化工大学精馏实验报告汇总
- 格式:doc
- 大小:832.00 KB
- 文档页数:10
精馏实验实验报告3篇精馏实验实验报告1学院:化学工程学院姓名:学号:专业:化学工程与工艺班级:同组人员:课程名称:化工原理实验实验名称:精馏实验实验日期北京化工大学实验五精馏实验摘要:本实验通过测定稳定工作状态下塔顶、塔釜及任意两块塔板的液相折光度,得到该处液相浓度,根据数据绘出x-y图并用图解法求出理论塔板数,从而得到全回流时的全塔效率及单板效率。
通过实验,了解精馏塔工作原理。
关键词:精馏,图解法,理论板数,全塔效率,单板效率。
一、目的及任务①熟悉精馏的工艺流程,掌握精馏实验的操作方法。
②了解板式塔的结构,观察塔板上汽-液接触状况。
③测定全回流时的全塔效率及单塔效率。
④测定部分回流时的全塔效率。
⑤测定全塔的浓度(或温度)分布。
⑥测定塔釜再沸器的沸腾给热系数。
二、基本原理在板式精馏塔中,由塔釜产生的蒸汽沿塔逐板上升与来自塔顶逐板下降的回流液,在塔板上实现多次接触,进行传热与传质,使混合液达到一定程度的分离。
回流是精馏操作得以实现的基础。
塔顶的回流量与采出量之比,称为回流比。
回流比是精馏操作的重要参数之一,其大小影响着精馏操作的分离效果和能耗。
回流比存在两种极限情况:最小回流比和全回流。
若塔在最小回流比下操作,要完成分离任务,则需要无穷多塔板的精馏塔。
当然,这不符合工业实际,所以最小回流比只是一个操作限度。
若操作处于全回流时,既无任何产品采出,也无原料加入,塔顶的冷凝液全部返回塔中,这在生产中午实际意义。
但是由于此时所需理论板数最少,又易于达到稳定,故常在工业装置的开停车、排除故障及科学研究时采用。
实际回流比常取最小回流比的1.2~2.0倍。
在精馏操作中,若回流系统出现故障,操作情况会急剧恶化,分离效果也将变坏。
板效率是体现塔板性能及操作状况的主要参数,有以下两种定义方法。
(1)总板效率EE=N/Ne式中E——总板效率;N——理论板数(不包括塔釜);Ne——实际板数。
(2)单板效率EmlEml=(xn-1-xn)/(xn-1-xn__)式中 Eml——以液相浓度表示的单板效率;xn ,xn-1——第n块板和第n-1块板的液相浓度;xn__——与第n块板气相浓度相平衡的液相浓度。
最新化工原理实验精馏实验报告汇编一、实验目的1. 理解并掌握精馏过程的基本原理和操作技术。
2. 学习如何通过实验测定二元混合物的相对挥发度。
3. 掌握精馏塔内各点的浓度和温度分布。
4. 学习如何通过实验数据分析提高精馏效率的方法。
二、实验设备与材料1. 精馏塔实验装置一套,包括加热器、冷凝器、塔体、回流比控制器等。
2. 二元混合物样品,如乙醇-水混合物。
3. 温度计、压力计、流量计等测量仪器。
4. 数据记录本和计算工具。
三、实验步骤1. 实验前准备:检查实验装置是否完好,确保所有连接处无泄漏。
2. 样品准备:按照实验要求准确配制二元混合物。
3. 启动实验:开启加热器,逐渐升温至设定温度,同时开启冷凝器。
4. 调整回流比:根据实验要求,调整回流比至适当值,保持精馏过程稳定。
5. 数据采集:记录塔顶和塔底产品的温度、浓度及流量等数据。
6. 实验结束:关闭加热器,待系统冷却后,关闭冷凝器并拆卸装置。
四、实验结果与分析1. 绘制精馏曲线,标明塔顶和塔底产品的组成。
2. 计算相对挥发度,并与理论值进行比较分析。
3. 分析回流比对精馏效率的影响,并提出改进措施。
4. 根据实验数据,提出提高产品纯度和收率的建议。
五、实验结论1. 通过实验验证了精馏过程的基本原理,掌握了精馏操作的关键技术。
2. 实验数据与理论计算结果基本一致,证明了实验的准确性。
3. 通过调整操作参数,可以有效提高精馏效率和产品纯度。
4. 实验过程中存在的问题及改进措施,为后续实验提供了参考。
六、参考文献1. 史密斯, J. M., 等. (2005). 化工原理 (6th ed.). 麦格劳-希尔。
2. 阿塔克, R. K., 等. (2012). 化工热力学 (7th ed.). 威利。
