5[1].4分部积分法
- 格式:ppt
- 大小:2.20 MB
- 文档页数:64
分部积分法优先级顺序
分部积分法的优先级顺序如下:
1. 选择要分解的函数:一般来说,分部积分法优先选择能够导出简化的函数,例如指数函数、三角函数、对数函数等。
2. 判断递归程度:如果选择的函数为递归函数(即包含自身),则优先考虑递归出现次数较少的函数。
3. 选择分解的函数:根据函数的重要程度和递归程度,优先选择分解较为简单的函数作为"u"函数。
4. 确定"u"和"dv":将分解的函数标记为"u",并对其求导得到"du",将剩余部分标记为"dv"。
5. 根据分部积分公式进行计算:将"u"和"dv"带入分部积分公式,计算得到积分式。
6. 化简积分式:根据所得到的积分式的简化程度,判断是否需要继续进行分部积分操作。
7. 重复以上步骤:如果需要继续进行分部积分操作,重复以上步骤,将累积得到的积分式中的一个因式分解。
需要注意的是,分部积分法的优先级顺序可能因具体问题而有所不同,在实际使用中,需要根据具体情况进行灵活选择。
分部积分法顺序口诀对于分部积分法,很多小伙伴在学习时感到很烦恼,老是记不住,小编整理了口诀,希望能帮助到你。
一、口诀“反对不要碰,三指动一动”(这是对两个函数相乘里面含有幂函数而言),反——反三角函数对——对数函数三——三角函数指——指数函数(幂函数)。
将分部积分的顺序整理为口诀:“反对幂指三”。
(分别代指五类基本函数:反三角函数、对数函数、幂函数、指数函数、三角函数的积分。
)反>对>幂>三>指就是分部积分法的要领当出现两种函数相乘时指数函数必然放到( )中然后再用分部积分法拆开算而反三角函数不需要动再具体点就是:反*对->反(对)反*幂->反(幂)对*幂->对(幂)二、相关知识(一)不定积分的公式1、∫a dx = ax + C,a和C都是常数2、∫x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且a ≠-13、∫1/x dx = ln|x| + C4、∫a^x dx = (1/lna)a^x + C,其中a > 0 且a ≠15、∫e^x dx = e^x + C6、∫cosx dx = sinx + C7、∫sinx dx = - cosx + C8、∫cotx dx = ln|sinx| + C = - ln|cscx| + C(二)求不定积分的方法:第一类换元其实就是一种拼凑,利用f'(x)dx=df(x);而前面的剩下的正好是关于f(x)的函数,再把f(x)看为一个整体,求出最终的结果。
分部积分,就那固定的几种类型,无非就是三角函数乘上x,或者指数函数、对数函数乘上一个x这类的,记忆方法是把其中一部分利用上面提到的f‘(x)dx=df(x)变形,再用∫xdf(x)=f(x)x-∫f(x)dx这样的公式,当然x可以换成其他g(x)。
不便于进行换元的组合分成两部份进行积分,其原理是函数四则运算的求导法则的逆用。
根据组成积分函数的基本函数将积分顺序整理为口诀:“反对幂三指”。
分别代指五类基本函数:反三角函数、对数函数、幂函数、三角函数、指数函数的积分次序。
5本词条无参考资料, 欢迎各位编辑词条,额外获取5个金币。
基本信息中文名称分布积分法外文名称Integration by parts目录1定义2应用折叠编辑本段定义不便于进行换元的组合分成两部份进行积分部积分法分部积分法分,其原理是函数四则运算的求导法则的逆用。
根据组成积分函数的基本函数将积分顺序整理为口诀:“反对幂三指”。
分别代指五类基本函数:反三角函数、对数函数、幂函数、三角函数、指数函数的积分次序。
折叠编辑本段应用在不定积分上的应用具体操作如:根据“反对幂三指”先后顺序,前者为u,后者为v(例:被积函数由幂函数和三角函数组分部积分法分部积分法成则按口诀先积三角函数(即:按公式∫udv = uv - ∫vdu + c把幂函数看成U,三角函数看成V,))。
原公式:(uv)'=u'v+uv'求导公式:d(uv)/dx = (du/dx)v + u(dv/dx) 写成全微分形式就成为:d(uv) = vdu + udv移项后,成为:udv = d(uv) -vdu两边积分得到:∫udv = uv - ∫vdu例:∫xcosxdx = xsinx - ∫sinxdx从这个例子中,就可以体会出分部积分法的应用。
在定积分上的应用与不定积分的分部积分法一样,可得∫b/a u(x)v'(x)dx=[∫u(x)v'(x)dx]b/a=[u(x)v(x) - ∫v(x)u'(x)dx]b/a=[u(x)-v(x)]b/a- ∫b/a v(x)u'(x)dx简记作∫b/a uv'dx=[uv]b/a-∫b/a u'vdx 或∫b/a udv=[uv]b/a-∫b/a vdu例如∫1/0arcsin xdx=[xarcsinx]1/0-∫1/0 xdarcsinx从这个例子中就可以看到在定积分上是如何应用的。
