第8章热固性塑料成型工艺
- 格式:pptx
- 大小:969.51 KB
- 文档页数:32
热固性塑料的注塑加工工艺过程热塑性塑料和热固性塑料在加热时都将降低粘度。
然而,热固性塑料的粘度却随时间和温度而增加,这是因为发生了化学交联反应。
这些作用的综合结果是粘度随时间和温度而呈U型曲线。
在最低粘度区域完成充填模具的操作这是热固性注射模塑的目的,因为此时物料成型为模具形状所需压力是最低的。
这也有助于对聚合物中的纤维损害最低。
注射模塑工艺过程利用一螺杆使物料流经加热过的机筒,机筒则以水或油循环于机筒四周的夹套中。
螺杆可按每种材料的不同类型加以设计,稍加压缩以脱除空气并加热物料获得低粘度。
大多数热固性物料在此处的流动都是相当好的。
使物料进入模具的操作是中止螺杆转动和用液压把螺杆高速推向前,使被塑化的低粘度物料压入模具中。
这种快速流动要求在0.5秒的时间里填满模腔,压力需达到193MPa。
一旦填满膜腔时物料的高速流动产生更大的摩察热以加速化学反应。
模腔一旦被填满,注射压力就将降到保压压力34.5—68.9MPa。
这种保压压力维持在物料上5—10秒,随后卸压,然后开始下一个周期塑化阶段。
这种物料被保持在热的模具中,直至变硬,然后打开合模装置,顶出制品。
制品刚顶出时可以是轻度未固化和有点柔软,在取出后1分钟或2分钟内利用制品内部保留的热量完成最终固化。
热固性制品的整个生产周期为10—120秒钟,这取决于制品厚度和原材料的类别。
为改进制品的质量和重现性采用了许多不同的和专门的技术。
鉴于有一些热固性聚合物在加热时产生气体,在模具被部分充满后往往有一个放气操作。
在这一步骤中,模具微微开启,以便让气体逸出,然后迅即关闭,把余下物料再注人。
注压模塑提供了较高的强度、较好的尺寸控制,并改进了表面状态(外观),这是因为采用了带有伸缩式膜腔与膜芯的模具而得到的,注射过程中模具可以开启1/8—l/2 in,并随后迅速压紧,似模具关闭那样。
由玻璃纤维、填充料和聚酯不饱和树脂制成的整体模塑料可以在机器上装上另外的专门设备来完成注射模塑。
简述热固型塑料压制成型的工艺流程1. 引言1.1 概述热固型塑料压制成型是一种常用的塑料加工方法,它通过对热固型塑料原料进行预处理、加热和熔化,再施加适当的压力使其充分填充模具腔体,最终得到所需形状的零件或产品。
该成型工艺广泛应用于各个行业,如汽车制造、电子设备、航空航天等领域。
本文将详细介绍热固型塑料压制成型的工艺流程,并讨论操作要点和注意事项。
此外,我们还将总结回顾工艺流程中的关键要点,并提出可能的改进和未来发展方向。
从整体上强调了热固型塑料压制成型在实际应用中的重要性和价值。
1.2 文章结构本文分为五个部分来详细描述热固型塑料压制成型的工艺流程。
在引言部分,我们首先概述了本文所涉及的主题,并介绍了文章结构和内容安排。
接下来会逐步展开介绍。
在第二部分中,我们将对热固型塑料进行简要介绍,包括其定义、特点和应用领域。
这将为读者提供对热固型塑料的基本了解,有助于更好地理解其压制成型工艺。
第三部分将详细描述热固型塑料压制成型的工艺流程概述,包括原料准备与预处理、加热和熔化以及压制成型过程。
通过对每个步骤的解释,读者将能够全面了解整个工艺流程的运作原理和关键步骤。
在第四部分中,我们将讨论操作要点和注意事项。