3. 格林, D. W., 等. (2007). 化工实验技术 (2nd ed.). 科学出版社。
七、附录1. 实验数据记录表。
2. 实验曲线图。
3. 计算公式及数据处理方法。
化工原理精馏实验报告实验目的,通过精馏实验,掌握精馏原理和操作技能,了解精馏在化工生产中的应用。
一、实验原理。
精馏是利用液体混合物中各组分的沸点差异,通过加热、蒸馏和冷凝等过程,将混合物中的不同组分分离的方法。
在精馏过程中,液体混合物首先被加热至其中沸点最低的组分的沸点,然后将其蒸发成气体,再通过冷凝器冷却成液体,最终得到不同组分的纯净物质。
二、实验仪器与试剂。
1. 精馏设备,包括蒸馏烧瓶、冷凝器、接收烧瓶等。
2. 试剂,乙醇-水混合物。
三、实验步骤。
1. 将乙醇-水混合物倒入蒸馏烧瓶中。
2. 加热蒸馏烧瓶,待混合物沸腾后,蒸气通过冷凝器冷却成液体。
3. 收集不同温度下的液体,记录温度和收集时间。
四、实验结果与分析。
经过精馏实验,我们成功地将乙醇-水混合物分离成不同组分。
在实验过程中,我们观察到随着温度的升高,液体收集瓶中的液体组分逐渐发生变化,初馏液中含有较高乙醇含量,尾馏液中含有较高水含量。
这符合精馏原理,也验证了实验的准确性。
五、实验总结。
通过本次实验,我们深入了解了精馏原理和操作技能,掌握了精馏在化工生产中的应用。
精馏作为一种重要的分离方法,在化工领域有着广泛的应用,可以有效地提取纯净物质,满足不同生产需求。
六、实验注意事项。
1. 在实验过程中,要注意控制加热温度,避免混合物过热。
2. 实验结束后,要及时清洗和保养实验仪器,确保下次实验的顺利进行。
七、参考文献。
1. 《化工原理与实践》,XXX,XXX出版社,XXXX年。
2. 《化工实验指导》,XXX,XXX出版社,XXXX年。
以上就是本次化工原理精馏实验的实验报告,希望能对大家有所帮助。
一、实验目的1. 理解精馏的原理和操作方法。
2. 掌握精馏塔的结构和汽液接触状况。
3. 测定全回流时的全塔效率及单板效率。
4. 测定部分回流时的全塔效率。
5. 测定全塔的浓度分布。
6. 测定塔釜再沸器的沸腾给热系数。
二、实验原理精馏是一种利用不同组分在气液两相间分配系数差异进行分离的单元操作。
在精馏过程中,混合物在塔内通过多次汽液两相间的传质和传热,达到分离的目的。
精馏塔是进行精馏操作的主要设备,主要包括塔体、塔板、再沸器、冷凝器等部分。
三、实验数据1. 塔顶、塔釜及任意两块塔板的液相折光度。
2. 稳定工作状态下塔顶、塔釜及任意两块塔板的液相浓度。
3. 理论塔板数。
4. 全回流时的全塔效率及单板效率。
5. 部分回流时的全塔效率。
6. 全塔的浓度分布。
7. 塔釜再沸器的沸腾给热系数。
四、数据处理1. 根据液相折光度,利用比尔定律计算液相浓度。
比尔定律:A = εlc其中,A为吸光度,ε为摩尔吸光系数,l为光程,c为液相浓度。
2. 利用图解法求出理论塔板数。
将液相浓度与理论塔板数绘制成x-y图,通过拟合直线,得到理论塔板数。
3. 计算全回流时的全塔效率及单板效率。
全塔效率:η_total = (L - D) / L单板效率:η_plate = (L - D) / (L + D)其中,L为回流液量,D为采出液量。
4. 计算部分回流时的全塔效率。
部分回流时的全塔效率:η_part = (L - D) / L5. 测定全塔的浓度分布。
根据实验数据,绘制全塔的浓度分布图。
6. 测定塔釜再沸器的沸腾给热系数。
根据实验数据,计算塔釜再沸器的沸腾给热系数。
五、结果与分析1. 全回流时的全塔效率及单板效率较高,说明精馏塔的分离效果较好。
2. 部分回流时的全塔效率较全回流时有所降低,但仍在可接受范围内。
3. 全塔的浓度分布均匀,说明精馏过程稳定。
4. 塔釜再沸器的沸腾给热系数较大,说明再沸器传热效率较高。
六、结论通过本次精馏实训,我们掌握了精馏的原理和操作方法,了解了精馏塔的结构和汽液接触状况。
最新精馏实验报告.
