2009年陕西省中考数学试题(word版含答案)
- 格式:doc
- 大小:791.00 KB
- 文档页数:10
某某省教育课程改革试验区2009年中考数学模拟考试卷(五)(本试卷满分120分,考试时间120分钟)第I 卷(选择题 共30分)一.选择题(共10小题,每小题3分,计30分。
每小题只有一个选项是符合题意的) 1. 下列计算正确的是( ) A.42=±B.2142-⎛⎫=- ⎪⎝⎭C.382-=-D.|2|2--=2.下列轴对称图形中(如图1),只有两条对称轴的图形是3.关于x 的不等式12-≤-a x 的解集如图所示,则a 的取值是( )A. 1B. -1C. 2D. -24.为了了解某小区居民的用水情况,随机抽查了该小区10户家庭的月用水量,结果如下:则这10户家庭月用水量的众数和中位数分别为( ) A .14t ,13.5t B .14t ,13t5.为确保信息安全,信息需要加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密).已知加密规则为:明文a b c ,,对应的密文12439a b c +++,,.例如明文1,2,3对应的密文2,8,18.如果接收方收到密文7,18,15,则解密得到的明文为( ) A.4,5,6 B.6,7,2 C.2,6,7 D.7,2,6 6、如图2,ABC △是等腰直角三角形,且90ACB ∠=,曲线CDEF叫做“等腰直角三角形的渐开线”,其中CD ,DE ,EF ,的圆心依次按A B C ,,循环.如果1AC =,那么由曲线CDEF 和线段CF 围成图形的面积为( ) A.(1272)π4+B.(952)π+24+月用水量(t )10 13 14 17 18户 数 2 2 3 2 1图 1A .B .C .D . · 0· · —1 —2 ○ ADCB EF(图2)已知抛物线y=ax 2+bx+3与x 轴交于(1,0),试添加一个条件,使它的对称轴为直线x=2.C.(1272)π24++D.(952)π4+a 、b 、c 为非零实数,且满足,则一次函数y = kx +(1+k )的图象一定经过 ( )A. 第一、二、三象限B.第二、四象限C. 第一象限D.第二象限8.老师出示了小黑板上的题后(如图),小华说:过点(3,0);小彬说:过点(4,3);小明说:a=1;小颖说:抛物线被x 轴截得的线段长为2.你认为四人的说法中,正确的有( )9.如图3 ,△ABC 是边长为6cm 的等边三角形,被一平行于BC 的矩形所截,AB 被截成三等分,则图中阴影部分的 面积为( ) (A )4cm 2 (B )2cm 2 (C )3cm 2 (D )4cm 2图310.如图4,将矩形ABCD 纸片沿对角线BD 折叠,使点C 落在C '点处,BC '交AD 于点E ,若22.5DBC ∠=°,则在不添加任何辅助线的情况下,图中45°的角(虚线也视为角的边)有( )。
机密★启用前试卷类型:A2019年陕西省初中毕业学业考试数学试卷注意事项:1、本试卷分为第一部分(选择题)和第二部分(非选择题)。
全卷共8页,总分120分。
考试时间120分钟。
2、领取试卷和答题卡后,请用0.5毫米黑色墨水签字笔,分别在试卷和答题卡上填写姓名和准考证号,同时用2B 铅笔在答题卡填涂对应的试卷类型信息点(A 或B)。
3、请在答题卡上各题的指定区域内作答,否则作答无效。
4、作图时,先用铅笔作图,再用规定签字笔描黑。
5、考试结束,本试卷和答题卡一并交回。
第一部分(选择题 共30分)一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的) 1.计算:(-3)0=【A 】A .1B .0C .3D .-132.如图,是由两个正方体组成的几何体,则该几何体的俯视图为【D 】3.如图,OC 是∠AOB 的平分线,l ∥OB .若∠1=52°,则∠2的度数为【C 】A .52°B .54°C .64°D .69°4.若正比例函数y =-2x 的图象经过点(a -1,4),则a 的值为【A 】 A .-1 B .0 C .1 D .25.下列计算正确的是【D 】 A .2a 2·3a 2=6a 2 B .(-3a 2b )2=6a 4b 2 C .(a -b )2=a 2-b 2 D .-a 2+2a 2=a 26.如图,在△ABC 中,∠B =30°,∠C =45°,AD 平分∠BAC ,交BC 于点D ,DE ⊥AB ,垂足为E ,若DE =1,则BC 的长为【A 】A .2+ 2B .2+ 3C .2+ 3D .37.在平面直角坐标系中,将函数y =3x 的图象向上平移6个单位长度,则平移后的图象与x 轴交点的坐标为【B 】A .(2,0)B .(-2,0)C .(6,0)D .(-6,0) 8.如图,在矩形ABCD 中,AB =3,BC =6.若点E 、F 分别在AB 、CD 上,且BE =2AE ,DF =2FC ,G 、H 分别是AC 的三等分点,则四边形EHFG 的面积为【C 】A .1B .32C .2D .4BE =2AE ,DF =2FC ,G 、H 分别是AC 的三等分点 ∴E 是AB 的三等分点,F 是CD 的三等分点 ∴EG ∥BC 且EG =-13BC =2同理可得HF ∥AD 且HF =-13AD =2∴四边形EHFG 为平行四边形EG 和HF 间距离为1 S 四边形EHFG =2×1=29.如图,AB 是⊙O 的直径,EF 、EB 是⊙O 的弦,且EF =EB ,EF 与AB 交于点C ,连接OF .若∠AOF =40°,则∠F 的度数是【B 】A .20°B .35°C .40°D .55° 连接FB ,得到FOB =140°; ∴∠FEB =70° ∵EF =EB∴∠EFB =∠EBF ∵FO =BO ,∴∠OFB =∠OBF ,∴∠EFO =∠EBO ,∠F =35°10.在同一平面直角坐标系中,若抛物线y =x 2+(2m -1)x +2m -4与y =x 2-(3m +n )x +n 关于y 轴对称,则符合条件的m 、n 的值为【D 】A .m =57,n =-187B .m =5,n =-6C .m =-1,n =6D .m =1,n =-2关于y 轴对称,a ,c 不变,b 变为相反数,列方程组求m ,n第二部分(非选择题 共90分)二、填空题(共4小题,每小题3分,计12分)11.已知实数-12,0.16,3,π,25,34,其中为无理数的是 3,π,34 .12.若正六边形的边长为3,则其较长的一条对角线长为 6 .13.如图,D 是矩形AOBC 的对称中心,A (0,4),B (6,0).若一个反比例函数的图象经过点D ,交AC 于点M ,则点M 的坐标为 ⎝⎛⎭⎫32,4 .14.如图,在正方形ABCD 中,AB =8,AC 与BD 交于点O ,N 是AO 的中点,点M 在BC 边上,且BM =6,P 为对角线BD 上一点,则PM -PN 的最大值为 2 .三、解答题(共11小题,计78分.解答应写出过程) 15.(本题满分5分)计算:-2×3-27+|1-3|-⎝⎛⎭⎫12-2原式=-2×(-3)+3-1-4 =1+ 316.(本题满分5分) 化简:⎝⎛⎭⎪⎫a -2a +2+8aa 2-4÷a +2a 2-2a原式=(a +2)2(a -2)(a +2)×a (a -2)a +2=a17.(本题满分5分) 如图,在△ABC 中,AB =AC ,AD 是BC 边上的高,请用尺规作图法,求作△ABC 的外接圆.(保留作图痕迹,不写作法)18.(本题满分5分)如图,点A 、E 、F 、B 在直线l 上,AE =BF ,AC ∥BD ,且AC =BD . 求证:CF =DE . 证明:∵AE =BF , ∴AF =BE ∵AC ∥BD ,∴∠CAF =∠DBE 又AC =BD , ∴△ACF ≌△BDE ∴CF =DE19.(本题满分7分)本学期初,某校为迎接中华人民共和国建国七十周年,开展了以“不忘初心,缅怀革命先烈,奋斗新时代”为主题的读书活动.校德育处对本校七年级学生四月份“阅读该主题相关书籍的读书量”(下面简称:“读书量”)进行了随机抽样调查,并对所有随机抽取学生的“读书量”(单位:本)进行了统计,如下图所示:根据以上信息,解答下列问题:(1)补全上面两幅统计图;填出本次所抽取学生四月份“读书量”的众数为3本;(2)求本次所抽取学生四月份“读书量”的平均数;(3)已知该校七年级有1200名学生,请你估计该校七年级学生中,四月份“读书量”为5本的学生人数.解:(1)补全两幅统计图(2)∵18÷30%=60∴平均数=(1×3+2×18+3×21+4×12+5×6)÷60=3本∴本次所抽取的学生四月份“读书量”的平均数为3本(3)∵1200×10%=120(人),∴估计该校七年级学生中,四月份“读书量”为5本的学生有120人20.(本题满分7分)小明想利用刚学过的测量知识来测量学校内一棵古树的高度.一天下午,他和学习小组的同学们带着测量工具来到这棵古树前,由于有围栏保护,他们无法到达古树的底部B,如图所示.