三角形中边与角之间的不等关系课件
- 格式:ppt
- 大小:77.50 KB
- 文档页数:13
三角形中的边角关系三角形,作为几何学中最基本且最古老的存在之一,是我们理解空间结构的重要元素。
在众多的几何图形中,三角形以其独特的性质和关系,展示了丰富多样的形态和功能。
其中,边角关系是三角形属性中的核心内容之一。
我们来看三角形中的边与角的关系。
在任意一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边。
这是三角形边长关系的基本定理,它告诉我们三角形的三边长度之间是相互制约的。
同时,三角形的三个内角之和等于180度,这是三角形角的关系的基本定理。
我们来看三角形中的特殊边角关系。
等边三角形是三边长度相等的三角形,其三个内角都是60度。
这是三角形中一种简单而特殊的形式,其中所有的边都相等,所有的角也都相等。
等腰三角形是两边长度相等的三角形,其两个内角相等。
这是三角形中另一种常见的形式,其中两边的长度相等,相应的两个角也相等。
在等腰直角三角形中,两边的长度相等,一个角是直角。
这种三角形的特性是,其斜边的长度是直角的边的两倍。
这种关系在解决几何问题时非常重要,例如在勾股定理的应用中。
我们还可以看到,在直角三角形中,斜边的平方等于两直角边的平方和。
这是勾股定理的表现形式,它揭示了直角三角形中边与边之间的深刻关系。
三角形的边角关系是几何学中的基本概念,它反映了三角形的基本属性和结构。
对这些关系的理解和掌握,不仅可以帮助我们解决各种几何问题,还可以帮助我们理解更复杂的几何结构。
这些知识将贯穿我们在数学和其他科学领域的学习和应用中。
一、测试目的本单元测试旨在检验学生对三角形中边角关系的理解与运用。
三角形中的边角关系是几何学中最基本的概念之一,理解并掌握这些关系对于进一步学习和解决几何问题具有重要意义。
二、测试内容本单元测试主要包括以下几个方面的内容:1、三角形内角和定理及其应用2、三角形边角关系的应用3、特殊三角形的性质与判定三、测试形式本单元测试采用闭卷、笔试形式,考试时间为60分钟,满分为100分。
第三讲三角形的角与边一、基础知识本讲重点介绍三角形的边、角不等关系,包括同一个三角形中的边、角不等关系以及不同三角形中的边、角不等关系.1.边与边的关系(1)在同一个三角形中两边之和大于第三边,两边之差小于第三边(三边满足什么条件时,三角形必然存在?);(2)勾股定理:即在直角三角形中两条直角边的平方和等于斜边的平方.2.角与角的关系(1)三角形的内角和为180︒;(2)直角三角形中两锐角互余;(3)三角形的一个外角大于任何一个与它不相邻的内角;(4)三角形的一个外角等于与它不相邻的两内角之和.3.边和角的关系(1)在同一个三角形中,大边对大角,大角对大边;(2)在两个三角形中,如果有两条边对应相等,那么夹角大的所对的边也大;反之也成立,即在两个三角形中,如果有两条边对应相等,那么第三边大,则所对的角也大.4.不等式变形时常用的性质(1)若a>b,c>d,则a+c>b+d;(2)若a>b,c>d,则a-d>b-c;(3)若a>b,c>0,则ac>bc;若a>b,c<0,则ac<bc;(4)若a>b>0,则11 a b <;(5)总量大于任何一个部分量.5.三角形中的不等关系根源:(1)两点之间线段最短;(2)垂线段最短.二、例题第一部分边的问题例1. (★★希望杯训练题)将三边长为a,b,c的三角形记作(a,b,c).写出周长为20,各边长为正整数的所有不同的三角形.例2. (★★★ 2000年希望杯竞赛题)一个三角形的三条边的长分别是a,b,c(a,b,c都是质数),且a+b+c=16,则这个三角形是()A.直角三角形B.等腰三角形C.等边三角形D.直角三角形或等腰三角形例3. (★★★1998年江苏省竞赛题)在不等边三角形中,如果有一条边长等于另两条边长的平均值,那么最大边上的高与最小边上的高的比值的取值范围是( )A.31 4k<<B.113k<<C.12k<< D.112k<<例4. (★★★1997年北京市竞赛题)等腰三角形一腰上的中线把这个三角形的周长分成12cm和21cm 两部分,则这个等腰三角形的底边的长为( )A.17cmB.5cmC.17cm或5cmD.无法确定例5. (★★★)如图3-1,已知P为三角形ABC内一点,求证:1()2AB AC BC PA PB PC AB AC BC++<++<++.例6. (★★★第三十二届美国邀请赛试题)不等边三角形ABC的两条高长度为4和12,若第三条高的长也是整数,试求它的长.例7. (★★★)若三角形ABC 的三边长是a,b,c,且满足:444224442244422,,a b c b c b c a a c c a b a b =+-=+-=+-,则ABC ∆是( )A.钝角三角形B.直角三角形C.等腰直角三角形D.等边三角形第二部分 角的问题例8. (★★)如图3-4,在三角形ABC 中,042A ∠= ,ABC ∠和ACB ∠的三等分线分别交于D,E,求BDC ∠的度数.