实验目的:
本次实验旨在探究不同温度和压力条件下精馏过程的效率,以及分离
混合物中各组分的能力。
通过实验,我们期望能够优化精馏操作参数,提高产品纯度,并加深对精馏理论的理解。
实验方法:
1. 材料准备:选取含有乙醇和水的混合溶液作为实验材料。
2. 设备搭建:使用标准精馏装置,包括加热器、冷凝器、分馏柱和收
集器。
3. 实验操作:首先,将混合溶液加入加热器中;其次,调节加热温度
和冷凝器的冷却速率;然后,记录不同时间段收集到的馏分液量和温度;最后,通过色谱分析等方法对收集到的馏分进行组分分析。
实验结果:
1. 温度影响:实验数据显示,在较低的蒸馏温度下,乙醇的回收率较低;随着温度的升高,乙醇的回收率逐渐增加。
2. 压力影响:在低压条件下,由于挥发性增强,馏分的纯度较高;而
在高压条件下,由于液体的回流作用,馏分的纯度相对较低。
3. 馏分分析:通过色谱分析,我们发现在特定的温度和压力条件下,
可以有效地分离出高纯度的乙醇和水。
实验结论:
通过本次实验,我们验证了精馏过程中温度和压力对分离效果的影响。
实验结果表明,通过精确控制操作参数,可以有效提高精馏效率和产
品纯度。
此外,实验还为未来的精馏工艺优化提供了重要的数据支持。
精馏实验报告
实验介绍
本次实验主要是在实验室中进行的化学实验,主要是通过精馏
分离一种混合物,混合物由两种液体组成。
通过这次实验,我们
的主要目的是掌握精馏实验的基本原理和技术,了解不同石油馏
分的某些性质和应用,并通过实验来确认不同馏分之间的差异。
实验原理
精馏的原理主要是利用不同物质的沸点差异来分离出不同组分。
当混合物加热至某一温度时,其中的组分会沸腾发生相变,产生
气体状态。
随着温度的升高,沸点越低的组分越容易蒸发和升空,随着温度的降低,沸点越高的组分会凝聚成液体。
实验步骤
1. 将两种不同的化学物质混合在一起,搅拌均匀。
2. 将混合物倒入精馏锅中,加入玻璃砂,确保混合物均匀分布。
3. 通过加热将混合物加热到高温,以此来分离出其中的组分。
4. 将馏出来的物质逐一收集,观察不同组分之间的颜色和特性。
5. 统计不同组分的收集量和相应的沸点,并进行数据分析。
实验结果及分析
在这次实验中,我们成功地从混合物中分离出了两种不同的组分,其中液体A的沸点为158度,液体B的沸点为210度。
通过
实验得出的数据,我们可以得出不同物质沸点间的差异,从而更
准确地区分不同物质的性质和应用。
总结与结论
通过本次实验,我对精馏实验的原理和技术都有了更深入的认
识和理解,对不同石油馏分的性质和应用也有了更深入的了解和
认识。
这次实验让我对化学实验具有了更高的兴趣和热情,期待
未来能够继续进行更多有意义的化学实验。
化工原理精馏实验报告
实验目的:掌握化工原理中的精馏操作,并通过实验验证理论知识的正确性。
实验原理:
精馏是一种分离液体混合物组成的常用方法。
精馏通过不同组成的液体在加热的条件下产生蒸汽,然后再在冷凝管中冷凝成液体,最后通过收集液体可以得到不同组成的馏分。
实验仪器:
1. 精馏塔:用于分离混合物。
2. 加热器:提供加热源。
3. 冷凝器:用于冷凝产生的蒸汽。
4. 温度计:用于测量温度。
实验步骤:
1. 将需要进行精馏的混合物加入精馏塔中。
2. 打开加热器,通过加热产生蒸汽。
3. 在冷凝器中冷凝产生的蒸汽,并收集液体。
4. 使用温度计测量液体的沸点。
5. 根据液体的沸点,确定得到的馏分的组成。
实验结果:
在实验过程中,我们成功地通过精馏操作将待分离的混合物分解为不同组成的馏分。
通过温度计测量得到的沸点数据,我们可以精确地确定馏分的组成。