于是,他们先在古树周围的空地上选择了一点D,并在点D处安装了测倾器DC,测得古树的顶端A 的仰角为45°;再在BD的延长线上确定一点G,使DG=5m,并在点G处的地面上水平放置了一个小平面镜,小明沿BG方向移动,当移动到点F时,他刚好在小平面镜内看到这棵古树的顶端A的像,此时,测得FG=2m,小明眼睛与地面的距离EF=1.6m,测倾器的高度CD=0.5m.已知点F、G、D、B在同一水平直线上,且EF、CD、AB均垂直于FB,求这棵古树的高AB.(小平面镜的大小忽略不计)解:过点C作CH⊥AB于点H,则CH=BD,BH=CD=0.5在Rt△ACH中,∠ACH=45°,∴AH=CH=BD∴AB=AH+BH=BD+0.5∵EF⊥FB,AB⊥FB,∴∠EFG=∠ABG=90°.由题意,易知∠EGF=∠AGB,∴△EFG∽△ABC∴EF AB =FG BG 即 1.6BD +0.5=25+BD解之,得BD =17.5∴AB =17.5+0.5=18(m). ∴这棵古树的高AB 为18m . 21.(本题满分7分)根据记录,从地面向上11km 以内,每升高1km ,气温降低6℃;又知道距地面11km 以上的高空,气温几乎不变.若地面气温为m (℃),设距地面的高度为x (km)处的气温为y (℃).(1)写出距地面的高度在11km 以内的y 与x 之间的函数表达式;(2)上周日,小敏在乘飞机从上海飞回西安途中,某一时刻,她从机舱内屏幕显示的相关数据得知,飞机外气温为-26℃时,飞机距地面的高度为7km ,求当时这架飞机下方地面的气温.小敏想,假如飞机当时在距地面12km 的高空,飞机外的气温是多少度呢?请求出假如当时飞机距地面12km 时,飞机外的气温.解:(1)y =m -6x(2)将x =7,y =-26代入y =m -6x ,得-26=m -42,∴m =16 ∴当时地面气温为16℃ ∵x =12>11,∴y =16-6×11=-50(℃)假如当时飞机距地面12km 时,飞机外的气温为-50℃ 22.(本题满分7分)现有A 、B 两个不透明的袋子,分别装有3个除颜色外完全相同的小球,其中A 袋装有2个白球,1个红球;B 袋装有2个红球,1个白球.(1)将A 袋摇匀,然后从A 袋中随机摸出一个小球,求摸出的小球是白色的概率;(2)小林和小华商定了一个游戏规则:从摇匀后的A 、B 两袋中各随机摸出一个小球,摸出的这两个小球,若颜色相同,则小林获胜;若颜色不同,则小华获胜.请用列表法或画树状图的方法说明这个游戏规则对双方是否公平.解:(1)共有3种等可能结果,而摸出白球的结果有2种∴P (摸出白球)=23由上表可知,共有9种等可能结果,其中颜色相同的结果有4种,颜色不同的结果有5种 ∴P (颜色相同)=49,P (颜色不同)=59∵49<59∴这个游戏规则对双方不公平 23.(本题满分8分)如图,AC 是⊙O 的直径,AB 是⊙O 的一条弦,AP 是⊙O 的切线,作BM =AB ,并与AP 交于点M ,延长MB 交AC 于点E ,交⊙O 于点D ,连接AD .(1)求证:AB =BE ;(2)若⊙O 的半径R =5,AB =6,求AD 的长. (1)证明:∵AP 是⊙O 的切线, ∴∠EAM =90°,∴∠BAE +∠MAB =90°,∠AEB +∠AMB =90°. 又∵AB =BM ,∴∠MAB =∠AMB , ∴∠BAE =∠AEB , ∴AB =BE(2)解:连接BC∵AC 是⊙O 的直径, ∴∠ABC =90°在Rt △ABC 中,AC =10,AB =6, ∴BC =8由(1)知,∠BAE =∠AEB , ∴△ABC ∽△EAM ∴∠C =∠AME ,AC EM =BC AM即1012=8AM ∴AM =485又∵∠D =∠C , ∴∠D =∠AMD ∴AD =AM =48524.(本题满分10分)在平面直角坐标系中,已知抛物线L :y =ax 2+(c -a )x +c 经过点A (-3,0)和点B (0,-6),L 关于原点O 对称的抛物线为L ′.(1)求抛物线L 的表达式;(2)点P 在抛物线L ′上,且位于第一象限,过点P 作PD ⊥y 轴,垂足为D .若△POD 与△AOB 相似.求符合条件的点P 的坐标.解:(1)由题意,得⎩⎨⎧9a -3(c -a )+c =0c =-6,解之,得⎩⎨⎧a =-1c =-6,∴L :y =-x 2-5x -6(2)∵点A 、B 在L ′上的对应点分别为A ′(-3,0)、B ′(0,-6) ∴设抛物线L ′的表达式y =x 2+bx +6将A ′(-3,0)代入y =x 2+bx +6,得b =-5. ∴抛物线L ′的表达式为y =x 2-5x +6 A (-3,0),B (0,-6), ∴AO =3,OB =6.设P (m ,m 2-5m +6)(m >0). ∵PD ⊥y 轴,∴点D 的坐标为(0,m 2-5m +6) ∵PD =m ,OD =m 2-5m +6Rt △POD 与Rt △AOB 相似, ∴PD AO =OD BO 或PD BO =OD AO①当PD AO =OD BO 时,即m 3=m 2-5m +66,解之,得m 1=1,m 2=6∴P 1(1,2),P 2(6,12)②当PD BO =OD AO 时,即m 6=m 2-5m +63,解之,得m 3=32,m 4=4∴P 3(32,34),P 4(4,2)∵P 1、P 2、P 3、P 4均在第一象限∴符合条件的点P 的坐标为(1,2)或(6,12)或(32,34)或(4,2)25.(本题满分12分) 问题提出(1)如图1,已知△ABC ,试确定一点D ,使得以A 、B 、C 、D 为顶点的四边形为平行四边形,请画出这个平行四边形.问题探究 (2)如图2,在矩形ABCD 中,AB =4,BC =10.若要在该矩形中作出一个面积最大的△BPC ,且使∠BPC =90°,求满足条件的点P 到点A 的距离.问题解决(3)如图3,有一座塔A ,按规划,要以塔A 为对称中心,建一个面积尽可能大的形状为平行四边形景区BCDE .根据实际情况,要求顶点B 是定点,点B 到塔A 的距离为50米,∠CBE =120°.那么,是否可以建一个满足要求的面积最大的平行四边形景区BCDE ?若可以,求出满足要求的□BCDE 的最大面积;若不可以,请说明理由.(塔A 的占地面积忽略不计)。
2009年陕西省初中毕业学业考试数 学第Ⅰ卷(选择题 共30分)A 卷一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.12-的倒数是( ). A.2 B .2- C .12 D .12-2.1978年,我国国内生产总值是3 645亿元,2007年升至249 530亿元.将249 530亿元用科学记数表示为( ). A .1324.95310⨯元 B .1224.95310⨯元 C .132.495310⨯元 D .142.495310⨯元3.图中圆与圆之间不同的位置关系有( ). A .2种 B .3种 C .4种 D .5种 4.王老师为了了解本班学生课业负担情况,在班中随机调查了10名学生,他们每人上周平均每天完成家庭作业所用的时间分别是(单位:小时):1.5,2,2,2,2.5,2.5,2.5,2.5,3,3.5.则这10个数据的平均数和众数分别是( ). A .2.4,2.5 B .2.4,2 C .2.5,2.5 D .2.5,2 5.若正比例函数的图象经过点(1-,2),则这个图象必经过点( ). A .(1,2) B .(1-,2-) C .(2,1-) D .(1,2-)6.如果点(12)P m m -,在第四象限,那么m 的取值范围是( ). A .102m <<B .102m -<<C .0m <D .12m > 7.若用半径为9,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是( ). A .1.5 B .2 C .3 D .68.化简2b aa a ab ⎛⎫- ⎪-⎝⎭的结果是( ).A .a b -B .a b +C .1a b - D .1a b+ 9.如图,9030AOB B ∠=∠=°,°,A OB ''△可以看作是由AOB △绕点O 顺时针旋转α角度得到的.若点A '在AB 上,则旋转角α的大小可以是( ).A .30°B .45°C .60°D .90°10.根据下表中的二次函数2y ax bx c =++的自变量x 与函数y 的对应值,可判断该二次函数的图象与x 轴( ).(第3题图)120°(第7题图)AOBA 'B '(第9题图)x… 1- 0 1 2 … y…1-74- 2-74- …A .只有一个交点B .有两个交点,且它们分别在y 轴两侧C .有两个交点,且它们均在y 轴同侧D .无交点第Ⅱ卷(非选择题 共90分)二、填空题(共6小题,每小题3分,计18分) 11.031)--=__________.12.如图,AB CD ∥,直线EF 分别交AB CD 、于点E F 、, 147∠=°,则2∠的大小是__________. 13.若1122()()A x y B x y ,,,是双曲线3y x=上的两点, 且120x x >>,则12_______y y {填“>”、“=”、“<”}.14.如图,在梯形ABCD 中,DC AB ∥,DA CB =. 若104AB DC ==,,tan 2A =,则这个梯形的面积 是__________.15.