统计学中的基本概念讲课讲稿
- 格式:doc
- 大小:90.50 KB
- 文档页数:7
统计基础知识讲义第一章总论第一节统计的涵义一、统计的概念、统计的三种涵义(一)统计的概念统计,是指对某一现象有关数据的搜集、整理、计算和分析等活动。
(二)统计的三种涵义统计工作、统计资料、统计学(三)统计工作、统计资料和统计学三者的关系第一、统计工作与统计资料是过程与成果的关系;第二、统计工作与统计学是实践与理论的关系;第三、统计工作与统计学是前与后的关系。
第二节统计学中的基本概念一、总体与总体单位(一)总体所谓总体,是指客观存在的,在同一性质基础上结合起来的许多个别事物的整体,称为统计总体,简称总体。
(二)总体单位构成总体的每个事物称为总体单位。
(三)总体与总体单位的关系总体由总体单位构成,它是全部和部分的关系。
总体和总体单位是相对而言的,总体和总体单位可以相互转化。
总体的基本特征:同质性,大量性,差异性。
二、指标与标志(一)指标有两种理解一是:指标是反映总体现象数量特征的概念。
二是:指标是反映总体现象数量特征的概念和具体数值。
如,2008年江苏省地区生产总值(GDP)达30312.61亿元。
(二)标志标志是说明总体单位特征的名称。
标志按性质不同,分为品质标志和数量标志。
标志按表现不同,分为不变标志和变异标志。
变异标志又分为品质变异标志和数量变异标志。
(三)指标与标志的区别1、指标说明总体特征,标志说明总体单位特征;2、标志分为有不能用数值表示的品质标志和能用数值表示的数量标志两种,但指标必须都能用数值表示。
(四)指标与标志的联系1、统计指标的数值直接汇总于总体单位的数量标志值;2、指标与数量标志之间存在着转化的关系。
三、变异与变量(一)变异标志在同一总体不同总体单位之间的差别,称为变异。
(二)变量数量变异标志就是变量数量变异标志的具体数值表现,称为变量值。
几个基本概念之间的联系第三节统计的任务与过程一、统计的任务《统计法》规定,统计的基本任务是:对国民经济和社会发展情况进行统计调配、统计分析,提供统计资料和统计咨询意见,实行统计监督。
第二节统计学的理论基础和研究方法第三节统计学的基本范畴一、统计总体与总体单位(一)概念统计总体和总体单位,又可以简称为总体和个体,是反映统计认识对象的基本概念.凡是客观存在的,在同一性质基础上结合起来的许多事物的整体,就是统计总体.组成统计总体的个体称为总体单位.例如,一个工业企业,有以职工为单位组成的职工总体,有以每台设备组成的设备总体,有以产品为单位组成的产品总体,有以销售行为为单位组成的销售总体等。
总体和个体是多种多样的,常见的主要有两种,即:以某种客观存在的实体为单位组成的总体,如以个人、家庭、学校、设备、产品、商品等为单位组成的总体称作实体总体;以某种行为、事件为单位组成的总体,如买卖行为、工伤事故、犯罪事件、体育活动等为单位组成的总体称作行为总体。
一个统计总体中所包括的总体单位数可以是无限的,这样的总体称为无限总体;也可以是有限的,则称为无限总体.在社会经济现象中统计总体大多是有限的。
在统计调查中,对无限总体不能进行全面调查,只能调查其中一小部分单位,据以推断总体.对有限总体既可作全面调查,也可只调查其中的一小部分.(二)特点统计总体的形成必须具备一定的条件,作为统计研究具体对象的统计总体,其形成条件主要有三条:第一,同质性。
组成统计总体的所有单位必须是在某些性质上是相同的,例如工业企业总体,必须是由进行工业生产经营的基层单位组成的。
如果是国有工业企业总体,便又多了一个所有制性质上的相同标志,它的范围便小于工业企业总体了。
或数量标志数值;第二,大量性。
统计总体是由许多总体单位构成的。
小型总体(抽样总体)的单位数要足够多;第三,差异性。
构成总体的各单位除了同质性一面还必须有差异性一面,否则便不需要进行统计调查研究了。
例如职工总体中的每个职工,在工种、性别、年龄、文化程度、工资等方面都有差异,这样才构成社会经济统计调查的内容。
二、标志与指标(一)概念标志是说明总体单位属性和特征的名称。
标志按其表现形式有数量标志与品质标志两种。
统计学基础6
统计工作过程如图1-1所示。
图1-1统计工作过程框架
因此,从统计工作的过程来看,这四个阶段是从定性认识开始,经过定量认识,再到定量与定性认识相结合的循环往复的过程。