例9. (★★★1999年重庆市竞赛题)三角形的三个内角分别为,,αβγ,且αβγ≥≥,2αγ=.则β的取值范围是( )A.003645β≤≤B.004560β≤≤C.006090β≤≤D.004572β≤≤例10. (★★★)如图3-7,延长四边形ABCD 对边AD,BC 交于F ;DC,AB 交于E,若AED ∠,AFB ∠平分线交于O,求证:1()2EOF EAF BCD ∠=∠+∠第三部分边角综合24,例11. (★★★ 2000年江苏省竞赛题)在锐角三角形ABC中,AB>BC>AC,且最大内角比最小内角大0 的取值范围是( ).则A例12. (★★★★)如图3-2,在三角形ABC中,AB>AC>BC,P为三角形内任意一点,连结AP并延长交BC于点D.求证:(1)AB+AC>AD+BC;(2)AB+AC>AP+BP+CP.例13. (★★★★)如图,在三角形ABC中,角A=90度,AD垂直于BC,求证:AB+AC<AD+BC例14.(★★★★)如图,在三角形ABC中,AC>AB,在CA上截取CD=AB,E,F分别是BC,AD的中点,连接EF 并延长交BA的延长线于G,求证:AF=AG例15. (★★★★★)设三角形的三个内角度数分别为A,B,C,相应的对边长分别为a,b,c,求证:60 aA bB cCa b c︒++≥++三、练习题1. (★★)设m,n,p均为自然数,满足m n p≤≤,且m+n+p=15,试问以m,n,p为边长的三角形有多少个?2.(★★ 1998年山东省竞赛题) 已知三角形三边的长均为整数,其中某两条边长之差为5,若此三角形周长为奇数,则第三边长的最小值为( )** B.7 C.6 D.43.(★★★)一个三角形的周长为偶数,其中的两条边长分别为4和2003,则满足上述条件的三角形的个数为( )A.1个B.3个C.5个D.7个4.(★ 2002,云南省中考题)两根木棒的长分别是7cm和10cm,要选择第三根木棒,将它们钉成一个三角形,若第三根木棒的长是acm,则a的取值范围是( ).5. (★)ABC 的一个内角的大小是040,且A B ∠=∠,那么C ∠的外角的大小是( )A.140︒B.80︒或100︒C.100︒或140︒D.80︒或140︒6. (★★★)如图3-5,在ABC ∆中,90ACB ︒∠=,D,E 为AB 上的两点,若AE=AC,45DCE ︒∠=则图中与BC 等长的线段是( ) A.CD B.BD C.CE D.AE-BE7. (★★★)如图3-6,在ABC ∆中,B ∠的平分线与C ∠的外角平分线相交于D,40D ︒∠=.则A ∠等于( )A.50︒B. 60︒C. 70︒D.80︒8. (★★ 第12届希望杯竞赛题)如图3-9,127.5︒∠=,295︒∠=,338.5︒∠=求4∠的大小.9. (★★★第5届希望杯竞赛题)如图3-8,BE 是ABD ∠的平分线,CF 是ACD ∠的平分线,BE 与CF 交于G,若140BDC ︒∠=,110BGC ︒∠=,求A ∠的度数.10. (★★★★)如图,三角形ABC 中,AB=BC=CA,AE=CD,AD,BE 相交于P,BQ 垂直于AD 于Q ,求证:BP=2PQ课外小故事五枚金币有个叫阿巴格的人生活在内蒙古草原上.有一次,年少的阿巴格和他爸爸在草原上迷了路,阿巴格又累又怕,到最后快走不动了.爸爸就从兜里掏出5枚硬币,把一枚硬币埋在草地里,把其余4枚放在阿巴格的手上,说:“人生有5枚金币,童年、少年、青年、中年、老年各有一枚,你现在才用了一枚,就是埋在草地里的那一枚,你不能把5枚都扔在草原里,你要一点点地用,每一次都用出不同来,这样才不枉人生一世.今天我们一定要走出草原,你将来也一定要走出草原.世界很大,人活着,就要多走些地方,多看看,不要让你的金币没有用就扔掉.”在父亲的鼓励下,那天阿巴格走出了草原.长大后,阿巴格离开了家乡,成了一名优秀的船长.珍惜生命,就能走出挫折的沼泽.。
三角形中的不等关系
知识点:
1、 边的不等关系:三角形的任意两边之和大于第三边;任意两边之差小于第三边。
2、 角的不等关系:三角形的外角大于与它不相邻的任何一个内角。
3、 边与角之间的不等关系:在同一个三角形中,等边对等角,等角对等边;大边对大角,大角对大边。
例题讲解:
1、如图,O 为△ABC 内任意一点,
(1)求证:∠BO C >∠A ;
(2)求证:AB+AC>OB+OC;
(3)连结OA,求证:AB+BC+AC>OA+OB+OC>21(AB+BC+AC) (1)证明:
2、如图,AD 是△ABC 的外角∠EAC 的平分线,且交BC 的延长线于点D 。
试判断∠ACB 与∠ABC 的大小关系,并说明理由。
C
D
3、如图,BCD 、CAE 和AFB 均为直线,试判断∠ACD 与∠AFE 的大小关系,并说明理由。
4、 如图,△ABC 中,AB<AC,试比较∠B 与∠C 的大小,并说明理由.你能用一句话来说明你
所得的结论吗?
5、如图,△ABC 中,AB ≤
21AC ,求证:∠C 〈21∠B
C C。