具体而言,我们将重点介绍温度控制、压力控制以及冷却与脱模操作等方面的关键问题,并提供一些建议和经验分享。
最后,在第五部分中,我们将对整篇文章进行总结回顾,并探讨可能的改进和未来发展方向。
针对热固型塑料压制成型的重要性和应用价值,我们会再次强调并给出展望。
1.3 目的本文旨在全面介绍热固型塑料压制成型的工艺流程,并提供操作要点和注意事项。
通过阅读本文,读者可以了解该成型方法的原理、步骤和关键要点,从而为实际操作和应用提供参考。
此外,本文将重申热固型塑料压制成型的重要性,并展望其未来的发展前景。
2. 热固型塑料简介2.1 定义和特点热固型塑料是一种在加热和压力作用下可以硬化和定形的高分子材料。
与热塑性塑料不同,热固型塑料在初次成型后无法通过加热再次变软和流动。
高分子材料成型加工考试重点内容及部分习题答案第二章高分子材料学1、热固性塑料:未成型前受热软化,熔融可塑制成一定形状,在热或固化剂作用下,一次硬化成型。
受热不熔融,达到一定温度分解破坏,不能反复加工。
在溶剂中不溶。
化学结构是由线型分子变为体型结构。
举例:PF、UF、MF2、热塑性塑料:受热软化、熔融、塑制成一定形状,冷却后固化成型。
再次受热,仍可软化、熔融,反复多次加工。
在溶剂中可溶。
化学结构是线型高分子。
举例:PE聚乙烯,PP聚丙烯,PVC 聚氯乙烯。
3、通用塑料:是指产量大、用途广、成型性好、价格便宜的塑料。
4、工程塑料:具有较好的力学性能,拉伸强度大于50MPa,冲击强度大于6kJ/m2,长期耐热温度超过100度的、刚性好、蠕变小、自润滑、电绝缘、耐腐蚀可作为结构材料。
举例:PA聚酰胺类、ABS、PET、PC5、缓冷:Tc=Tmax,结晶度提高,球晶大。
透明度不好,强度较大。
6、骤冷(淬火):Tc<Tg,大分子来不及重排,结晶少,易产生应力。
结晶度小,透明度好,韧性好。
定义:是指熔融状态或半熔融状态的结晶性聚合物,在该温度下保持一段时间后,快速冷却使其来不及结晶,以改善制品的冲击性能。
7、中速冷:Tc>=Tg,有利晶核生成和晶体长大,性能好。
透明度一般,结晶度一般,强度一般。
8、二次结晶:是指一次结晶后,在一些残留的非晶区和结晶不完整的部分区域内,继续结晶并逐步完善的过程。
9、后结晶:是指聚合物加工过程中一部分来不及结晶的区域,在成型后继续结晶的过程。
第三章添加剂1、添加剂的分类包括工艺性添加剂(如润滑剂)和功能性添加剂(除润滑剂之外的都是,如稳定剂、填充剂、增塑剂、交联剂)2、稳定剂:防止或延缓高分子材料的老化,使其保持原有使用性能的添加剂。
针对热、氧、光三个引起高分子材料老化的主要因素,可将稳定剂分为热稳定剂、抗氧剂(防老剂)、光稳定剂。
热稳定剂是一类能防止高分子材料在成型加工或使用过程中因受热而发生降解或交联的添加剂。
高分子材料成型加工考试重点内容及部分习题答案第二章高分子材料学1、热固性塑料:未成型前受热软化,熔融可塑制成一定形状,在热或固化剂作用下,一次硬化成型。
受热不熔融,达到一定温度分解破坏,不能反复加工。
在溶剂中不溶。
化学结构是由线型分子变为体型结构。
举例:PF、UF、MF2、热塑性塑料:受热软化、熔融、塑制成一定形状,冷却后固化成型。
再次受热,仍可软化、熔融,反复多次加工。
在溶剂中可溶。
化学结构是线型高分子。
举例:PE聚乙烯,PP聚丙烯,PVC聚氯乙烯。
3、通用塑料:是指产量大、用途广、成型性好、价格便宜的塑料。