它们是相互联系、相互制约的整体,有时候各阶段工作需要相互渗透、交叉进行。
第二节 统计学中的基本概念
统计学中的概念很多,我们经常用到的几个基本概念有:统计总体与总体单位,样本与样本单位;标志与指标;变异与变量;存量与流量等。
一、总体与样本
总体,又称统计总体,是指由客观存在的、具有同一性质的许多个别事物组成的集合体。
个体,又称总体单位,是指构成统计总体的个别事物的总称。
例如,我们要研究某个地区工业企业的基本情况,那么该地区所有的工业企业就是统计总体,工业企业是客观存在的,包括许多个别工业企业,每个企业都是从事工业生产活动的,性质是相同的,是构成统计总体的个体。
作为统计总体,它必须同时具备以下一些基本特征。
1.同质性
同质性是指构成总体的所有个别事物必须具有一个相同的性质,它是将总体各单位结合起来的基础。
例如,国有企业总体中的每个企业,其共同性是它们都是国有的。
同质性是统计总体的根本特征,只有个别事物具有同质性,统计才能通过对个别事物的观察研究,归纳和揭示出总体的综合特征和规律性。
2.差异性
差异性是指总体的各个单位除了在某一方面具有相同的性质外,在其他方面或多或少。
统计方面的讲课稿范文统计学讲课稿第一章绪论一、引言尊敬的各位同学们,大家好!很荣幸能够在这里给大家讲授统计学知识。
统计学作为应用广泛的一门学科,对于我们在各个领域的研究和应用都有着重要的意义。
本次授课将介绍统计学的基本概念、数据的收集与处理、统计推断以及相关应用等内容。
希望通过本课程的学习,能够让各位同学对于统计学的理论和实践能够有一个较为全面的认识。
二、统计学的定义与特点统计学是研究收集、归纳、处理、分析和解释大量数据的学科。
它运用数学和统计学方法,通过对样本数据进行概率推断,从而推断总体的参数。
统计学的主要特点包括:定量、可量化、随机性和不确定性。
第二章数据的收集与处理一、数据收集的方法与步骤1.1 主观抽样与客观抽样1.2 抽样方法的选择和样本大小的确定1.3 数据收集的步骤与注意事项二、数据的描述与整理2.1 数据的分布形态与图形表达2.2 中心位置与变异程度的度量2.3 数据的整理与变形第三章统计推断一、总体参数的估计1.1 点估计与区间估计1.2 抽样分布与标准误1.3 样本大小与估计精度二、假设检验2.1 基本概念与步骤2.2 单总体假设检验2.3 两个总体假设检验三、相关性与回归分析3.1 相关性分析的概念与计算方法3.2 简单线性回归分析与拟合优度3.3 多元回归分析与模型选择第四章统计学应用一、统计学在医学领域的应用1.1 实验设计与数据分析1.2 临床试验与药效评价二、统计学在市场调查中的应用2.1 抽样设计与数据收集2.2 产品定价与市场预测三、统计学在风险评估中的应用3.1 风险度量与风险控制3.2 金融市场风险管理四、统计学在环境科学中的应用4.1 监测与评估方法4.2 自然资源管理与保护五、统计学在社会学研究中的应用5.1 偏倚与抽样误差的控制5.2 社会调查与数据分析六、统计学在教育评价中的应用6.1 学生成绩的评价与分析6.2 教学效果与改进措施第五章统计软件的应用一、SPSS统计软件的基本操作与应用1.1 数据输入与处理1.2 统计分析与结果解读二、R语言在统计分析中的应用2.1 R语言的安装与基本操作2.2 常用统计分析函数与应用案例三、Excel在统计学中的应用3.1 数据的输入与整理3.2 常见统计函数的计算方法第六章总结与展望一、统计学的研究与发展1.1 统计学的新兴领域与方法1.2 统计学与大数据时代二、统计学的应用前景与挑战2.1 统计学在科学研究中的价值2.2 统计学在决策与规划中的作用结语通过以上内容的讲解和学习,我们对统计学的基本概念、数据的收集与处理、统计推断以及相关应用有了初步的了解。
1.2 统计学的几个基本概念
1.2.1 总体和总体单位
1.总体
(1)总体的概念:总体是指客观存在的、具有某种共同性质的许多个别事物组成的整体;
在统计研究过程当中,统计研究的目的和任务居于支配和主导的地位,有什么样的研究目的就应该有什么样的统计总体与之相适应。
例如:要研究我们学院教师的工资情况,那么全体教师就是研究的总体,其中的每一位教师就是总体单位;如果要了解某班50个学生的学习情况,则总体就是该班的50名学生,每一名学生是总体单位。