实验结论:
通过这次实验,我们掌握了化工原理中的精馏操作,并验证了理论知识的正确性。
精馏是一种常用的分离液体混合物的方法,在工业生产中有着广泛的应用。
掌握了精馏操作,有助于我们理解和解决化工过程中的实际问题。
精馏实验实验报告关键信息项:1、实验目的:____________________________2、实验原理:____________________________3、实验装置:____________________________4、实验步骤:____________________________5、实验数据:____________________________6、数据处理与分析:____________________________7、实验结果:____________________________8、误差分析:____________________________9、结论与讨论:____________________________1、实验目的11 了解精馏的基本原理和工艺流程。
111 掌握精馏塔的操作方法和性能特点。
112 学会通过实验测定精馏塔的效率和分离能力。
2、实验原理21 精馏是利用混合物中各组分挥发度的差异,通过多次部分汽化和部分冷凝,使混合物分离成较纯组分的过程。
211 在精馏塔中,上升的蒸汽与下降的液体在塔板上进行传热和传质,轻组分在气相中富集,重组分在液相中富集,从而实现分离。
212 理论塔板数是衡量精馏塔分离效果的重要指标,通过计算实际塔板数与理论塔板数的比值,可以得到精馏塔的效率。
3、实验装置31 精馏塔:包括塔身、塔板、冷凝器、再沸器等部分。
311 进料系统:用于控制进料的流量和组成。
312 温度测量系统:测量塔顶、塔底和各塔板的温度。
313 压力测量系统:测量塔内的压力。
314 回流系统:控制回流比。
4、实验步骤41 准备工作411 检查实验装置的密封性和仪器设备的完好性。
412 配置一定组成的进料混合物。
42 开车操作421 开启再沸器加热,使塔内建立气液平衡。
422 调节进料流量和组成,控制塔内的操作条件。
43 稳定操作431 待塔顶和塔底温度稳定后,记录相关数据。
化工原理精馏实验报告实验目的:本实验旨在通过对乙醇和水的精馏实验,掌握精馏过程的基本原理和操作技术,了解精馏过程中的温度变化规律,并对实验结果进行分析和总结。
实验原理:精馏是利用液体混合物中各组分的沸点差异,通过加热混合物使其中某一组分先汽化,再凝结成液体,从而实现对混合物的分离的一种物理方法。
在精馏过程中,液体混合物首先被加热至其中某一组分的沸点,该组分首先汽化,然后通过冷凝器冷却凝结成液体,最终得到纯净的组分。
实验步骤:1. 将乙醇和水混合成一定比例的混合物,倒入精馏瓶中。
2. 装上加热设备和冷凝器,调节加热设备温度至混合物中乙醇的沸点。
3. 观察冷凝器出口的液体,收集不同温度下的液体样品。
4. 对收集的液体样品进行密度测定和酒精度测定。
实验结果:通过实验,我们得到了乙醇和水在不同温度下的液体样品。
经过密度测定和酒精度测定,我们得到了不同温度下乙醇和水的纯度和组成。
实验分析:根据实验结果,我们发现在不同温度下,乙醇和水的纯度和组成存在明显差异。
通过对实验数据的分析,我们可以得出精馏过程中乙醇和水的分离效果较好,且随着温度的升高,乙醇的纯度逐渐提高。
实验总结:本次实验通过对乙醇和水的精馏实验,使我们更加深入地了解了精馏过程的基本原理和操作技术。
同时,实验结果也验证了精馏过程中液体混合物的分离效果,并为我们今后在化工生产中的实际应用提供了重要参考。
