趋智能化。
现代数控系统能够自动识别材料类型、厚度和硬度,并自动调整切削参数以达到最优的加工效果。
高精度与高效率:随着超精密加工技术和新型切削工具的应用,数控车床的加工精度得到了显著提升。
同时,通过优化数控算法和机床结构,提高了加工效率,减少了非生产时间。
复合加工能力:现代数控车床不仅具备车削、铣削、钻孔等基本功能,还能实现磨削、激光加工等多种加工方式的复合,从而在一台机床上完成复杂零件的多工序加工。
模块化与标准化:数控车床的设计制造越来越倾向于模块化和标准化,这不仅简化了生产流程,降低了制造成本,还有利于机床的维护和升级。
网络安全与远程监控:随着工业0和物联网技术的发展,数控车床的网络安全和远程监控成为新的关注点。
现代数控系统配备了完善的安全防护措施,并通过云平台实现远程故障诊断和监控,大大提高了设备的运行可靠性和维护效率。
绿色环保与节能减排:数控车床在设计和制造过程中越来越注重绿色环保和节能减排。
通过优化机床结构、减少空载时间和使用环保切削液等措施,有效降低了能耗和污染排放。
数控车床技术在高精度、高效率、复合加工、智能化和网络化等方面取得了显著进展,为现代制造业的转型升级提供了有力支撑。
数控专业发展方向数控专业是现代制造业中的重要技术领域,随着科技的不断发展,数控技术在工业生产中的应用也越来越广泛。
本文将从数控专业发展的背景、前景以及需要具备的技能等方面,探讨数控专业的发展方向。
一、数控专业发展的背景随着科技的进步和人们对高效精确生产的需求,传统的机械加工方式已经不能满足现代工业的需求。
数控技术的出现,使得机械加工变得更加精确、高效,并且可以实现复杂曲线的加工。
数控技术的应用不仅提高了生产效率,还降低了人工操作的难度和风险,因此在制造业中得到了广泛的应用。
二、数控专业的发展前景1. 自动化生产趋势:随着工业自动化程度的提高,数控设备将发挥越来越重要的作用。
未来的工厂将更加智能化,数控技术将成为生产线上的核心技术。
2. 高精度加工需求:随着科技的进步,对产品的精度要求越来越高。
数控技术可以实现微米级的精度,因此在精密机械、航空航天等领域有着广阔的应用前景。
3. 智能制造发展:数控技术是实现智能制造的重要基础,通过与人工智能、大数据分析等技术的结合,可以实现生产过程的优化和智能化管理,提高生产效率和产品质量。
三、数控专业需要具备的技能1. 数学基础:数控技术需要运用到许多数学知识,如几何、代数、微积分等。
掌握扎实的数学基础对于学习和应用数控技术非常重要。
2. 机械基础:数控技术是在机械加工基础上发展起来的,因此对机械加工的基本原理和工艺有一定的了解是必要的。
3. 编程技能:数控设备需要通过编程来实现加工路径的控制,因此掌握编程技能对于数控专业的学习和实践至关重要。
4. 自主学习能力:数控技术是一个不断发展和更新的领域,学习能力和自主学习的能力对于跟上行业发展的步伐至关重要。
四、数控专业的发展方向1. 数控机床制造与研发:数控机床是数控技术的核心设备,随着市场对高精度、高效率数控机床的需求增加,数控机床制造与研发的发展前景非常广阔。
2. 数控编程与运维:数控编程是数控技术的关键环节,掌握数控编程和运维技能的人才将会受到市场的青睐。
1前言数控技术是制造业实现自动化.柔性化.集成化生产的基础;数控技术的应用是提高制造业的产品质量和劳动生产率必不可少的重要手段;我国从事数控机床电气设计、应用与维修技术工作的工程技术人员数以万计,然而由于此项技术的复杂性、多样性和多变性以及一些客观环境因素的制约,在数控机床电气维修技术方面还没有形成一套成熟的、完整的理论体系。
当今控制理论与自动化技术的高速发展,尤其是微电子技术和计算机技术的日新月异,使得数控技术也在同步飞速发展,数控系统结构形式上的PC基、开放化和性能上的多样化、复杂化、高智能化不仅给其应用从观念到实践带来了巨大变化,也在其维修理论、技术和手段上带来了很大的变化。
当数控系统出现报警发生故障时,维修人员不要急于动手处理,而应多进行观察和试验。
一方面要向操作者调查,详细询问出现故障的全过程,查看故障记录单,了解发生过什么现象,曾采取过什么措施等;另一方面,要对现场要做细致的勘查数控机床采用计算机控制,驱动系统具有较高的技术复杂性,机械部分的精度要求也比较高。
因此,要求数控机床的操作、维修及管理人员具有较高的文化水平和综合技术素质。
2 数控技术概述2.1数控机床电气控制系统综述一台典型的数控机床其全部的电气控制系统如图1所示。
图(1)(1)数据输入装置将指令信息和各种应用数据输入数控系统的必要装置。