一家商店将某种商品按成本价提高50%后,标价为450元,又以8折出售,则售出这件商品可获利润__________元.16.如图,在锐角ABC △中,45AB BAC =∠=°,BAC ∠的平分线交BC 于点D M N ,、分别是AD 和AB 上的动点,则BM MN +的最小值是___________ .三、解答题(共9小题,计72分) 17.(本题满分5分) 解方程:223124x x x --=+-. 18.(本题满分6分)如图,在ABCD中,点E 是AD 的中点,连接CE 并延长,交BA 的延长线于点F . 求证:FA AB =.AB DC EF12 (第12题图)ABCD(第14题图)ABCDNM(第16题图)A B C DE F (第18题图)某校为了组织一项球类对抗赛,在本校随机调查了若干名学生,对他们每人最喜欢的一项球类运动进行了统计,并绘制成如图①、②所示的条形和扇形统计图.根据统计图中的信息,解答下列问题:(1)求本次被调查的学生人数,并补全条形统计图;(2)若全校有1 500名学生,请你估计该校最喜欢篮球运动的学生人数;(3)根据调查结果,请你为学校即将组织的一项球类对抗赛提出一条合理化建议. 20.(本题满分8分)小明想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:如示意图,小明边移动边观察,发现站到点E 处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度 1.2CD =m ,0.8CE =m ,30CA =m (点A E C 、、在同一直线上).已知小明的身高EF 是1.7m ,请你帮小明求出楼高AB (结果精确到0.1m ).项目 ①足球20%篮球 26% 乒乓球 32% 羽毛球 16% 其他②(第19题图)(第20题图)在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回.设汽车从甲地出发x (h )时,汽车与甲地的距离为y (km ),y 与x 的函数关系如图所示. 根据图象信息,解答下列问题:(1)这辆汽车的往、返速度是否相同?请说明理由; (2)求返程中y 与x 之间的函数表达式;(3)求这辆汽车从甲地出发4h 时与甲地的距离.22.(本题满分8分)甲、乙两同学用一副扑克牌中牌面数字分别是3、4、5、6的4张牌做抽数学游戏.游戏规则是:将这4张牌的正面全部朝下,洗匀,从中随机抽取一张,抽得的数作为十位上的数字,然后,将所抽的牌放回,正面全部朝下、洗匀,再从中随机抽取一张,抽得的数作为个位上的数字,这样就得到一个两位数.若这个两位数小于45,则甲获胜,否则乙获胜.你认为这个游戏公平吗?请运用概率知识说明理由. 23.(本题满分8分)如图,O ⊙是ABC △的外接圆,AB AC =,过点A 作AP BC ∥,交BO 的延长线于点P . (1)求证:AP 是O ⊙的切线;(2)若O ⊙的半径58R BC ==,,求线段AP 的长.(第21题图)(第23题图)24.(本题满分10分)如图,在平面直角坐标系中,OB OA ⊥,且2OB OA =,点A 的坐标是(12)-,. (1)求点B 的坐标;(2)求过点A O B 、、的抛物线的表达式;(3)连接AB ,在(2)中的抛物线上求出点P ,使得ABP ABO S S =△△. 25.(本题满分12分) 问题探究(1)请在图①的正方形ABCD 内,画出使90APB ∠=°的一个..点P ,并说明理由. (2)请在图②的正方形ABCD 内(含边),画出使60APB ∠=°的所有..的点P ,并说明理由.问题解决(3)如图③,现在一块矩形钢板43ABCD AB BC ==,,.工人师傅想用它裁出两块全等的、面积最大的APB △和CP D '△钢板,且60APB CP D '∠=∠=°.请你在图③中画出符合要求的点P 和P ',并求出APB △的面积(结果保留根号).D C B A ① D C BA ③ D CB A ② (第25题图)2009年陕西省初中毕业学业考试数学试题参考答案A 卷一、选择题(共10小题,每小题3分,计30分)题号1 2 3 4 5 6 7 8 9 10 A 卷答案 BC A AD D C B C B题号1 2 3 4 5 6 7 8 9 10 B 卷答案 DA D C AB B A B C二、填空题(共6小题,每小题3分,计18分)11.2 12.133° 13.< 14.42 15.60 16.4 三、解答题(共9小题,计72分) 17.(本题满分5分) 解:22(2)(4)3x x ---=. ························································································ (2分)45x -=-.54x =. ······················································································· (4分)经检验,54x =是原方程的解. ···················································································· (5分) 18.(本题满分6分)证明: 四边形ABCD 是平行四边形, AB DC AB DC ∴=,∥.FAE D F ECD ∴∠=∠∠=∠,. ············ (3分) 又EA ED = ,AFE DCE ∴△≌△. ······························· (5分) AF DC ∴=. AF AB ∴=. ············································· (6分) 19.(本题满分7分) 解:(1)1326%50÷= ,∴本次被调查的人数是50. ·········· (2分) 补全的条形统计图如图所示. ······· (4分)(第19题答案图)项目ABCDEF(2)150026%390⨯= ,∴该校最喜欢篮球运动的学生约为390人. ································································ (6分) (3)如“由于最喜欢乒乓球运动的人数最多,因此,学校应组织乒乓球对抗赛”等.(只要根据调查结果提出合理、健康、积极的建议即可给分) ·············································· (7分) 20.(本题满分8分)解:过点D 作DG AB ⊥,分别交AB EF 、于点G H 、, 则 1.2EH AG CD ===,0.830DH CE DG CA ====,. ························ (2分) EF AB ∥, FH DH BGDG∴=. ························································· (5分)由题意,知 1.7 1.20.5FH EF EH =-=-=.0.50.830BG ∴=,解之,得18.75BG =. ··················· (7分) 18.75 1.219.9520.0AB BG AG ∴=+=+=≈.∴楼高AB 约为20.0米. ······························································································ (8分) 21.(本题满分8分)解:(1)不同.理由如下:往、返距离相等,去时用了2小时,而返回时用了2.5小时,∴往、返速度不同. ······································································································ (2分) (2)设返程中y 与x 之间的表达式为y kx b =+,则120 2.505.k b k b =+⎧⎨=+⎩,解之,得48240.k b =-⎧⎨=⎩,········································································································ (5分)∴48240y x =-+.(2.55x x ≤≤)(评卷时,自变量的取值范围不作要求) ····· (6分) (3)当4x =时,汽车在返程中,48424048y ∴=-⨯+=.∴这辆汽车从甲地出发4h 时与甲地的距离为48km . ················································· (8分) 22.