结语:通过本次实验,我们不仅掌握了精馏过程的基本原理和操作技术,也对乙醇和水的混合物分离效果有了更深入的了解。
希望通过今后的实践操作和学习,能够更好地运用精馏技术解决实际生产中的问题,为化工生产贡献自己的一份力量。
北京化工大学学生实验报告姓名:学号:专业:班级:同组人员:课程名称:化工原理实验实验名称:精馏实验实验日期: 2016.5.13北京化工大学实验五精馏实验摘要:本实验通过测定稳定工作状态下塔顶、塔釜及任意两块塔板的液相折光度,得到该处液相浓度,根据数据绘出x-y图并用图解法求出理论塔板数,从而得到全回流时的全塔效率及单板效率。
通过实验,了解精馏塔工作原理。
关键词:精馏,图解法,理论板数,全塔效率,单板效率。
一、目的及任务①熟悉精馏的工艺流程,掌握精馏实验的操作方法。
②了解板式塔的结构,观察塔板上汽-液接触状况。
③测定全回流时的全塔效率及单塔效率。
④测定部分回流时的全塔效率。
⑤测定全塔的浓度(或温度)分布。
⑥测定塔釜再沸器的沸腾给热系数。
二、基本原理在板式精馏塔中,由塔釜产生的蒸汽沿塔逐板上升与来自塔顶逐板下降的回流液,在塔板上实现多次接触,进行传热与传质,使混合液达到一定程度的分离。
回流是精馏操作得以实现的基础。
塔顶的回流量与采出量之比,称为回流比。
回流比是精馏操作的重要参数之一,其大小影响着精馏操作的分离效果和能耗。
回流比存在两种极限情况:最小回流比和全回流。
若塔在最小回流比下操作,要完成分离任务,则需要无穷多塔板的精馏塔。
当然,这不符合工业实际,所以最小回流比只是一个操作限度。
若操作处于全回流时,既无任何产品采出,也无原料加入,塔顶的冷凝液全部返回塔中,这在生产中午实际意义。
但是由于此时所需理论板数最少,又易于达到稳定,故常在工业装置的开停车、排除故障及科学研究时采用。
实际回流比常取最小回流比的1.2~2.0倍。
在精馏操作中,若回流系统出现故障,操作情况会急剧恶化,分离效果也将变坏。
板效率是体现塔板性能及操作状况的主要参数,有以下两种定义方法。
(1)总板效率EE=N/Ne式中 E——总板效率;N——理论板数(不包括塔釜);Ne——实际板数。
(2)单板效率EmlEml =(xn-1-xn)/(xn-1-xn*)式中 Eml——以液相浓度表示的单板效率;xn ,xn-1——第n块板和第n-1块板的液相浓度;xn*——与第n块板气相浓度相平衡的液相浓度。
总板效率与单板效率的数值通常由实验测定。
单板效率是评价塔板性能优劣的重要数据。
物系性质、板型及操作负荷是影响单板效率的重要因数。
当物系与板型确定后,可通过改变气液负荷达到最高板效率;对于不同的板型,可以保持相同的物系及操作条件下,测定其单板效率,以评价其性能的优劣。
总板效率反映全塔各塔板的平均分离效果,常用于板式塔设计中。
若改变塔釜再沸器中加热器的电压,塔内上升蒸汽量将会改变,同时,塔釜再沸器电加热器表面的温度将发生变化,其沸腾给热系数也将发生变化,从而可以得到沸腾给热系数与加热量的关系。
由牛顿冷却定律,可知Q=αA△tm式中 Q——加热量,kw;α——沸腾给热系数,kw/(m2*K);A——传热面积,m2;△tm——加热器表面与主体温度之差,℃。
若加热器的壁面温度为ts ,塔釜内液体的主体温度为tw,则上式可改写为Q=aA(ts -tw)由于塔釜再沸器为直接电加热,则加热量Q为Q=U2/R式中 U——电加热的加热电压,V; R——电加热器的电阻,Ω。
三、装置和流程本实验的流程如图1所示,主要有精馏塔、回流分配装置及测控系统组成。