它可以是穿孔带阅读机(已很少使用),3.5in软盘驱动器,CNC键盘(一般输入操作),数控系统配备的硬盘及驱动装置(用于大量数据的存储保护)、磁带机(较少使用)、PC计算机等等。
(2)数控系统数控机床的中枢,它将接到的全部功能指令进行解码、运算,然后有序地发出各种需要的运动指令和各种机床功能的控制指令,直至运动和功能结束。
数控系统都有很完善的自诊断能力,日常使用中更多地是要注意严格按规定操作,而日常的维护则主要是对硬件使用环境的保护和防止系统软件的破坏。
(3)可编程逻辑控制器是机床各项功能的逻辑控制中心。
它将来自CNC的各种运动及功能指令进行逻辑排序,使它们能够准确地、协调有序地安全运行;同时将来自机床的各种信息及工作状态传送给CNC,使CNC能及时准确地发出进一步的控制指令,如此实现对整个机床的控制。
当代PLC多集成于数控系统中,这主要是指控制软件的集成化,而PLC硬件则在规模较大的系统中往往采取分布式结构。
PLC与CNC的集成是采取软件接口实现的,一般系统都是将二者间各种通信信息分别指定其固定的存放地址,由系统对所有地址的信息状态进行实时监控,根据各接口信号的现时状态加以分析判断,据此作出进一步的控制命令,完成对运动或功能的控制。
(4)主轴驱动系统接受来自CNC的驱动指令,经速度与转矩(功率)调节输出驱动信号驱动主电动机转动,同时接受速度反馈实施速度闭环控制。
它还通过PLC将主轴的各种现实工作状态通告CNC用以完成对主轴的各项功能控制。
主轴驱动系统自身有许多参数设定,这些参数直接影响主轴的转动特性,其中有些不可丢失或改变的,例如指示电动机规格的参数等,有些是可根据运行状态加以调改的,例如零漂等。
通常CNC中也设有主轴相关的机床数据,并且与主轴驱动系统的参数作用相同,因此要注意二者取一,切勿冲突。
(5)进给伺服系统接受来自CNC对每个运动坐标轴分别提供的速度指令,经速度与电流(转矩)调节输出驱动信号驱动伺服电机转动,实现机床坐标轴运动,同时接受速度反馈信号实施速度闭环控制。
它也通过PLC与CNC通信,通报现时工作状态并接受CNC的控制。
进给伺服系统速度调节器的正确调节是最重要的,应该在位置开环的条件下作最佳化调节,既不过冲又要保持一定的硬特性。
它受机床坐标轴机械特性的制约,一旦导轨和机械传动链的状态发生变化,就需重调速度环调节器。
(6)电器硬件电路随着PLC功能的不断强大,电器硬件电路主要任务是电源的生成与控制电路、隔离继电器部分及各类执行电器(继电器、接触器),很少还有继电器逻辑电路的存在。
但是一些进口机床柜中还有使用自含一定逻辑控制的专用组合型继电器的情况,一旦这类元件出现故障,除了更换之外,还可以将其去除而由PLC逻辑取而代之,但是这不仅需要对该专用电器的工作原理有清楚的了解,还要对机床的PLC语言与程序深入掌握才行。
(7)机床(电器部分)包括所有的电动机、电磁阀、制动器、各种开关等。
它们是实现机床各种动作的执行者和机床各种现实状态的报告员。
这里可能的主要故障多数属于电器件自身的损坏和连接电线、电缆的脱开或断裂。
(8)速度测量通常由集装于主轴和进给电动机中的测速机来完成。
它将电动机实际转速匹配成电压值送回伺服驱动系统作为速度反馈信号,与指令速度电压值相比较,从而实现速度的精确控制。
这里应注意测速反馈电压的匹配联接,并且不要拆卸测速机。
由此引起的速度失控多是由于测速反馈线接反或者断线所致。
(9)位置测量较早期的机床使用直线或圆形同步感应器或者旋转变压器,而现代机床多采用光栅尺和数字脉冲编码器作为位置测量元件。
它们对机床坐标轴在运行中的实际位置进行直接或间接的测量,将测量值反馈到CNC并与指令位移相比较直至坐标轴到达指令位置,从而实现对位置的精确控制。
位置环可能出现的故障多为硬件故障,例如位置测量元件受到污染,导线连接故障等。
(10)外部设备一般指PC计算机、打印机等输出设备,多数不属于机床的基本配置。
使用中的主要问题与输入装置一样,是匹配问题。
(11)数控机床运动坐标的电气控制数控机床一个运动坐标的电气控制由电流(转矩)控制环、速度控制环和位置控制环串联组成。
其控制框图如图2。
图(2)(12)电流环是为伺服电机提供转矩的电路。
一般情况下它与电动机的匹配调节已由制造者作好了或者指定了相应的匹配参数,其反馈信号也在伺服系统内联接完成,因此不需接线与调整。
(13)速度环是控制电动机转速亦即坐标轴运行速度的电路。
速度调节器是比例积分(PI)调节器,其P、I调整值完全取决于所驱动坐标轴的负载大小和机械传动系统(导轨、传动机构)的传动刚度与传动间隙等机械特性,一旦这些特性发生明显变化时,首先需要对机械传动系统进行修复工作,然后重新调整速度环PI 调节器。