4、工程塑料:具有较好的力学性能,拉伸强度大于50MPa,冲击强度大于6kJ/m2,长期耐热温度超过100度的、刚性好、蠕变小、自润滑、电绝缘、耐腐蚀可作为结构材料。
举例:PA聚酰胺类、ABS、PET、PC5、缓冷:Tc=Tmax,结晶度提高,球晶大。
透明度不好,强度较大。
6、骤冷(淬火):Tc<Tg,大分子来不及重排,结晶少,易产生应力。
结晶度小,透明度好,韧性好。
定义:是指熔融状态或半熔融状态的结晶性聚合物,在该温度下保持一段时间后,快速冷却使其来不及结晶,以改善制品的冲击性能。
7、中速冷:Tc>=Tg,有利晶核生成和晶体长大,性能好。
透明度一般,结晶度一般,强度一般。
8、二次结晶:是指一次结晶后,在一些残留的非晶区和结晶不完整的部分区域内,继续结晶并逐步完善的过程。
9、后结晶:是指聚合物加工过程中一部分来不及结晶的区域,在成型后继续结晶的过程。
第三章添加剂1、添加剂的分类包括工艺性添加剂(如润滑剂)和功能性添加剂(除润滑剂之外的都是,如稳定剂、填充剂、增塑剂、交联剂)2、稳定剂:防止或延缓高分子材料的老化,使其保持原有使用性能的添加剂。
针对热、氧、光三个引起高分子材料老化的主要因素,可将稳定剂分为热稳定剂、抗氧剂(防老剂)、光稳定剂。
热稳定剂是一类能防止高分子材料在成型加工或使用过程中因受热而发生降解或交联的添加剂。
第一章答案1.高分子聚合物链结构有哪些特点?根据链结构的不同,高分子聚合物可以分成哪几类?答:高分子聚合物链结构具有以下结构特点(1)高分子呈现链式结构(2)高分子链具有柔性(3)高聚物的多分散性根据链结构的不同,高分子聚合物可以分为高分子近程结构和高分子远程结构。
2.根据聚集态结构的不同,高分子聚合物可以分成哪几类?试阐述其结构特点和性能特点。
答:根据聚集态结构的不同,高分子聚合物可以分成固体和液体,固体又有晶态和非晶态之分。
(1)聚集态结构的复杂性因为高分子链依靠分子内和分子间的范德华力相互作用堆积在一起,可导致晶态和非晶态结构。
高聚物的比小分子物质的晶态有程序差得多,但高聚物的非晶态结构却比小分子物质液态的有序程度高。
高分子链具有特征的堆方式,分子链的空间形状可以是卷曲的、折叠的和伸直的,还可能形成某种螺旋结构。
如果高分子链由两种以上的不同化学结构的单体组成,则化学结构是决定高分子链段由于相容性的不同,可能形成多种多样的微相结构。
复杂的凝聚态结构是决定高分子材料使用性能的直接因素。
(2)具有交联网络结构某些种类的高分子链能够以化学键相互连接形成高分子网状结构,这种结构是橡胶弹性体和热固性塑料所特有的。
这种高聚物不能被溶剂溶解,也不能通过加热使其熔融。
交联对此类材料的力学性能有重要影。
高聚物长来链大分子堆砌在一起可能导致链的缠结,勾结点可看成为可移的交链点。
3.在线型非晶态(无定形)聚合物的热力学曲线上,可以分为哪三种力学状态的区域?温度点0b、0g、0f、0d表征什么意义?答:在线型非晶体态(无定形)聚合物的热力学曲线上,可以分为玻璃态、高弹态、粘流态。
0b称为脆化温度,它是塑料使用的下限温度。
0g称为玻璃化温度,玻璃态和高弹态之间的转变称为玻璃化转变,对应的转变温度即玻璃态温度。
0f称为粘流温度,高弹态与粘流态之间的转变温度称为粘流温度。
0d称为热分解温度,它是塑料使用的上限温度。
