北师大版数学九年级下册:二次函数的图像与性质
- 格式:doc
- 大小:143.00 KB
- 文档页数:3
2.2 二次函数的图象与性质第1课时二次函数y = x2和y =-x2的图象与性质教学内容第1课时二次函数y = x2和y =-x2的图象与性质课时1核心素养目标1.能够利用描点法作出y=x2的图象,并能根据图象认识和理解二次函数y=x2的性质.2.能作出二次函数y=x2的图象,并能够比较与y=x2的图象的异同,初步建立二次函数表达式与图象之间的联系.3.经历画二次函数y=x2的图象和探索性质的过程,获得利用图象研究函数性质的经验.4.培养学生数形结合的思想,积累数学经验,为后续学习服务.知识目标1.会用描点法画出形如y=x2和y=-x2的二次函数图象,理解抛物线的概念;2.通过观察图象能说出二次函数y=x2和y=-x2的图象特征和性质,并会应用.教学重点会用描点法画出形如y=x2和y=-x2的二次函数图象,理解抛物线的概念教学难点通过观察图象能说出二次函数y=x2和y=-x2的图象特征和性质,并会应用教学准备课件教学过程主要师生活动设计意图一、情境导入二、探究新知三、当堂练习,巩固所学一、创设情境,导入新知1.你还记得一次函数与反比例函数的图象吗?①一次函数y = kx + b (k≠0)2. 通常怎样画一个函数的图象?列表、描点、连线.二、小组合作,探究概念和性质知识点一:二次函数y=x2和y= -x2的图象和性质合作探究你会用描点法画二次函数y = x2的图象吗?师生活动:师生一起完成画图,教师先出示表格,由学生说出x对应的y值,再描点、连线.教师强调在连线时,注意要用平滑的曲线连线,不能直接用线段把点与点之间连接.1.列表:在y = x2中自变量x可以是任意实数,设计意图:通过创设问题情景,引导学生复习描点法,复习借助图象分析性质的过程中注意分类讨论、由特殊到一般的解决问题的方法,为学习二次函数的图象奠定基础.设计意图:通过让学生自主填表,启发学生观察表达式的特点,调动学生的思维. 体现启发式教学,让每位学生都参与到学习过程中,加深学生对知识的理解,充分调动学生学习的积极性.设计意图:让学生思考和交流对函数性质的认识,并积累从图象的角度研究函数性质的经验.设计意图:类比研究y=x2图形性质的方法研究y= -x2的图形性质,让学生初步体会二次函数系数与函数性质的关系,同时体会这两个图象是关于中列表表示几组对应值:2. 描点:根据表中x,y的数值在坐标平面中描点(x,y)3. 连线:如图,再用光滑的曲线顺次连接各点,就得到y = x2的图象.观察思考问题1 你能描述图象的形状吗?二次函数y = x2的图象是一条抛物线,并且抛物线开口向上.问题2 图象与x轴有交点吗?如果有,交点坐标是什么?有,(0,0).问题3 当x < 0 时,随着x值的增大,y值如何变化?当x > 0 时呢?当x < 0 时,y随x的增大而减小;当x > 0 时,y随x的增大而增大.问题4 当x取何值时,y的值最小?最小值是什么?x = 0 时,y min= 0.问题5 图象是轴对称图形吗?如果是,它的对称轴是什么?师生活动:教师出示问题,学生思考、讨论,师生共同得出答案.合作探究做一做:画出函数y = -x2的图象,并仿照y = x2的性质说出y = -x2有哪些性质?师生活动:学生亲自动手操作,画出函数图象,然心对称.设计意图:培养学生归纳、整理知识的意识.注意将图象与表达式进行联系,让学生理解知识点.设计意图:巩固所学知识,加深对二次函数增减性的理解.设计意图:让学生自主探究,培养自主学习、独立思考的习惯,加深对二次函数的性质的理解,培养数形结合思想.设计意图:考查学生对二次函数图象的性质的掌握.设计意图:考查学生求解二次函数的表达式和画图的能力.后小组讨论、交流得出答案.1.图象是一条开口向下的抛物线.2. 当x < 0 时,y随x的增大而增大;当x > 0 时,y随x的增大而减小;当x = 0 时,ymax = 0.3.抛物线关于y轴对称.4. 顶点坐标是(0,0);是抛物线上的最高点.要点归纳典例精析例1若点A(-3,y1),B(-2,y2) 是二次函数y = -x2图象上的两点,那么y1与y2的大小关系是___y2>y1___.例1变式若点A(-1,y1),B(2,y2) 是二次函数y = -x2图象上的两点,那么y1与y2的大小关系是___y1>y2___.师生活动:学生独立思考并作答.例2已知:如图,直线y=3x+4 与抛物线y=x2交于A、B两点,求出A、B两点的坐标,并求出两交点与原点所围成的三角形的面积.师生活动:学生独立思考并作答,选一名学生板书.教师巡视.三、当堂练习,巩固所学1. 两条抛物线y = x2与y = -x2在同一坐标系内,下列说法中不正确的是()A. 顶点坐标均为(0,0)B. 对称轴均为x = 0C. 开口都向上第1课时二次函数y = x2和y =-x2的图象与性质。
九年级下册《二次函数的图像和性质》第三课时说课稿一、教材及学情分析《二次函数的图像与性质》是北师大版九年级下册第二章第二节的内容,在学生已经学习过一次函数(包括正比例函数)、反比例函数的图像与性质,以及会建立二次函数模型和理解二次函数的有关概念的基础上进行的,它既是前面所学知识的应用、拓展,是对前面所学一次函数、反比例函数图像与性质的一次升华,又是今后学习《确定二次函数的表达式》《二次函数的应用》、《二次函数与一元二次方程》的预备知识,又是学生高中阶段数学学习的基础知识,它在教材中起着非常重要的作用。