(本题满分8分)解:这个游戏不公平,游戏所有可能出现的结果如下表:第二次第一次3 45 6 3 33 34 35 36 4 43 44 45 46 5 53 54 55 56 663646566表中共有16种等可能结果,小于45的两位数共有6种. ·········································· (5分)(第20题答案图)()()168168甲获胜乙获胜3588≠ , ∴这个游戏不公平. ······································································································ (8分) 23.(本题满分8分)解:(1)证明:过点A 作AE BC ⊥,交BC 于点E . AB AC =,AE ∴平分BC .∴点O 在AE 上. ······································· (2分) 又AP BC ∥, AE AP ∴⊥.AP ∴为O ⊙的切线. ································ (4分) (2)142BE BC == ,3OE ∴.又AOP BOE ∠=∠ , OBE OPA ∴△∽△. ··································································································· (6分)BE OE AP OA ∴=. 即435AP =. 203AP ∴=. ················································································································· (8分)24.(本题满分10分) 解:(1)过点A 作AF x ⊥轴,垂足为点F ,过点B 作BE x ⊥轴,垂足为点E ,则21AF OF ==,.OA OB ⊥,90AOF BOE ∴∠+∠=°. 又90BOE OBE ∠+∠= °, AOF OBE ∴∠=∠.Rt Rt AFO OEB ∴△∽△.2BE OE OBOF AF OA ∴===. 24BE OE ∴==,.(42)B ∴,. ····················································································································· (2分) (2)设过点(12)A -,,(42)B ,,(00)O ,的抛物线为2y ax bx c =++. 216420.a b c a b c c -+=⎧⎪∴++=⎨⎪=⎩,,解之,得12320a b c ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩,,.P(第23题答案图)22(3)由题意,知AB x ∥轴.设抛物线上符合条件的点P 到AB 的距离为d ,则1122ABP S AB d AB AF == △. 2d ∴=.∴点P 的纵坐标只能是0,或4. ··············································································· (7分) 令0y =,得213022x x -=.解之,得0x =,或3x =.∴符合条件的点1(00)P ,,2(30)P ,. 令4y =,得213422x x -=.解之,得32x ±=. ∴符合条件的点34)P,44)P . ∴综上,符合题意的点有四个: 1(00)P ,,2(30)P ,,33(4)2P -,43(4)2P . ·········································· (10分) (评卷时,无1(00)P ,不扣分) 25.(本题满分12分)解:(1)如图①,连接AC BD 、交于点P ,则90APB ∠=°.∴点P 为所求.······················································· (3分) (2)如图②,画法如下:1)以AB 为边在正方形内作等边ABP △;2)作ABP △的外接圆O ⊙,分别与AD BC 、交于点E F 、.在O ⊙中,弦AB 所对的APB 上的圆周角均为60°, EF∴上的所有点均为所求的点P . ··················· (7分) (3)如图③,画法如下:1)连接AC ;2)以AB 为边作等边ABE △;3)作等边ABE △的外接圆O ⊙,交AC 于点P ; 4)在AC 上截取AP CP '=. 则点P P '、为所求. ············································· (9分) (评卷时,作图准确,无画法的不扣分) 过点B 作BG AC ⊥,交AC 于点G . 在Rt ABC △中,43AB BC ==,.DCBA① P②③(第25题答案图)5AC ∴==.125AB BC BG AC ∴== . ····························································································· (10分) 在Rt ABG △中,4AB =,165AG ∴==.在Rt BPG △中,60BPA ∠=°,12tan 60535BG PG ∴==⨯=°.∴165AP AG PG =+=1116122255APB S AP BG ⎛∴==⨯+⨯= ⎝⎭ △. ································· (12分)。
2011年陕西省中考数学试题及答案(word版)
第Ⅰ卷(选择题共30分)
一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的) 1.?2 3的倒数为【】 3
2A. ? B.3
2 C.2
3 D. ?2
3
2.下面四个几何体中,同一几何体的主视图和俯视图相同的共有【】
正方体圆锥球圆柱(第二题图)
A、1个 B 、2个 C、3个 D、4个
3.我国第六次人口普查显示,全国人口为1370536875人,将这个总人口数(保留三个有效数字)用科学计数法表示为【】
A、 1.37?109
B、1.37?10
2
57 C、1.37?108 D、 1.37?1010 4、下列四个点,在正比例函数Y??X的图像上的点是【】
A、( 2, 5 )
B、( 5, 2)
C、(2,-5)
5
12D、 ( 5 , -2 ) 12135.在△ABC中,若三边BC ,CA,AB满足 BC:CA:AB=5:12:13,则cosB= 【】 A、 B、12
5 C、 5
13 D、
6.某校男子男球队10名队员的身高(厘米)如下:179,182,170,174,188,172,180,195,185,182,则这组数据的中位数和众数分别是【】
A、181,181
B、182,181
C、180,182
D、181,182
7.同一平面内的两个圆,他们的半径分别为2和3 ,圆心距为d,当1?d?5时,两圆的位置关系是【】
A、外离
B、相交
C、内切或外切
D、内含
第 1 页共 12 页。
第 1 页 共 10 页 2009年陕西省初中毕业学业考试数 学第Ⅰ卷(选择题 共30分)A 卷一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.12-的倒数是( ). A.2 B .2- C .12 D .12- 2.1978年,我国国内生产总值是3 645亿元,2007年升至249 530亿元.将249 530亿元用科学记数表示为( ).A .1324.95310⨯元B .1224.95310⨯元C .132.495310⨯元D .142.495310⨯元3.图中圆与圆之间不同的位置关系有( ).A .2种B .3种C .4种D .5种 4.王老师为了了解本班学生课业负担情况,在班中随机调查了10名学生,他们每人上周平均每天完成家庭作业所用的时间分别是(单位:小时):1.5,2,2,2,2.5,2.5,2.5,2.5,3,3.5.则这10个数据的平均数和众数分别是( ).A .2.4,2.5B .2.4,2C .2.5,2.5D .2.5,25.若正比例函数的图象经过点(1-,2),则这个图象必经过点( ).A .(1,2)B .(1-,2-)C .(2,1-)D .(1,2-)6.如果点(12)P m m -,在第四象限,那么m 的取值范围是( ). A .102m <<B .102m -<<C .0m <D .12m > 7.若用半径为9,圆心角为120°的扇形围成一个圆锥的侧面 (接缝忽略不计),则这个圆锥的底面半径是( ).A .1.5B .2C .3D .6 8.化简2b a a a a b ⎛⎫- ⎪-⎝⎭g 的结果是( ). A .a b - B .a b + C .1a b - D .1a b+ 9.如图,9030AOB B ∠=∠=°,°,A OB ''△可以看作是由AOB △绕点O 顺时针旋转α角度得到的.若点A '在AB 上,则旋转角α的大小可以是( ).A .30°B .45°C .60°D .90° 10.根据下表中的二次函数2y ax bx c =++的自变量x 与函数y 的对应值,可判断该二次函数的图象与x 轴( ).(第3题图)120°(第7题图) A OB A ' B ' (第9题图)。