4.绝大多数的聚合物熔体都表现为非牛顿流体,试写出非牛顿流体的指数流动规律,并表述其意义。
第八章注塑成型过程及注塑模具计算机辅助设计中的流变学问题1.注塑成型过程的流变分析1.1注塑成型过程简介注塑成型,又称注射模塑,是热塑性塑料制品重要的成型方法。
可用于生产形状结构复杂,尺寸精确,用途不同的制品,产量约占塑料制品总量的30%。
近年来,热固性塑料,越来越多的橡胶制品,带有金属嵌件的塑料制品也采用注射成型法生产。
精密注射成型,气辅注射成型,多台注射机共注射及注射成型过程的全自动控制等为注射成型工艺发展的新领域。
注塑成型的主要设备是柱塞式或螺杆式往复注射机,以及根据制品要求设计的注射模具。
塑化好的熔体靠螺杆或柱塞的推力注入闭合的模腔内,经冷却固化定型,开模得到所需的制品(见图8-1)。
图8-1 典型注射成型设备示意图注塑过程是循环往复、连续进行的。
全部注塑过程由一个主循环和两个辅助工序组成,见图8-2。
图8-2 注塑过程循环示意图与该过程相对应,一个循环中模腔内物料承受的压力随时间或温度的变化曲线如图8-3所示。
图中各段时间的总和为一个注塑成型周期。
图8-3 典型注塑周期的程序图1-柱塞前进时间;2-合模时间;3-开模时间;4-残余压力;a-静置时间;b-充模时间;c-保压时间;d-倒流时间;e-封口时间;f-封口后冷却时间要得到令人满意的注塑制品,除掌握准确的时间程序外,还要借助于流变学理论,掌握模腔内的物料填充情况,即掌握流道和模腔内的压力变化程序和温度变化程序。
目前已经能够运用流变学和传热学理论,采用计算机辅助设计方法,数值计算模具设计中遇到的一些与流道设计、传热管路设计有关的问题,数字模拟流道和模腔内的物料填充图和压力、温度场分布图,为模具设计提供有价值的资料。
但是由于各种模具内流道形状复杂,模具温度不稳定,物料注射速度高,非牛顿流动性突出,流动过程间歇,所以对这样一个复杂的注射过程要求得其精确解几乎是不可能的。
下面首先运用流变学基本方程,结合若干经验公式,对注模过程中模腔内压力的变化进行分析,说明一些有意义的现象;然后介绍注射模具计算机辅助设计中的流变学方法。
塑料是以高分子量合成树脂为主要成分,在一定条件下〔如温度、压力等〕可塑制成一定形状且在常温下保持形状不变的材料。
塑料按受热后外表的性能,可分为热固性塑料与热塑性塑料两大类。
前者的特点是在一定温度下,经一定时间加热、加压或加入硬化剂后,发生化学反应而硬化。
硬化后的塑料化学结构发生变化、质地坚硬、不溶于溶剂、加热也不再软化,如果温度过高则就分解。
后者的特点为受热后发生物态变化,由固体软化或熔化成粘流体状态,但冷却后又可变硬而成固体,且过程可多次反复,塑料本身的分子结构则不发生变化。
塑料都以合成树脂为基本原料,并加入填料、增塑剂、染料、稳定剂等各种辅助料而组成。
因此,不同品种牌号的塑料,由于选用树脂及辅助料的性能、成分、配比及塑料生产工艺不同,则其使用及工艺特性也各不相同。
为此模具设计时必须了解所用塑料的工艺特性。
第一节热固性塑料常用热固性塑料有酚醛、氨基〔三聚氰胺、脲醛〕聚酯、聚邻苯二甲酸二丙烯酯等。
主要用于压塑、挤塑、注射成形。
硅酮、环氧树脂等塑料,目前主要作为低压挤塑封装电子元件及浇注成形等用。
一、工艺特性〔一〕收缩率塑件自模具中取出冷却到室温后,发生尺寸收缩这种性能称为收缩性。