根据我们研究目的的不同,我们要选取的研究对象也就是研究总体相应地要发生变化。
(2)总体的分类:
总体根据总体单位是否可以计量分为有限总体和无限总体:
★有限总体:指所包含的单位数是有限的总体。
如一个企业的全体职工、一个国家的全部人口等都是有限总体;
★无限总体:指所包含的单位数目是无限的,或准确度量它的单位数是不经济或没有必要的,这样的总体称为无限总体。
如企业生产中连续生产的大量产品,江河湖海中生长的鱼的尾数等等。
划分有限总体和无限总体对于统计工作的意义就在于可以帮助我们设计统计调查方法。
很显然,对于有限总体,可以进行全面调查,也可以进行非全面调查,但对于无限总体不能进行全面调查,只能抽取一部分单位进行非全面调查,据以推断总体。
(3)总体的特征:
★大量性:是指构成总体的单位数要足够的多,总体应由大量的单位所构成。
大量性是对统计总体的基本要求。
个别单位的现象或表现有很大的偶然性,而大量单位的现象综合则相对稳定。
因此,现象的规律性只能在大量个别单位的汇总综合中
才能表现出来。
只有数量足够的多,才能准确地反应我们要研究的总体的特征,达到我们的研究目的。
★同质性:指总体中各单位至少在某一个方面性质相同,使它们可以结合起来构成总体。
同质性是构成统计总体的前提条件。
★变异性:即构成总体的各个单位除了至少在某一方面具有共同性质外,在其他方面具有一定的差异。
差异性是统计研究的主要内容。
如以一个班级的所有学生作为一个总体,则“专业”是该总体的同质性,而“性别”、“籍贯”等则是个体之间的变异性;以我院全体教师为一个总体,则“工作单位”是其同质性,而“学历”、“月工资”等则是它的变异性。
需要特别说明的三个问题:
★变异是客观存在的,没有变异的事物是不存在的;
★变异对于统计非常重要,没有变异就没有统计。
这是因为,如果总体单位之间不存在变异,我们只需要了解一个总体单位的资料就可以推断总体情况了;
★变异性和同质性之间相互联系、相互补充,是辩证统一的关系。
用同质性否定变异性或用变异性否定同质性都是错误的。
2.总体单位
是构成总体的每一个个体。
【思维动起来】
对2015年10月份某市小学生的近视情况进行调查:
统计总体是什么?总体单位是什么?
总体的同质性是什么?变异性是什么?
3.总体和总体单位的关系
在统计研究中,确定统计总体和总体单位是十分重要的,它决定于统计研究目的和认识对象的性质。
在一次特定范围、目的的统计研究中,统计总体与总体单位是不容混淆的,二者的含义是确切的,是包含与被包含的关系,但是随着统计研究任务、目的及范围的变化,统计总体和总体单位可以相互转化。
“转化”:只是概念上的转化。
【思维动起来】
任务1:对河北政法职业学院进行教学水平评估,总体是什么,总体单位是什么?
任务2:对全省所有高职院校进行教学水平评估,总体是什么,总体单位是什么?
1.2.2 标志与指标
1.标志
(1)相关概念
★标志用来说明总体单位特征或属性的名称。
例如:以企业作为总体单位,则职工人数、工资水平、所有制性质、年产量等都是标志。
★标志表现:标志在各总体单位的具体表现。
例如:教师“学位”这一标志的的标志表现为博士、硕士、学士;“月工资”的标志表现为1000元、2000元、3000元等。
★标志值:即数量标志表现,又称变量值。
如上例教师的月工资数。
(2)标志的分类
按性质不同,分为:
◆品质标志:表示事物质(属性)的特征,在原始状态下无法量化,其具体表现只能用文字来表示。
例如:工人的性别、工种,教师的职务,学生所学的专业、民族、籍贯等。
◆数量标志:表示事物量(单位数量)的特征,其具体表现可以用文字和数字表示。
例如:年龄、产值、身高、体重、工资、成绩等。
按变异情况可以分为:
◆可变标志:一个标志在总体各单位的具体表现不完全相同,即标志表现有差别。
可变标志决定总体的差异性,是进行统计分组的基础。
◆不变标志:一个标志在总体各单位的具体表现都相同,即标志表现无差别。
不变标志决定总体的同质性,是个别事物结合起来形成总体的条件。
统计研究是从登记标志开始,并通过对标志的综合来反映总体的数量特征,因此标志是统计研究的起点。
思考:以我们班全体同学为总体,则总体单位是每一个同学。
请列举出其中的不变标志,可变标志?