速度环的最佳调节是在位置环开环的条件下才能完成的,这对于水平运动的坐标轴和转动坐标轴较容易进行,而对于垂向运动坐标轴则位置开环时会自动下落而发生危险,可以采取先摘下电动机空载调整,然后再装好电动机与位置环一起调整或者直接带位置环一起调整,这时需要有一定的经验和细心。
速度环的反馈环节见前面“速度测量”一节。
(14)位置环是控制各坐标轴按指令位置精确定位的控制环节。
位置环将最终影响坐标轴的位置精度及工作精度。
这其中有两方面的工作:一是位置测量元件的精度与CNC系统脉冲当量的匹配问题。
测量元件单位移动距离发出的脉冲数目经过外部倍频电路和/或CNC内部倍频系数的倍频后要与数控系统规定的分辨率相符。
例如位置测量元件10脉冲/mm,数控系统分辨率即脉冲当量为0.001mm,则测量元件送出的脉冲必须经过100倍频方可匹配。
二是位置环增益系数Kv值的正确设定与调节。
通常Kv值是作为机床数据设置的,数控系统中对各个坐标轴分别指定了Kv值的设置地址和数值单位。
在速度环最佳化调节后Kv值的设定则成为反映机床性能好坏、影响最终精度的重要因素。
Kv值是机床运动坐标自身性能优劣的直接表现而并非可以任意放大。
关于Kv值的设置要注意两个问题,首先要满足下列公式:K v=v/Δ式中v——坐标运行速度,m/minΔ——跟踪误差,mm注意,不同的数控系统采用的单位可能不同,设置时要注意数控系统规定的单位。
例如,坐标运行速度的单位是m/min,则Kv值单位为m/(mm·min),若v 的单位为mm/s,则Kv的单位应为mm/(mm·s)。
其次要满足各联动坐标轴的Kv 值必须相同,以保证合成运动时的精度。
通常是以Kv值最低的坐标轴为准。
位置反馈(参见上节“位置测量”)有三种情况:一种是没有位置测量元件,为位置开环控制即无位置反馈,步进电机驱动一般即为开环;一种是半闭环控制,即位置测量元件不在坐标轴最终运动部件上,也就是说还有部分传动环节在位置闭环控制之外,这种情况要求环外传动部分应有相当的传动刚度和传动精度,加入反向间隙补偿和螺距误差补偿之后,可以得到很高的位置控制精度;第三种是全闭环控制,即位置测量元件安装在坐标轴的最终运动部件上,理论上这种控制的位置精度情况最好,但是它对整个机械传动系统的要求更高而不是低,如若不然,则会严重影响两坐标的动态精度,而使得机床只能在降低速度环和位置精度的情况下工作。
影响全闭环控制精度的另一个重要问题是测量元件的精确安装问题,千万不可轻视。
(15)前馈控制与反馈相反,它是将指令值取出部分预加到后面的调节电路,其主要作用是减小跟踪误差以提高动态响应特性从而提高位置控制精度。
因为多数机床没有设此功能,故本文不详述,只是要注意,前馈的加入必须是在上述三个控制环均最佳调试完毕后方可进行。
3.维修工作的基本条件数控机床的身价从几十万元到上千万元,一般都是企业中关键产品关键工序的关键设备,一旦故障停机,其影响和损失往往很大。
但是,人们对这样的设备往往更多地是看重其效能,而不仅对合理地使用不够重视,更对其保养及维修工作关注太少,日常不注意对保养与维修工作条件的创造和投入,故障出现临时抱佛脚的现象很是普遍。
因此,为了充分发挥数控机床的效益,我们一定要重视维修工作,创造出良好的维修条件。
由于数控机床日常出现的多为电气故障,所以电气维修更为重要。
3.1人员条件数控机床电气维修工作的快速性、优质性关键取决于电气维修人员的素质条件。
(1)首先是有高度的责任心和良好的职业道德。
(2)知识面要广。
要学习并基本掌握有关数控机床电气控制的各学科知识,如计算机技术、模拟与数字电路技术、自动控制与拖动理论、控制技术、加工工艺以及机械传动技术,当然还包括上节所讲的基本数控知识。
(3)应经过良好的技术培训。
数控技术基础理论的学习,尤其是针对具体数控机床的技术培训,首先是参加相关的培训班和机床安装现场的实际培训,然后向有经验的维修人员学习,而更重要且更长时间的是自学。
(4)勇于实践。
要积极投入数控机床的维修与操作的工作中去,在不断的实践中提高分析能力和动手能力。
(5)掌握科学的方法。
要做好维修工作光有热情是不够的,还必须在长期的学习和实践中总结提高,从中提炼出分析问题、解决问题的科学的方法。
(6)学习并掌握各种电气维修中常用的仪器、仪表和工具。
(7)掌握一门外语,特别是英语。
起码应做到能看懂技术资料。
3.2物质条件(1)准备好通用的和某台数控机床专用的电气备件。
(2)非必要的常备电器元件应做到采购渠道快速畅通。
(3)必要的维修工具、仪器仪表等,最好配有笔记本电脑并装有必要的维修软件。