由于收缩不仅是树脂本身的热胀冷缩,而且还与各成形因素有关,所以成形后塑件的收缩应称为成形收缩。
1.成形收缩的形式成形收缩主要表现在以下几方面:〔1〕塑件的线尺寸收缩由于热胀冷缩,塑件脱模时的弹性恢复、塑性变形等原因导致塑件脱模冷却到室温后其尺寸缩小,为此型腔设计时必须考虑予以补偿。
〔2〕收缩方向性成形时分子按方向排列,使塑件呈现各向异性,沿料流方向〔即平行方向〕则收缩大、强度高,与料流直角方向〔即垂直方向〕则收缩小、强度低。
另外,成形时由于塑件各部位密度及填料分布不匀,故使收缩也不匀。
产生收缩差使塑件易发生翘曲、变形、裂纹,尤其在挤塑及注射成形时则方向性更为明显。
因此,模具设计时应考虑收缩方向性按塑件形状、流料方向选取收缩率为宜。
高分子材料加工工艺第一章绪论1.材料的四要素是什么?答:材料的四要素是:材料的制备(加工)、材料的结构、材料的性能和材料的使用性能。
2.什么是工程塑料?区分“通用塑料”和“工程塑料”,“热塑性塑料”和“热固性塑料”。
答:按用途和性能分,又可将塑料分为通用塑料和工程塑料。
工程塑料是指拉伸强度大于50MPa,冲击强度大于6kJ/m2,长期耐热温度超过100℃的、刚性好、蠕变小、自润滑、电绝缘、耐腐蚀性优良等的、可替代金属用作结构件的塑料。
但这种分类并不十分严格,随着通用塑料工程化(亦称优质化)技术的进展,通过改性或合金化的通用塑料,已可在某些应用领域替代工程塑料。
热塑性塑料一般是线型高分子,在溶剂可溶,受热软化、熔融、可塑制成一定形状,冷却后固化定型;当再次受热,仍可软化、熔融,反复多次加工。
热固性塑料一般由线型分子变为体型分子,在溶剂中不能溶解,未成型前受热软化、熔融,可塑制成一定形状,在热或固化剂作用下,一次硬化成型;一当成型后,再次受热不熔融,达到一定温度分解破坏,不能反复加工。
3.与其它材料相比,高分子材料具有那些特征(以塑料为例)?答:与其他材料相比,高分子材料有以下特性(以塑料为例)。
(1)质轻。
(2)拉伸强度和拉伸模量较低,韧性较优良。
(3)传热系数小,可用作优良的绝热材料。
(4)电气绝缘性优良。
(5)成型加工性优良。
(6)减震、消音性能良好。
(7)某些塑料具有优良的减磨、耐磨和自润滑性能。
(8)耐腐蚀性能优良。
(9)透光性良好可作透明或半透明材料。
(10)着色性良好。
(11)可赋予各种特殊的功能如透气性、难燃性、粘结性、离子交换性、生物降解性以及光、热、电、磁等各种特殊性能。
(12)使用过程中易产生蠕变、疲劳、冷流、结晶等现象,长期使用性能较差。
(13)热膨胀系数大。
(14)耐热性(熔点、玻璃化转变温度)较低,使用温度不高。
(15)易燃烧。
4.获取高分子的手段有那些?答:高分子化合物的制造:获取高分子化合物的方法大致可分为三种;聚合反应、利用高分子反向和复合化。
.绪论绪论习题与思考题1.分别定义“高分子材料”和“塑料”。
2.分别区分“通用塑料”和“工程塑料”,“热塑性塑料”和“热固性塑料”,“简单组分高分子材料”和“复杂组分高分子材料”,并请各举2~3例。
3.高分子材料成型加工的定义和实质。
第一章习题与思考题1.什么是聚合物的结晶和取向?它们有何不同?研究结晶和取向对高分子材料加工有何实际意义?2.请说出晶态与非晶态聚合物的熔融加工温度范围,并讨论两者作为材料的耐热性好坏。