1.精馏塔精馏塔为筛板塔,全塔共八块塔板,塔身的结构尺寸为:塔径∮(57×3.5)mm,塔板间距80mm;溢流管截面积78.5mm2,溢流堰高12mm,底隙高度6mm;每块塔板开有43个直径为1.5mm的小孔,正三角形排列,孔间距为6mm。
为了便于观察踏板上的汽-液接触情况,塔身设有一节玻璃视盅,在第1-6块塔板上均有液相取样口。
蒸馏釜尺寸为∮108mm×4mm×400mm.塔釜装有液位计、电加热器(1.5kw)、控温电热器(200w)、温度计接口、测压口和取样口,分别用于观测釜内液面高度,加热料液,控制电加热装置,测量塔釜温度,测量塔顶与塔釜的压差和塔釜液取样。
由于本实验所取试样为塔釜液相物料,故塔釜内可视为一块理论板。
塔顶冷凝器为一蛇管式换热器,换热面积为0.06m2,管外走冷却液。
图1 精馏装置和流程示意图1.塔顶冷凝器 2.塔身 3.视盅 4.塔釜 5.控温棒 6.支座7.加热棒 8.塔釜液冷却器 9.转子流量计 10.回流分配器11.原料液罐 12.原料泵 13.缓冲罐 14.加料口 15.液位计2.回流分配装置回流分配装置由回流分配器与控制器组成。
控制器由控制仪表和电磁线圈构成。
回流分配器由玻璃制成,它由一个入口管、两个出口管及引流棒组成。
两个出口管分别用于回流和采出。
引流棒为一根∮4mm的玻璃棒,内部装有铁芯,塔顶冷凝器中的冷凝液顺着引流棒流下,在控制器的控制下实现塔顶冷凝器的回流或采出操作。
即当控制器电路接通后,电磁圈将引流棒吸起,操作处于采出状态;当控制器电路断开时,电磁线圈不工作,引流棒自然下垂,操作处于回流状态。
此回流分配器可通过控制器实现手动控制,也可通过计算机实现自动控制。
3.测控系统在本实验中,利用人工智能仪表分别测定塔顶温度、塔釜温度、塔身伴热温度、塔釜加热温度、全塔压降、加热电压、进料温度及回流比等参数,该系统的引入,不仅使实验跟更为简便、快捷,又可实现计算机在线数据采集与控制。
4.物料浓度分析本实验所用的体系为乙醇-正丙醇,由于这两种物质的折射率存在差异,且其混合物的质量分数与折射率有良好的线性关系,故可通过阿贝折光仪分析料液的折射率,从而得到浓度。
这种测定方法的特点是方便快捷、操作简单,但精度稍低;若要实现高精度的测量,可利用气相色谱进行浓度分析。
混合料液的折射率与质量分数(以乙醇计)的关系如下。
ω=60.8238-44.0529n D式中ω——料液的质量分数;n——料液的折射率(以上数据为由实验测得)。
D四、操作要点①对照流程图,先熟悉精馏过程中的流程,并搞清仪表上的按钮与各仪表相对应的设备与测控点。
②全回流操作时,在原料贮罐中配置乙醇含量20%~25%(摩尔分数)左右的乙醇-正丙醇料液,启动进料泵,向塔中供料至塔釜液面达250~300mm。
③启动塔釜加热及塔身伴热,观察塔釜、塔身t、塔顶温度及塔板上的气液接触状况(观察视镜),发现塔板上有料液时,打开塔顶冷凝器的水控制阀。
④测定全回流情况下的单板效率及全塔效率,在一定的回流量下,全回流一段时间,待该塔操作参数稳定后,即可在塔顶、塔釜及相邻两块塔板上取样,用阿贝折光仪进行分析,测取数据(重复2~3次),并记录各操作参数。
⑤实验完毕后,停止加料,关闭塔釜加热及塔身伴热,待一段时间后(视镜内无料液时),切断塔顶冷凝器及釜液冷却器的供水,切断电源,清理现场。
五、报告要求①在直角坐标系中绘制x-y 图,用图解法求出理论板数。
②求出全塔效率和单板效率。
③结合精馏操作对实验结果进行分析。
六、数据处理(1)原始数据①塔顶:1D n =1.3597,2D n =1.3599;塔釜:1D n =1.3778,2D n =1.3779。