另外,本节课最大特点,是结合图形来研究二次函数的性质,这充分体现了一个很重要的数学思想——数形结合数学思想。
因此,这一节课,无论是在知识上,还是对学生动手能力培养上都有着十分重要的作用。
二、教学目标及重、难点分析通过分析,我们知道,《二次函数的图像与性质》在整个教材体系中,起着承上启下的作用,有着广泛的应用。
我认为这节课的重点是:作出函数y=ax2+c的图象,比较函数y=ax2和函数y=ax2+c的异同,了解它们的性质;函数y=ax2+c的图象与性质的理解,掌握抛物线的上下平移规律是本节课的难点。
知识与技能目标(1)会做函数y=ax2和y=ax2+c的图象,并能比较它们的异同;理解a,c对二次函数图象的影响,能正确说出两函数的开口方向,对称轴和顶点坐标;(2)了解抛物线y=ax2上下平移规律。
过程与方法目标本节课,过程是由抽象到直观,再由直观到抽象(既二次函数y=ax2+c的关系式——作出图像——说出二次函数y=ax2+c的图像与性质),培养学生分析问题、解决问题的能力,培养学生观察、探讨、分析、分类讨论的能力。
情感、态度与价值观引导学生养成全面看问题、分类讨论的学习习惯,通过直观多媒体演示和学生动手作图、分析,激发学生学习数学的积极性。
三、教学结构设计建立以“实施主体性教学,培养学生自主探究的能力”为主的课堂教学结构模式——学教结合式。
北师大版九年级下册数学知识点北师大版九年级下册数学知识点1 二次函数及其图像二次函数(quadratic function)是指未知数的次数为二次的多项式函数。
二次函数可以表示为f(x)=ax^2+bx+c(a不为0)。
其图像是一条主轴平行于y轴的抛物线。
一般的,自变量x和因变量y之间存在如下关系:一般式y=ax∧2;+bx+c(a≠0,a、b、c为常数),顶点坐标为(-b/2a,-(4ac-b∧2)/4a) ;顶点式y=a(x+m)∧2+k(a≠0,a、m、k为常数)或y=a(x-h)∧2+k(a≠0,a、h、k为常数),顶点坐标为(-m,k)对称轴为x=-m,顶点的位置特征和图像的开口方向与函数y=ax∧2的图像相同,有时题目会指出让你用配方法把一般式化成顶点式;交点式y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和B(x2,0)的抛物线] ;重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向,a0时,开口方向向上,a0时,开口方向向下。
a的绝对值还可以决定开口大小,a的绝对值越大开口就越小,a的绝对值越小开口就越大。
牛顿插值公式(已知三点求函数解析式)y=(y3(x-x1)(x-x2))/((x3-x1)(x3-x2)+(y2(x-x1)(x-x3))/((x2-x1)(x2-x 3)+(y1(x-x2)(x-x3))/((x1-x2)(x1-x3) 。
由此可引导出交点式的系数a=y1/(x1x2) (y1为截距)求根公式二次函数表达式的右边通常为二次三项式。
求根公式x是自变量,y是x的二次函数x1,x2=[-b±(√(b^2-4ac))]/2a(即一元二次方程求根公式)(如右图)求根的方法还有因式分解法和配方法在平面直角坐标系中作出二次函数y=2x的平方的图像,可以看出,二次函数的图像是一条永无止境的抛物线。
不同的二次函数图像如果所画图形准确无误,那么二次函数将是由一般式平移得到的。
九年级数学中的二次函数是一个非常重要的内容,主要包括函数定义、图像和性质、解析式、根与系数之间的关系、应用等方面的知识。
下面对这些知识点进行归纳总结。
1. 二次函数的定义:二次函数是指形如f(x) = ax^2 + bx + c的函数,其中a、b、c为常数且a ≠ 0。
2.二次函数的图像和性质:-当a>0时,二次函数的图像是一个开口向上的抛物线,顶点在最低点;当a<0时,二次函数的图像是一个开口向下的抛物线,顶点在最高点。
-顶点坐标为(-b/2a,f(-b/2a)),其中-b/2a为对称轴的横坐标,f(-b/2a)为对称轴上的纵坐标。
-当函数的a值较大时,抛物线开口越大,图像越扁平;当a值较小时,抛物线开口越小,图像越瘦高。
-当函数的c值为正时,图像在y轴上方;当c值为负时,图像在y轴下方。
-二次函数的对称轴与x轴交点为顶点坐标的x坐标。
-二次函数的图像关于对称轴对称。
3. 二次函数的解析式:二次函数的一般形式是f(x) = ax^2 + bx + c,其中a、b、c为常数,可以用来表示二次函数的解析式。
4.根与系数之间的关系:- 二次函数的根是函数f(x) = ax^2 + bx + c的解,即使得f(x) = 0的x值。
二次函数的根可能有两个、一个或没有。
-当二次函数有两个根时,即存在两个解x1和x2,那么二次函数可以表示为f(x)=a(x-x1)(x-x2)。
-二次函数的根与系数之间的关系可由韦达定理得到。
设二次函数的两个根为x1和x2,则有以下关系:-x1+x2=-b/a-x1*x2=c/a5.二次函数的应用:-二次函数可以应用于描述各类抛物线问题,如求抛物线的顶点、根、对称轴等。
-二次函数可以用来表示抛物线轨迹的运动问题,如抛物线运动的高度、时间等。
总结:二次函数是九年级数学中的重要内容,掌握二次函数的定义、图像和性质、解析式、根与系数之间的关系以及应用可以帮助我们更好地理解和解决与抛物线相关的问题。
2.2 二次函数的图象与性质(第1课时)
教学目标
知识与技能
1.能够利用描点法画函数2x y =的图象,能根据图象认识和理解二次函数2x y =的性质.