3.为什么聚合物的结晶温度范围是Tg~Tm?4.什么是结晶度?结晶度的大小对聚合物性能有哪些影响?5.何谓聚合物的二次结晶和后结晶?6.聚合物在成型过程中为什么会发生取向?成型时的取向产生的原因及形式有哪几种?取向对高分子材料制品的性能有何影响?7.要使聚合物在加工中通过拉伸获得取向结构,应在该聚合物的什么温度下拉伸?8.分析并讨论影响热塑性塑料成型加工中熔体粘度的因素。
第二章习题与思考题1.高分子材料中添加助剂的目的是什么?2.什么是热稳定剂?哪一类聚合物在成型加工中须使用热稳定剂?对于加有较多增塑剂和不加增塑剂的两种塑料配方,如何考虑热稳定剂的加入量?请阐明理由。
3.试述增塑剂的作用机理。
4.增塑剂作用的实质是什么?并请区分“增塑效率”、“主增塑剂”、“副增塑剂”和“增塑剂相容性”四个概念。
5.内润滑与外润滑6.橡胶制品为何要使用配合剂?配合剂共分哪几类?7.何谓硫化剂?分哪几类?各自适用的橡胶类型是什么?8.何谓硫化促进剂?有哪几种类型?典型品种及其主要特性?9.活性剂有什么作用?什么是防焦剂?常用品种是什么?10.交联配合剂对橡胶制品和热固性塑料制品的作用有何异同?为什么?11、什么是填充剂和补强剂?它们的区别在哪里?第三章习题与思考题1.试分析下列配方,要求:(1)指出各成分在配方中的作用;(2)判断制品基本性能,并说出相应的理由。
①PVC树脂(XS-4)100,邻苯二甲酸二辛酯10,邻苯二甲酸二丁酯8,环氧脂肪酸辛酯3,液体钡-镉2,硬脂酸钡0.5,硬脂酸镉0.3,硬脂酸0.3,二氧化钛3②PVC树脂(XS-5)100,三盐基性硫酸铅5,二盐基性亚磷酸铅1.5,亚磷酸三苯脂0.5,硬脂酸铅0.5,硬脂酸正丁酯0.3,石蜡0.3,氧化锑5③PVC树脂(XS-3)100,DOP 20,DBP 20,DOS 10,氯化石蜡5,UV-9 0.1,滑石粉1,氧化铁0.2,二月桂酸二丁基锡3④丁睛橡胶100,硫磺1.5,促进剂M 1.5,促进剂TMTD 0.2,ZnO 5,硬脂酸1,防老剂4010NA 1,半补强碳黑60,陶土30,沥青5,石蜡1.52.在生产宽1200mm,厚0.5mm的聚氯乙烯软膜时,采用以下配方:聚氯乙烯树脂100,三盐基硫酸铅2,硬酯酸钡1.2,硬酯酸铅0.8,邻苯二甲酸二辛酯30,癸二酸二辛酯10,环氧大豆油5,氯化石蜡5,硬酯酸0.8,碳酸钙8,钛箐兰0.5问:配方中各组分的作用?配方中树脂、稳定剂、增塑剂、填充剂、润滑剂、颜料各占总量的百分之几?3.高分子材料进行配方设计的一般原则和依据各是什么?4.配方有哪几种表示方法?各有何作用?相互关系是什么?第四章习题与思考题1.与低分子物相比,聚合物的粘性流动有何特点?2.什么是牛顿型流体和非牛顿型流体?试用流变方程和流动曲线说明非牛顿型流体的类型。
高分子材料成型加工
高分子材料成型加工是指通过热压、冷压、注塑、挤出等
成型技术,将高分子材料转变成所需形状和尺寸的产品的
过程。
高分子材料成型加工可以分为热固性塑料成型和热
塑性塑料成型两种形式。
热固性塑料成型是指在加热过程中,高分子材料经化学交
联形成三维网络结构的过程。
常见的热固性塑料成型加工
方式有热压、注塑和挤出。
热压是通过将高分子材料置于
加热板之间,加热和加压使其熔融并填充模具中,然后冷
却硬化成形。
注塑是将高分子材料加热熔融后注入模具中,冷却硬化成形。
挤出是通过高分子材料在加热和压力的作