4.3 分部积分法前面介绍的基本积分法和换元积分法的共同特点是经过适当的变形或变换,将不易计算的不定积分转化为易于计算的另一种不定积分,达到化难为易,化未知为已知的目的.现在我们介绍另一种求不定积分的方法——分部积分法,用于求两种不同类型函数乘积的不定积分,这是与两个函数乘积的导数法则对应的积分方法.设函数)(x u u =,)(x v v =具有连续导数,因为两个函数乘积的导数公式为 v u v u uv '+'=')( 或 v u uv v u '-'=')( 于是,对上式两边求不定积分,得⎰⎰⎰'-'='vdx u dx uv dx v u )(即 ⎰⎰'-='vdx u uv dx v u (4.3.1) 或 ⎰⎰-=vdu uv udv (4.3.2)上述公式叫做分部积分公式.例如:C e xe dx e xe de x dx xe x x x x x x +-=-==⎰⎰⎰【注】:(1)分部积分法主要用于解决被积函数是两类不同类型函数的乘积的不定积分。
如dx xe x ⎰,dx x x ⎰sin ,dx x x ⎰ln ,dx x e x ⎰sin 等等。
(2)关键是选择合适的u 和dv ,选取原则:(a )v 要容易求出。
(b )du v ⎰比dv u ⎰容易求出。
例如:xx x x de x e x x d e dx xe ⎰⎰⎰-=⎪⎭⎫ ⎝⎛=222212121不合适。
(3)步骤:运用分部积分公式求不定积分⎰dx x f )(的主要步骤是把被积函数)(x f分解为两部分因式相乘的形式,其中一部分因式看作u,另一部分因式看作v ',而后套用公式,这样就把求不定积分⎰'dx v u 的问题转化为求不定积分⎰'vdx u 的问题.()dx x f ⎰()()dx x v x u ⎰'= 确定()x u 和()x v ' ()()x dv x u ⎰= 凑微分()()()()x du x v x v x u ⎰-= 使用分部积分公式 ()()()()dx x u x v x v x u ⎰'-= 求微分()()()C x F x v x u +-= 求积分【例1】求下列不定积分(1)dx x x ⎰cos (2)dx xe x ⎰2 (3)()dx x x ⎰+sin 12 解:(1)C x x x dx x x x x d x dx x x ++=-==⎰⎰⎰cos sin sin sin sin cos(2)()⎪⎭⎫ ⎝⎛-===⎰⎰⎰⎰dx e xe de x x d xe dx xe xx x x x 222222121221 ()C e xe x d e xe x x x x +-=-=⎰2222412124121 (3)()()()()⎥⎦⎤⎢⎣⎡+-+-=+-=+⎰⎰⎰1cos cos 1cos 1sin 12222x d x x x x d x dx x x()()()⎥⎦⎤⎢⎣⎡+++-=++-=++-=⎰⎰⎰dx x x x x x d x x dx x x x x sin sin 21sin 21cos 2cos 1222()C x x x x +-++-=cos 2sin 212【注】:【练习】(1)dx x x ⎰3cos (2)dx e x x ⎰2 解:(1)C x x x dx x x x x dx x dx x x +-=⎪⎭⎫ ⎝⎛-==⎰⎰⎰3sin 93cos 33cos 3cos 333cos 33cos (2)x x x x x x x x de x e x dx xe e x dx e e x de x dx e x ⎰⎰⎰⎰⎰-=-=-==22222222C e xe e x dx e xe e x xx x x x x +--=⎪⎭⎫ ⎝⎛--=⎰2222【例2】求下列不定积分(1)dx x x ⎰ln (2)dx x x ⎰arctan (3)dx x ⎰arcsin 解:(1)dx x x x x d x x x dx x dx x x ⎰⎰⎰⎰-=⎪⎭⎫ ⎝⎛-==21ln 21ln ln 21ln 21ln 2222 C x x x +-=2241ln 21 (2)⎪⎭⎫ ⎝⎛-==⎰⎰⎰x d x x x dx x dx x x arctan arctan 21arctan 21arctan 222 ⎰+-=dx x x x x 222121arctan 21dx x x x ⎰⎪⎭⎫ ⎝⎛+--=2211121arctan 21 C x x x x ++-=arctan 2121arctan 212 (3)⎰⎰⎰--=-=dx xx x x x d x x x dx x 21arcsin arcsin arcsin arcsin()C x x x x d xx x +-+=--+=⎰2221arcsin 11121arcsin【注】:【练习】()()()()()dx xx x x x d x x x dx x ⎰⎰⎰+-+=+-+=+222222121ln 1ln 1ln 1ln ()()⎰+--+=⎪⎭⎫ ⎝⎛+--+=C x x x x dx x x x arctan 221ln 11121ln 222 【例3】求下列不定积分(1)⎰⎰=x x de dx e sin sin )(sin sin x d e x e x x ⎰-=⎰-=xdx e x e x x cos sin⎰-=x x xde x e cos sin )cos cos (sin ⎰--=x d e x e x e x x x ⎰--=xdx e x x e x x sin )cos (sin (注意循环形式)所以有 sin (sin cos ).2xxe e dx x x C =-+⎰注:注:有时需要先换元再用分部积分法求不定积分。