2009年陕西省中考数学试题(副题)绝密☆启用前 试卷类型:B2009年陕西省初中毕业学业考试(副题)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3-9页,全卷共120分。
考试时间为120分钟。
第Ⅰ卷(选择题 共30分)注意事项:1.答第Ⅰ卷前,请你千万别忘了将自己的姓名、准考证号、考试科目、试卷类型(A 或B )用2B 铅笔和钢笔准确涂写在答题卡上;并将本试卷左侧的项目填写清楚。
2.当你选出每小题的答案后,请用2B 铅笔把答题卡上对应题号的答案标号涂黑。
如需改动,请用橡皮擦干净后,再选涂其它答案标号。
把答案填在试卷上是不能得分的。
3.考试结束,本卷和答题卡一并交给监考教师收回。
一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.-3的平方是A.9B.-9C.6D.-62.下列图形中,既是轴对称图形又是中心对称图形的是3.近三年,陕西加强农村公路建设,到2008年底,陕西农村公路总里程达到11.9万公里.将11.9万公里用科学计数法表示为A.11.9×104 公里B.1.19×105公里C.1.19×106公里D.11.9×105公里4. 如图,CD 是Rt △ABC 斜边上的高.若AB=5,AC=3,则tan ∠BCD 为A.34B. 43C. 54D. 53 5.某篮球队员12名队员的年龄情况统计如下表:年龄(单位:岁)18 21 23 24 26 29则这12名队员的众数和中位数分别是A.23岁,21岁B.23岁,22岁C.21岁,22岁D.21岁,23岁6.若正比例函数y=kx经过点(2,-1),则它与反比例函数y=xk的图像的两个交点分别在A.第一、二象限B.第二、四象限C.第一、三象限D.第三、四象限7.如图,在长70m,宽40m的长方形花园中,欲修宽度相等的观赏路(如阴影部分所示),要使观赏路面积占总面积的81,则路宽x(m)应满足的方程是A.(40-X)(70-X)=350B.(40-2X)(70-3X)=2450C.(40-2X)(70-3X)=350D.(40-X)(70-X)=24508.如图,在⊙o中,∠ACB=250,则∠ABO为A.650B.600C.450D.3009.将抛物线y=x2-4x+3平移,使它平移后的顶点为(-2,4),则需将该抛物线A. 先向右平移4个单位,再向上平移5个单位B. 先向右平移4个单位,再向下平移5个单位C. 先向左平移4个单位,再向上平移5个单位D. 先向左平移4个单位,再向下平移5个单位10.如图,四边形ABCD和四边形BEFD都是矩形,且点C恰好在EF上.若AB=1,AD=2,则S△BCE为A.1B.552C.32D.54人数 2 4 1 3 1 115.如图,过点P (4,3)作PA ⊥x 轴于点A, PB ⊥y 轴于点B ,且PA 、PB 分别与某双曲线上的一支交于点C,点D,则BD AC 的值为 . 16.如图,在正方形ABCD中,E、F分别是边BC、DA上的点,且BE=DF.若AB=a,点B到AE的距离为b,则点B到CF的距离可用a、b表示为 .三、解答题(共9小题,计72分.解答应写出过程)17.(本题满分5分)先化简,在求值:4x 12x 2x 2-x 22-+-+, 其中x=-3.18. (本题满分6分)如图,在梯形ABCD中,AD∥BC,AB=DC,延长BC到点E,使CE=AD,连接BD、DE.求证:DB=DE.19. (本题满分7分)某商店今年4月份销售A、B、C三种商品的销售量和利润情况的统计图表如下:根据图表信息,解答下列问题:(1)这家商店今年4月份销售这三种商品各获利多少元?(2)今年5月份该商店销售了A、B、C三种商品共600件,若这家商店5月份销售这三种的单件销售利润与4月份相同,请你估计这家商店今年5月份销售这三种商品共获利润多少元?20. (本题满分8分)某工程队承担了一项2100米的排水管道铺设任务.在施工过程中,前30天使按原计划进行施工的,后期提高了工效.铺设排水管道的长度y(米)与施工时间x(天)之间的关系如图所示.(1)求原计划多少天完成任务?(2)求提高功效后,y与x之间的函数表达式;(3)实际完成这项任务比原计划提前了多少天?21. (本题满分8分)在一次数学测验活动中,小明到操场测量旗杆AB的高度.他手拿一支铅笔MN,边观察边移动(铅笔MN始终与地面垂直).如示意图,当小明移动到D点时,眼睛C与铅笔、旗杆的顶端M、A共线,同时,眼睛C与它们的底端N、B也恰好共线.此时,测得DB=50m,小明的眼睛C到铅笔的距离为0.65m,铅笔MN的长为0.16m,请你帮助小明计算出旗杆AB的高度(结果精确到0.1m).(第21题图)22. (本题满分8分)一个均匀的正方体骰子,各面分别标有数字1、2、3、4、5、6.规定:设随机抛掷一次,朝上的数字为所得数字.按规定,随机抛掷骰子两次,并将得到的两个数字之差的绝对值计作m.(1)写出m所有的可能值;(2)m为何值的概率最大?并求出这个概率?23. (本题满分8分)如图,在⊙O中,M是弦AB定的中点,过点B做⊙O的切线,与OM延长线交于点C.(1)求证:∠A = ∠B;(2)若OA=5,AB=8,求线段OC的长.24. (本题满分10分)如图,一条抛物线经过原点,且顶点B的坐标(1,-1).(1)求这个抛物线的解析式;(2)设该抛物线与x轴正半轴的交点为A,求证:△OBA为等腰直角三角形;(3)设该抛物线的对称轴与x轴的交点为C,请你在抛物线位于x轴上方的图象上求两点E、F,使△ECF为等腰直角三角形,且∠EOF=90025. (本题满分12分)问题探究(1)在图①的半径为R的半圆O内(含弧),画出一边落在直径MN上的面积最大的正三角形,并求出这个正三角形的面积.(2)在图②的半径为R的半圆O内(含弧),画出一边落在直径MN上的面积最大的正方形,并求出这个正方形的面积.问题解决(3)如图③,现有一块半径R=6的半圆形钢板,是否可以裁出一边落在MN 上的面积最大的矩形?若存在,请说明理由,并求出这个矩形的面积:若不存在,说明理由.2009年陕西省初中毕业学业考试数学答案及评分参考第Ⅰ卷(选择题 共30分)第Ⅱ卷(非选择题 共90分)二.填空题(共6小题,每小题3分,计18分) 11. -5,π 12.a (a-b )213.m >1 14.2 15.4316.22b a -三、解答题(共9小题,计72分.)(以下给出的各题一种解法及评分参考,其它符合题意的解法请参照相应题的解答赋分)17.解:原式=))(()()(2x 2x 12x 2x 22-++--=))((2x 2x 12x 4x 4x 22-+--+-=))((2x 2x 8x 4-+--= -2x 4-……………………………………………………(4分) 当x=-3时,原式= - 234--=54………………………………………………(5分)18.证明:在梯形ABCD 中,AB=CD,∴∠ABC=∠DCB, ∠A + ∠ABC = 1800…………………(2分)而∠DCB + ∠DCE =∠1800∴∠A = ∠DCE.……………………………………………… (4分)又AD = CE,∴△ABD ≌△CDE.∴BD = DE. ……………………………………………………(6分)19.解:(1)销售A 种商品的利润:2×160=320(元);销售B 种商品的利润:3×200=600(元);销售C 种商品的利润:5×40=200(元). ………………(3分) (2)600400200600320⨯++=1680 ∴估计这家商店今年5月份销售这三种商品共获利1680元.(7分)20.解:(1)∵ 750÷30=25, ∴ 2100÷25=84故原计划需要84天完成任务………………………(2分) (2)设提高工效后,y 与x 之间的表达式为y=kx+b.∵其图象过点(33,750),(60,1560),∴⎩⎨⎧=+=+1560b k 60750b k 33解之,得⎩⎨⎧-==240b 30k∴y 与x 之间的表达式为y=33x-240.(33≤x ≤78)(5分)(注:评分时自变量取值范围不作要求) (3)当y=2100时,30x-240=2100, 解之,得x=78. ∴ 84-78=6.∴实际完成这项任务比原计划提前了6天……………(8分) 21.解:过点C 作CF ⊥AB,垂足为F ,交MN于点E.则CF=DB=50, CE=0.65……(2分) ∵ MN ∥AB,∴ △CMN ∽△CAB.∴ ABMN CF CE =………(5分) ∴ AB=0.65500.16CE CF MN ⨯=⋅≈12.3 ∴ 旗杆AB 的高度约为12.3米……………(8分)22.解:(1)m 所有的可能值为0,1,2,3,4,5……………………………………………………(3分) (2)列表如下:(5分)表中共有36种等可能结果.其中有10种结果为1,出现次数最多. ∴ m 为1时的概率最大……………………………………………(6分)∴ P (m=1)=3610=185…………………………………………………(8分)23.