用下,从模具口中挤出成型,然后冷却硬化形成。
热塑性塑料成型是指高分子材料在一定温度范围内,经过
塑化加工后,能够通过冷却形成所需产品的过程。
常见的
热塑性塑料成型加工方式有注塑、挤出和吹塑。
注塑的原
理与热固性塑料成型相似,但材料在加热过程中并不发生
交联反应。
挤出是通过高分子材料在加热和压力的作用下,从模具口中挤出成型,然后冷却硬化形成。
吹塑是将高分
子材料加热熔融后,通过压缩空气使其膨胀成薄壁容器形状,然后冷却硬化成型。
总之,高分子材料成型加工是将高分子材料通过加热、压力、塑化等工艺,转变成所需形状和尺寸的产品的过程,广泛应用于各个领域的塑料制品生产中。
编写:夏传熙塑料成型工艺与模具设计习题2008版第 0 章绪论1.填空2.按成型过程中物理状态不同分类,可分为压缩模、压注模、注射模、挤出机头;气动成型。
3.塑料中必要和主要成分是树脂,现在制造合成树脂的原料主要来自于石油。
问答1.什么是模具?什么是塑料模具?模具具备什么特点?答:模具是指利用其本身特定形状去成型具有一定形状和尺寸的制品的工具。
塑料模具是指利用其本身特定密闭腔体去成型具有一定形状和尺寸的立体形状塑料制品的工具。
模具的特点是:(1)模具:是一种工具(2)模具与塑件:“一模一样”;(3)订货合同:单件生产(4)模具生产制件所具备的高精度、高复杂程度、高一致性、高生产率和低消耗,是其他加工制造方法所不能比拟的。
2.塑料工业体系由哪两大部分组成?答:塑料工业体系由塑料生产、塑料制件生产两大部分组成。
它们分别为塑料生产即塑料原料和半成品的生产和塑料制件生产,即利用各种成型手段将塑料加工成制品。
3.塑料模塑成型及模具技术的发展动向?(1)塑料成型技术的发展塑料成型理论的进展(各种流变行为的研究)塑料成型方法的革新(针对新型塑料和具有特殊要求的塑件 )制品的精密化、微型化和超大型化(2)产品市场的发展(3)塑料模具发展趋势(大型化、高精度、多功能复合模、热流道模具)第 1 章高分子聚合物结构特点与性能填空1.塑料中必要和主要成分是树脂,现在制造合成树脂的原料主要来自于石油。
2.塑料一般是由树脂和添加剂组成。
3.制备合成树脂的方法有聚合反应和缩聚反应两种。
4.高聚物中大分子链的空间结构有线型、直链状线型及体型三种形式。
5.从成型工艺出发,欲获得理想的粘度,主要取决于对温度、剪切速率和压力这三个条件的合理选择和控制。
6.料流方向取决于料流进入型腔的位置,故在型腔一定时影响分子取向方向的因素是浇口位置。
7.牛顿型流体包括粘性流体、粘弹性流体和时间依赖性流体。
8.受温度的影响,低分子化合物存在三种物理状态:固态、液态、气态。
第八章压制成型(模压成型、层压成型8.1概述压制成型是塑料成型加工技术中历史悠久的最重要的成型方法之一,主要用于热固性塑料的成型,也可用于热塑性塑料成型。
根据材料形状和成型工艺的特征分:模压成型和层压成型。
定义:——模压成型又称压缩模塑,是将粉状、粒状、碎屑状或纤维状的塑料放入加热的阴模中,合上阳模后加热使其熔化,并在压力的作用下,使物料充满模腔,形成与模腔形状一样的模制品,再经加热或冷却,脱模后即得制品。
从工艺角度看,上述过程分为三个阶段:流动阶段、胶凝阶段、硬化阶段。
原理:是把加压、赋形、加热或冷却等过程通过受热模具的闭合,实现模塑料的成型。