2.指标
(1)概念:反映同类社会经济现象总体在一定的时间、地点条件下的综合数量表现。
例如:第六次全国人口普查数据,截止到2010年11月1日零时,中国总人口约13.40亿人。
(2)构成要素:
由上例的分析,引出指标的构成包括指标名称、指标数值、时间范围、空间范围、计算方法和计量单位六个要素。
(3)性质:
◆具体性:总体在具体时间、地点、条件下数量特征,即统计指标“质的规定性”。
◆综合性:对总体数量特征的综合说明,是由个体数量综合而来的。
如:平均分数=∑每位学生的成绩/全班学生数
◆数量性:统计指标是数量范畴,没有无数量的指标。
(4)分类:
按性质不同分为:
◆数量指标:反映社会经济现象的总规模和总水平的指标,表现形式为绝对数。
如全国人口数、学校的招生数、固定资产总额等。
◆质量指标:说明社会经济现象的相对水平或平均水平的指标,
表现形式为相对数或平均数。
通常是由两个总量指标对比派生出来的,反映现象之间内在联系和对比关系。
如职工平均工资、人均居住面积等。
按其数值表现形式不同分为:
◆总量指标:反映总体规模,通常以绝对数的形式表现,如人口总数、国内生产总值等。
◆相对指标:是两个绝对数之比,亦称为相对数,如计划完成程度、男女生的比例。
◆平均指标:反映总体在某一时间或空间上的平均数量状况,如人均消费水平、某种股票一周的平均价格、班级学生平均成绩等。
3.指标和标志的关系
(1)区别:
★指标是说明总体数量特征的概念,而标志是说明总体特征的概念;
★指标都是用数值表示的,而标志有的是用数字表示,有的是用文字表示;
(2)联系:
★许多统计指标是由各单位的数量标志值汇总而来的;如一个县的粮食总产量是所属各乡村粮食产量的合计数。
★指标和标志之间存在转化关系。
在一定的条件下(研究目的的调整),指标和标志之间可以相互转化。
当研究目的发生转化以后,原来的总体转化为总体单位,统计指标也就当然地变为数量标志了,反之亦然。
4.指标体系
是各种相互联系、相互补充的指标所构成的整体,用以说明所研究现象的各方面相互依存和相互制约的关系。
一个指标的作用总是有限的,它只能反映现象总体的某一侧面,只有使用指标体系,才能全面、综合地对客观事物进行描述、分析。
例:
高等职业院校人才培养工作评估指标体系:
1.固定资产总值;
2.生均仪器设备总值;
3.应届毕业生初次就业率;
4.顶岗实习率;
5.实习基地利用率等。
工业企业综合评价指标体系:
1.市场占有率;
2.利税占有率;
3.全员劳动生产率;
4.成本费用利润率;
5.流动资产周转率;
6.产品销售率;
7.总资产报酬率;
8.净资产报酬率;
9.资产负债率;10.营运资金比率;11.资产保值增值率;12.社会贡献率。
学生期末网上教学评估:教学态度、教学内容、教学方法、教学效果等。
优秀课程评审:课程设置、师资团队、基本资源、拓展资源、教学效果
3.变异与变量
(1)概念
变量是指可变的数量标志。
变量的具体数值叫做变量值。
例:见教材P7。
(2)变量的分类
按其取值的是否连续分为:
★离散型变量:指变量值只能表现为整数而不会出现小数。
如人口数,机器台数,桌椅数,教室数等。
可以用计数的方法取得变量值。
★连续型变量:指变量取值连续不断,在整变量数之间可以无限地取值,取整数和取小数都具有经济含义。
如粮食产量、身高、体重、资金、利润等。
连续型变量的取值要利用计量工具,通过测量或度量的方法取得。
教学小结
作业:单项选择题1-5;多项选择题1-3。