(1)证明:连接OB ,则∠OBC=900, ∠A = ∠OBM , ∠OBM + ∠CBM=900.…………………………………………………………(2分)∵M 是AB 的中点, ∴OM ⊥AB.∵∠C +∠CBM = 900.∴∠C = ∠OBM. ∴∠A = ∠C. …………………………………………… (4分)(2)由(1)得△OMB ∽△OBC.∴ OBOMOC OB =…………………………………………(5分) ∴BM = 21AB = 4, OM = 224-5 = 3,∴OC=325OM OB 2=. ……………………………………… (8分) 24.解:(1)由题意,设抛物线的解析式为y=a (x-1)2-1,则0=a(0-1)2-1 ∴a=1. …………………………………………………… (2分) ∴y=(x-1)2-1 即y=x 2-2x. …………………………(3分) (2)当y=0时,x 2-2x=0 解得x=0 或 x=2.∴A (2,0)…………………………………………………(4分)又B(1,-1),O(0,0), ∴OB 2=2, AB 2=2, OA 2=4. ∴OB 2 + AB 2 = OA 2∴∠OBA = 900,且OB=BA.∴△OBA 为等腰直角三角形. ………(6分)(3)如图,过C 作CE ∥BO,CF ∥AB,分别交抛物线于点E 、F ,过点F 作FD ⊥X 轴于D ,则∠ECF=900,EC=CF,FD=CD.∴△ECF 为等腰直角三角形. ……………………………(7分) 令FD=m >0,则CD=m, OD=1+m ∴ F(1+m ,m)………………………………………………(8分) ∴ m =(1+m )2-2(1+m ), 即 m 2-m-1=0. 解得 m=251±∵m >0, ∴m=251+. ∴F(251,253++). ∵点E 、F 关于直线x=1对称, ∴E=(251,25-1+). …………………………………(10分) 25.解:(1)如图①,△ACB 为满足条件的面积最大的正三角形.连接OC ,则OC ⊥AB.∵AB=2OB ·tan300=332R ……(2分) ∴S △ACB =2R 33R R 33221OC AB 21=•⨯=•. …………… (3分)(2)如图②,正方形ABCD 为满足条件的面积最大的正方形.连接OA.令OB=a,则AB=2a. 在Rt △ABO 中,a 2+(2a )2=R 2.即22R 51a =. …………(6分)S 正方形ABCD =(2a)2=2R 54. … (7分)(3)存在. ………………………(8分)如图③,先作一边落在直径MN 上的矩形ABCD,使点A 、D 在弧MN 上,再作半圆O 及矩形ABCD 关于直径MN 所在直线的对称 图形,A 、D 的对称点分别是A '、D '. 连接A 'D 、OD,则A 'D 为⊙O 的直 径. ……………………(10分)∴S 正方形ABCD =AB ·AD=AD AA 21'•=S △D A A '.∵在Rt △AA 'D 中,当OA ⊥A 'D 时, S △D A A '的面积最大.∴S 矩形ABCD 最大=36R R R 2212==••. …………………………(12分)。
2009年来宾市初中毕业升学统一考试试题数学参考答案及评分标准一、填空题:本大题共10小题,每小题3分,共30分.1.-237; 2.10; 3.(x +2)(x -2); 4.25; 5.⎩⎨⎧==11y x ; 6.x y 2-=;7.1.30×105; 8.65; 9.2; 10.答案不唯一,只要符合题意均给分.二、选择题:本大题共8小题,每小题3分,共24分.三、解答题:本大题共8小题,满分66分. 19.解:原式=222919⨯+-+ …………4分(每对一个值给1分)=1+1=2……………………5分20.解:设该镇这两年中财政净收入的平均年增长率为x , ……………………1分依题意可得:5000(1+x )2=2×5000 ………………………………4分解得 21=+x ,或021<-=+x (舍去) ……………………5分∴%4.41414.012=≈-=x……………………………………6分答:该镇这两年中财政净收入的平均年增长率约为41.4﹪.…………7分21.解:(1)502;(2)23.71;(3)图略,值为150(图、值各1分);(4)80—99.(每小题各2分)22.证明:∵四边形ABCD 是平行四边形∴CD =AB ,AD =CB ,∠DAB =∠BCD ……2分 又∵△ADE 和△CBF 都是等边三角形 ∴DE =BF ,AE =CF∠DAE =∠BCF =60° ………………4分∵∠DCF =∠BCD -∠BCF ∠BAE =∠DAB -∠DAE ∴∠DCF =∠BAE……………………6分∴△DCF ≌△BAE (SAS ) ………………7分∴DF =BE∴四边形BEDF 是平行四边形. …………8分23.解:(1)见参考图 ……………………………3分(不用尺规作图,一律不给分。
对图(1)画出弧给1分, 画出交点G 给1分,连AG 给1分;对图(2),画出弧AMG给1分,画出弧ANG 给1分,连AG 给1分) (2)设AD =x ,在Rt △ABD 中,∠ABD =45°∴BD =AD =x …………………………………4分 ∴CD =20-x …………………………………5分∵DC AD ACD =∠tan ,即xx -=2030tan…6分 ∴()3.71310132030tan 130tan 20≈-=+=+=x (米) …7分 答:路灯A 离地面的高度AD 约是7.3米. …8分24.解:(1)∵DE 平分△ABC 的周长∴1221086=++=+AE AD ,即y +x =12 ……1分∴y 关于x 的函数关系式为:y =12-x (2≤x ≤6) ……3分(取值范围占1分)(2)过点D 作DF ⊥AC ,垂足为F ∵2221086=+,即222AB BC AC =+ ∴△ABC 是直角三角形,∠ACB =90° ………………4分∴AD DF AB BC A ==∠sin ,即x DF-=12108 ∴5448xDF -= ………………………………5分∴x x x x DF AE S 52452544821212+-=-⋅⋅=⋅⋅= …………6分 (第24题图)F E DC BA(第22题图)DEFABC(第23题图(1))(第23题图(2))NM GD CBA AB CDFGE()5726522+--=x 故当x =6时,S 取得最大值572………………………………7分此时,y =12-6=6,即AE =AD .因此,△ADE 是等腰三角形. ……8分25.解:(1)∵BC 是⊙O 的弦,半径OE ⊥BC∴BE =CE…………………2分(2)连结OC∵CD 与⊙O 相切于点C∴∠OCD =90°………………………3分∴∠OCB +∠DCF =90° ∵∠D +∠DCF =90° ∴∠OCB =∠D………………………4分∵OB =OC ∴∠OCB =∠B ∵∠B =∠AEC ∴∠D =∠AEC………………………5分(3)在Rt △OCF 中,OC =5,CF =4∴3452222=-=-=CF OC OF…………6分∵∠COF =∠DOC ,∠OFC =∠OCD∴Rt △OCF ∽Rt △ODC ………………………………8分∴OFOCOC OD =,即3253522===OF OC OD …………9分 ∴3105325=-=-=OE OD DE ∴32043102121=⨯⨯=⋅⋅=∆CF DE S CDE…………10分 注:本小题也可利用Rt △OCD ∽Rt △ACB 等,以及S △CDE =S △OCD -S △OCE 求解.26.解:(1)由题意可设抛物线的关系式为y =a (x -2)2-1…………1分因为点C (0,3)在抛物线上 所以3=a (0-2)2-1,即a =1…………………………2分所以,抛物线的关系式为y =(x -2)2-1=x 2-4 x +3……3分(2)∵点M (x ,y 1),N (x +1,y 2)都在该抛物线上∴y 1-y 2=(x 2-4 x +3)-[(x +1)2-4(x +1)+3]=3-2 x …………4分(第25题图)B当3-2 x >0,即23<x 时,y 1>y 2 ………………………………5分 当3-2 x =0,即23=x 时,y 1=y 2………………………………6分 当3-2 x <0,即23>x 时,y 1<y 2………………………………7分(3)令y =0,即x 2-4 x +3=0,得点A (3,0),B (1,0),线段AC 的中点为D (23,23) 直线AC 的函数关系式为y =-x +3………………………………8分因为△OAC 是等腰直角三角形,所以,要使△DEF 与△OAC 相似,△DEF 也必须是等腰直角三角形.由于EF ∥OC ,因此∠DEF =45°,所以,在△DEF 中只可能以点D 、F 为直角顶点.①当F 为直角顶点时,DF ⊥EF ,此时△DEF ∽△ACO ,DF 所在直线为23=y 由23342=+-x x ,解得2104-=x ,32104>+=x (舍去) ……9分将2104-=x 代入y =-x +3,得点E (2104-,2102+) …………10分 ②当D 为直角顶点时,DF ⊥AC ,此时△DEF ∽△OAC ,由于点D 为线段AC 的中点,因此,DF 所在直线过原点O ,其关系式为y =x .解x 2-4 x +3=x ,得2135-=x ,32135>+=x (舍去) …………11分将2135-=x 代入y =-x +3,得点E (2135-,2131+) …………12分(第26题图⑴)(第26题图⑵)。