模压原料:热固性和热塑性原料:酚醛塑料、脲醛塑料、环氧塑料、不饱和聚酯塑料、氨基塑料、聚酰亚胺塑料等热固性塑料模塑粉,以及以这些热固性树脂和短切纤维状增强材料为主要成分的塑料。
成型:型腔中的热固性塑料在热的作用下,先由固体变为熔体,在压力下熔体流满型腔而取得型腔所赋予的形状,随着交联反应的进行,树脂的分子量增大、固化程度随之提高,模压料的粘度逐渐增加以至变为固体,最后脱模成为制品。
原料:聚四氟乙烯、超高分子量聚乙烯等。
成型:过程与热固性塑料基本相同,但没有交联反应,熔体充满型腔后,模具冷却使熔体变为具有一定强度的固体才能脱模成为制品。
因此,模具需交替加热与冷却,周期长,不经济。
只用于模塑较大平面的或流动性差的塑料制品。
模压成型的主要特点:优点:a、投资少,工艺简单,易操作;b、压力损失小,因此,可用以成型大型平面制品及多型腔模具制品;c、成型材料取向度小,制件可以带嵌件;d、无流道及浇口,材料浪费少;e、适用的材料广泛(可成型带有碎屑状、片状及纤维状填料等的制品)。
缺点:a、塑化作用不强,成型中无物料补充,须对原料进行予塑化,计量要求准确、压缩比要小;b、间歇操作,生产效率低,难以连续化、自动化;c、固化时间长,生产周期长;d、成型产品的形状、尺寸精度等受到一定的限制,合模处会产生飞边。
高分子材料成型加工复习题一、判断题第1章绪论( ) 1.成型操作过程中只能凭升高温度来提高熔体流动性。
第2章高分子材料学( ) 1. 熔融温度高,熔融时间长,则结晶速度慢,结晶尺寸较大( ) 2. 有的中空吹塑瓶的瓶口处不透明是由于产生结晶造成的。
( ) 3. 在注-拉-吹制品时,对于结晶型聚合物要在结晶速率最大温度进行拉伸。
( ) 4、有些塑料大分子上含有亲水基团,容易吸湿,比如聚碳酸酯。
( ) 5. 熔融温度高,熔融时间长,则结晶速度快,结晶尺寸小而均匀,有利于提高机械性能和热变形温度。
( ) 6.能够注射成型的同样品种牌号塑料,也可以压延和挤出成型。
第5章聚合物流变学基础( ) 1. 熔体在流动过程中由于剪切摩擦而产生热量,其热量在管中心最大,管壁处为零。
( ) 2. 聚合物分子链刚度越大,其表观粘度对温度的敏感性就越大。
( ) 3. 对于假塑性流体流动指数n离1越远,当剪切速率越大,粘度就越大。
( ) 4. 流体在平直管内流动时,受有剪切应力;流体在锥形管内流动时受有剪切和拉伸应力。
( ) 5. 绝大多数聚合物熔体的剪切弹性模量在定温下都是随着应力的增大而上升的。
( ) 6. 在注射过程中,为了增大熔体的流动性,对于聚丙烯来说宜提高温度,对于聚碳酸酯来说宜提高压力。
( ) 7. 聚合物挤出膨胀是由弹性恢复造成的。
( ) 8、几乎所有的聚合物的浓溶液和凝胶性糊塑料在加工中的流变行为都与假塑性流体相近。
( ) 9、聚合物熔体在挤出时通过一个狭窄的口模,即使口模很短,也会有很大的压力降,这种现象称为入口效应。
( ) 10、流体在平直管内受剪切应力而发生流动的形式有层流和湍流两种。
( ) 11、一般情况下,塑料熔体在高剪切应力下,贴近管壁处的一层流体是不发生流动的。
第6章高分子材料混合与制备( ) 1、物料混合要在玻璃化温度以下。
( ) 2、塑料的塑化温度要在树脂流动温度以上。
( ) 3.生胶的塑炼就是使生胶由柔软的塑性状态变为强韧的弹性状态的工艺过程( ) 4.生胶的塑炼的目的主要是为了提高产品的耐磨性。