②第四块板:1D n =1.3658,2D n =1.3658;第五块板:1D n =1.3678,2D n =1.3681。
(2)数据处理①由附录查得101.325kPa 下乙醇-正丙醇 t-x-y 关系:表1:乙醇—正丙醇平衡数据(p=101.325kPa ) 序号 液相组成x 气相组成y 沸点/℃ 10 0 97.16 2 0.126 0.240 93.85 3 0.188 0.318 92.66 4 0.210 0.339 91.60 5 0.358 0.550 88.32 6 0.461 0.650 86.25 7 0.546 0.711 84.98 8 0.600 0.760 84.13 9 0.663 0.799 83.06 10 0.844 0.914 80.59 111.01.078.38乙醇沸点:78.38℃,丙醇沸点:97.16℃。
纯溶质(溶剂)折光率原始数据纯物质 折光率均值 冰乙醇 1.3581 1.3579 1.3580 正丙醇1.3809 1.38051.3807回归方程:由质量分数m=A-Bn D 代入m 1=1 n D1=1.3580 与m 2=0 n D2=1.3807 得 ω=60.8238-44.0529n D ① ②原始数据处理:表2:原始数据处理名称折光率n D折光率n D平均折光率n D 质量分数ω 摩尔分数x塔顶 1.3597 1.3599 1.3598 0.9207 0.9380 塔釜 1.3778 1.3779 1.37785 0.1255 0.1577 第4块板 1.3658 1.3658 1.3658 0.6563 0.7136 第5块板1.36781.36811.367950.56160.6256以塔顶数据为例进行数据处理:3598.121.35991.3597221=+=+=D D Dn n n将平均折光率带入①式9207.03598.10529.448238.600529.448238.60=⨯-=-=D n ω9380.0609207.0-1469207.0469207.0-1=+=+=正丙醇乙醇乙醇ωωωωωωx③在直角坐标系中绘制x-y 图,用图解法求出理论板数。
参见乙醇-丙醇平衡数据作出乙醇-正丙醇平衡线,全回流条件下操作线方程为y=x,具体作图如下所示(塔顶组成,塔釜组成):图2:乙醇—正丙醇平衡线与操作线图④求出全塔效率和单板效率。
由图解法可知,理论塔板数为6.2块(包含塔釜),故全塔效率为%5.77%10082.6%100=⨯=⨯=总N N E第5块板的入板液相浓度x 4=0.7136,出板组成x 5=0.6256由y 5=x 4=0.7136查图2中乙醇和正丙醇相平衡图,得*5x =0.5490则第5块板单板效率 %46.53%1005490.07136.06256.07136.05,1=⨯--=m E七、误差分析及结果讨论1.误差分析:(1)实验过程误差:测定折光率时溶质组分有所挥发造成数据误差(2)数据处理误差:使用手绘作图法求取理论塔板数存在一定程度的误差,尤其是在求取*5x =0.5490时,直接在图上寻找对应点,误差较大。
(3)折光仪和精馏塔自身存在的系统误差。
2.结果讨论:此次实验测得的全塔效率为77.5%,单板效率为53.46%,全回流操作稳定,全塔效率和塔板效率较为合理。
八、思考题1.什么是全回流?全回流操作有哪些特点,在生产中有什么实际意义?如何测定全回流条件下的气液负荷?答:a、冷凝后的液体全部回流至塔内,这称作全回流。
简单来说,就是塔顶蒸汽冷凝后全部又回到了塔中继续精馏。