2009年陕西省初中毕业学业考试数 学第Ⅰ卷(选择题 共30分)A 卷一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.12-的倒数是( ). A.2 B .2- C .12 D .12-2.1978年,我国国内生产总值是3 645亿元,2007年升至249 530亿元.将249 530亿元用科学记数表示为( ). A .1324.95310⨯元 B .1224.95310⨯元 C .132.495310⨯元 D .142.495310⨯元3.图中圆与圆之间不同的位置关系有( ). A .2种 B .3种 C .4种 D .5种 4.王老师为了了解本班学生课业负担情况,在班中随机调查了10名学生,他们每人上周平均每天完成家庭作业所用的时间分别是(单位:小时):1.5,2,2,2,2.5,2.5,2.5,2.5,3,3.5.则这10个数据的平均数和众数分别是( ). A .2.4,2.5 B .2.4,2 C .2.5,2.5 D .2.5,2 5.若正比例函数的图象经过点(1-,2),则这个图象必经过点( ). A .(1,2) B .(1-,2-) C .(2,1-) D .(1,2-) 6.如果点(12)P m m -,在第四象限,那么m 的取值范围是( ). A .102m <<B .102m -<<C .0m <D .12m > 7.若用半径为9,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是( ). A .1.5 B .2 C .3 D .68.化简2b aa a ab ⎛⎫- ⎪-⎝⎭的结果是( ). A .a b - B .a b + C .1a b - D .1a b+ 9.如图,9030AOB B ∠=∠=°,°,A OB ''△可以看作是由AOB △绕点O 顺时针旋转α角度得到的.若点A '在AB 上,则旋转角α的大小可以是( ).A .30°B .45°C .60°D .90°10.根据下表中的二次函数2y ax bx c =++的自变量x 与函数y 的对应值,可判断该二次函数的图象与x 轴( ).(第3题图)120°(第7题图)AOBA 'B '(第9题图)x … 1- 0 1 2 … y…1-74- 2-74- …A .只有一个交点B .有两个交点,且它们分别在y 轴两侧C .有两个交点,且它们均在y 轴同侧D .无交点第Ⅱ卷(非选择题 共90分)二、填空题(共6小题,每小题3分,计18分) 11.031)--=__________.12.如图,AB CD ∥,直线EF 分别交AB CD 、于点E F 、, 147∠=°,则2∠的大小是__________. 13.若1122()()A x y B x y ,,,是双曲线3y x=上的两点, 且120x x >>,则12_______y y {填“>”、“=”、“<”}.14.如图,在梯形ABCD 中,DC AB ∥,DA CB =. 若104AB DC ==,,tan 2A =,则这个梯形的面积 是__________.15.一家商店将某种商品按成本价提高50%后,标价为450元,又以8折出售,则售出这件商品可获利润__________元.16.如图,在锐角ABC △中,45AB BAC =∠=°,BAC ∠的平分线交BC 于点D M N ,、分别是AD 和AB 上的动点,则BM MN +的最小值是___________ .三、解答题(共9小题,计72分) 17.(本题满分5分) 解方程:223124x x x --=+-. 18.(本题满分6分)如图,在ABCD中,点E 是AD 的中点,连接CE 并延长,交BA 的延长线于点F . 求证:FA AB =.AB DC EF12 (第12题图)ABCD(第14题图)ABCDNM(第16题图)A B C DE F (第18题图)某校为了组织一项球类对抗赛,在本校随机调查了若干名学生,对他们每人最喜欢的一项球类运动进行了统计,并绘制成如图①、②所示的条形和扇形统计图.根据统计图中的信息,解答下列问题:(1)求本次被调查的学生人数,并补全条形统计图;(2)若全校有1 500名学生,请你估计该校最喜欢篮球运动的学生人数;(3)根据调查结果,请你为学校即将组织的一项球类对抗赛提出一条合理化建议. 20.(本题满分8分)小明想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:如示意图,小明边移动边观察,发现站到点E 处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度 1.2CD =m ,0.8CE =m ,30CA =m (点A E C 、、在同一直线上). 已知小明的身高EF 是1.7m ,请你帮小明求出楼高AB (结果精确到0.1m ).项目 ①足球20%篮球 26% 乒乓球 32% 羽毛球 16% 其他②(第19题图)(第20题图)在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回.设汽车从甲地出发x (h )时,汽车与甲地的距离为y (km ),y 与x 的函数关系如图所示. 根据图象信息,解答下列问题:(1)这辆汽车的往、返速度是否相同?请说明理由; (2)求返程中y 与x 之间的函数表达式;(3)求这辆汽车从甲地出发4h 时与甲地的距离.22.(本题满分8分)甲、乙两同学用一副扑克牌中牌面数字分别是3、4、5、6的4张牌做抽数学游戏.游戏规则是:将这4张牌的正面全部朝下,洗匀,从中随机抽取一张,抽得的数作为十位上的数字,然后,将所抽的牌放回,正面全部朝下、洗匀,再从中随机抽取一张,抽得的数作为个位上的数字,这样就得到一个两位数.若这个两位数小于45,则甲获胜,否则乙获胜.你认为这个游戏公平吗?请运用概率知识说明理由. 23.(本题满分8分) 如图,O ⊙是ABC △的外接圆,AB AC =,过点A 作AP BC ∥,交BO 的延长线于点P . (1)求证:AP 是O ⊙的切线;(2)若O ⊙的半径58R BC ==,,求线段AP 的长.(第21题图)(第23题图)24.(本题满分10分)如图,在平面直角坐标系中,OB OA ⊥,且2OB OA =,点A 的坐标是(12)-,. (1)求点B 的坐标;(2)求过点A O B 、、的抛物线的表达式;(3)连接AB ,在(2)中的抛物线上求出点P ,使得ABP ABO S S =△△. 25.(本题满分12分) 问题探究(1)请在图①的正方形ABCD 内,画出使90APB ∠=°的一个..点P ,并说明理由. (2)请在图②的正方形ABCD 内(含边),画出使60APB ∠=°的所有..的点P ,并说明理由.问题解决(3)如图③,现在一块矩形钢板43ABCD AB BC ==,,.工人师傅想用它裁出两块全等的、面积最大的APB △和CP D '△钢板,且60APB CP D '∠=∠=°.请你在图③中画出符合要求的点P 和P ',并求出APB △的面积(结果保留根号).D C B A ① D C BA ③ D CB A ② (第25题图)2009年陕西省初中毕业学业考试数学试题参考答案A 卷一、选择题(共10小题,每小题3分,计30分)题号1 2 3 4 5 6 7 8 9 10 A 卷答案 BC A AD D C B C B题号1 2 3 4 5 6 7 8 9 10 B 卷答案 DA D C AB B A B C二、填空题(共6小题,每小题3分,计18分)11.2 12.133° 13.< 14.42 15.60 16.4 三、解答题(共9小题,计72分) 17.(本题满分5分) 解:22(2)(4)3x x ---=. ························································································ (2分)45x -=-.54x =. ······················································································· (4分) 经检验,54x =是原方程的解. ···················································································· (5分) 18.(本题满分6分)证明: 四边形ABCD 是平行四边形, AB DC AB DC ∴=,∥.FAE D F ECD ∴∠=∠∠=∠,. ············ (3分) 又EA ED = ,AFE DCE ∴△≌△. ······························· (5分) AF DC ∴=.AF AB ∴=. ············································· (6分) 19.(本题满分7分) 解:(1)1326%50÷= ,∴本次被调查的人数是50. ·········· (2分) 补全的条形统计图如图所示. ······· (4分)(第19题答案图)项目ABCDEF(2)150026%390⨯= ,∴该校最喜欢篮球运动的学生约为390人. ································································ (6分) (3)如“由于最喜欢乒乓球运动的人数最多,因此,学校应组织乒乓球对抗赛”等.(只要根据调查结果提出合理、健康、积极的建议即可给分) ·············································· (7分) 20.(本题满分8分)解:过点D 作DG AB ⊥,分别交AB EF 、于点G H 、, 则 1.2EH AG CD ===,0.830DH CE DG CA ====,. ························ (2分) EF AB ∥, FH DH BGDG∴=. ························································· (5分) 由题意,知 1.7 1.20.5FH EF EH =-=-=.0.50.830BG ∴=,解之,得18.75BG =. ··················· (7分) 18.75 1.219.9520.0AB BG AG ∴=+=+=≈.∴楼高AB 约为20.0米. ······························································································ (8分) 21.(本题满分8分)解:(1)不同.理由如下:往、返距离相等,去时用了2小时,而返回时用了2.5小时,∴往、返速度不同. ······································································································ (2分) (2)设返程中y 与x 之间的表达式为y kx b =+,则120 2.505.k b k b =+⎧⎨=+⎩,解之,得48240.k b =-⎧⎨=⎩,········································································································ (5分)∴48240y x =-+.(2.55x x ≤≤)(评卷时,自变量的取值范围不作要求) ····· (6分) (3)当4x =时,汽车在返程中,48424048y ∴=-⨯+=.∴这辆汽车从甲地出发4h 时与甲地的距离为48km . ················································· (8分) 22.(本题满分8分)解:这个游戏不公平,游戏所有可能出现的结果如下表:第二次第一次3 45 6 3 33 34 35 36 4 43 44 45 46 5 53 54 55 56 663646566表中共有16种等可能结果,小于45的两位数共有6种. ·········································· (5分)(第20题答案图)()()168168甲获胜乙获胜3588≠ , ∴这个游戏不公平. ······································································································ (8分) 23.(本题满分8分)解:(1)证明:过点A 作AE BC ⊥,交BC 于点E . AB AC =,AE ∴平分BC .∴点O 在AE 上. ······································· (2分) 又AP BC ∥, AE AP ∴⊥.AP ∴为O ⊙的切线. ································ (4分) (2)142BE BC == ,3OE ∴==.又AOP BOE ∠=∠ ,OBE OPA ∴△∽△. ··································································································· (6分) BE OE AP OA ∴=. 即435AP =.203AP ∴=. ················································································································· (8分) 24.(本题满分10分) 解:(1)过点A 作AF x ⊥轴,垂足为点F ,过点B 作BE x ⊥轴,垂足为点E ,则21AF OF ==,.OA OB ⊥,90AOF BOE ∴∠+∠=°. 又90BOE OBE ∠+∠= °, AOF OBE ∴∠=∠.Rt Rt AFO OEB ∴△∽△.2BE OE OBOF AF OA ∴===. 24BE OE ∴==,.(42)B ∴,. ····················································································································· (2分) (2)设过点(12)A -,,(42)B ,,(00)O ,的抛物线为2y ax bx c =++.216420.a b c a b c c -+=⎧⎪∴++=⎨⎪=⎩,,解之,得12320a b c ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩,,.P(第23题答案图)22(3)由题意,知AB x ∥轴.设抛物线上符合条件的点P 到AB 的距离为d ,则1122ABP S AB d AB AF == △. 2d ∴=.∴点P 的纵坐标只能是0,或4. ··············································································· (7分) 令0y =,得213022x x -=.解之,得0x =,或3x =.∴符合条件的点1(00)P ,,2(30)P ,. 令4y =,得213422x x -=.解之,得32x ±=. ∴符合条件的点33(4)2P -,43(4)2P . ∴综上,符合题意的点有四个:1(00)P ,,2(30)P ,,33(4)2P -,43(4)2P . ·········································· (10分) (评卷时,无1(00)P ,不扣分) 25.(本题满分12分)解:(1)如图①,连接AC BD 、交于点P ,则90APB ∠=°.∴点P 为所求.······················································· (3分) (2)如图②,画法如下:1)以AB 为边在正方形内作等边ABP △;2)作ABP △的外接圆O ⊙,分别与AD BC 、交于点E F 、.在O ⊙中,弦AB 所对的APB 上的圆周角均为60°, EF∴上的所有点均为所求的点P . ··················· (7分) (3)如图③,画法如下:1)连接AC ;2)以AB 为边作等边ABE △;3)作等边ABE △的外接圆O ⊙,交AC 于点P ; 4)在AC 上截取AP CP '=. 则点P P '、为所求. ············································· (9分) (评卷时,作图准确,无画法的不扣分) 过点B 作BG AC ⊥,交AC 于点G . 在Rt ABC △中,43AB BC ==,.DCBA① P②③(第25题答案图)5AC ∴==.125AB BC BG AC ∴== . ····························································································· (10分) 在Rt ABG △中,4AB =,165AG ∴==.在Rt BPG △中,60BPA ∠=°,12tan 60535BG PG ∴==⨯=°.∴1655AP AG PG =+=+.111612962255525APB S AP BG ⎛⎫+∴==⨯+⨯= ⎪ ⎪⎝⎭ △. ································· (12分)。