2.猜想并能作出2x y -=的图象,能比较它与2x y =的图象的异同. 过程与方法
1.经历探索二次函数2x y =的图象的作法和性质的过程,获得利用图象研究函数性质的经验.
2.由函数2x y =的图象及性质,对比地学习2x y -=的图象及性质,并能比较出它们的异同点,培养学生的类比学习能力和发展学生的求同求异思维.
情感与态度
1.通过学生自己的探索活动,达到对抛物线自身特点的认识和对二次函数性质的理解.
2.在利用图象讨论二次函数的性质时,让学生尽可能多地合作交流,以便使学生能够从多个角度看问题,进而比较准确地理解二次函数的性质.
教学重点:作出函数2x ±的图象,并根据图象认识和理解二次函数2x y ±=的性质.
教学难点:由2x y =的图象及性质对比地学习2x y -=的图象及性质,并能比较出它们的异同点.
教学过程
(一)创设问题情境,引入新课
我们在学习了正比例函数,一次函数与反比例函数的定义后,研究了它们各自的图象特征.知道正比例函数的图象是过原点的一条直线.一般地一次函数的图象是不过原点的一条直线,反比例函数的图象是双曲线.上节课我们学习了二次函数的一般形式为c bx ax y ++=2(其中c b a 、、均为常数且0≠a ).那么它的图象是否也为直线或双曲线呢?本节课我们将一起来研究有关问题.
(二)新课讲解
1、作函数2x y =的图象
一次函数的图象是一条直线.二次函数的图象是什么形状呢?让我们先看最简单的二次函数2x y =.大家还记得画函数图象的一般步骤吗?
(1)列表:
(2)在直角坐标系中描点.
(3)用光滑的曲线连结各点,便得到函数图象.
2、议一议
对于二次函数2x y =的图象,
(1)你能描述图象的形状吗?与同伴进行交流.
(2)图象与x 轴有交点吗?如果有,交点坐标是什么?
(3)当0<x 时,随着值的增大,的值如何变化?当0>x 时呢? (4)当x 取什么值时,y 的值最小?最小值是什么?你是如何知道的?
(5) 图象是轴对称图形吗?如果是,它的对称轴是什么?请找出几对对称点,并与同伴进行交流.
3、2x y =的图象的性质
二次函数________2的图象是一条x y =,它的开口________,且关于______对称.对称轴与抛物线的交点是抛物线的________,它是图象的_________.在对称轴的左侧,y 随x 的增大而 ;在对称轴的右侧,y 随着x 的增大而 . 因为图象有最低点,所以函数有 ,当x =0时,y 最小值= .
4、做一做
2x y -=二次函数图象是什么形状?先想一想,然后作出它的图象.它与二次函数2x y =的图象有什么关系?与同伴进行交流.(PPT 显示)
结论:(1)抛物线的开口方向是向下.
(2)它的图象有最高点,最高点坐标是(0,0).
(3)它是轴对称图形,对称轴是y 轴.在对称轴的左侧,y 随x 的增大而增大;在对称轴的右侧,y 随着x 的增大而减小.
(4)图象与x 轴有交点,称为抛物线的顶点,同时也是图象的最高点,坐标为(0,0).
(5)因为图象有最高点,所以函数有最大值,当0=x 时,y 最大值=0. 5、2x y =函数与的2x y -=图象的比较.
观察函数2x y =与2x y -=的图象,比较它们的图象的异同点.
不同点:(1)、开口方向不同,2x y =开口向上,2x y -=开口向下.
(2)、函数值随自变量增大的变化趋势不同,在2x y =图象上,在对称轴的左侧,y 随x 的增大而减小;在对称轴的右侧,y 随x 着的增大而减小,在对称轴的左侧,y 随x 的增大而增大;在对称轴的右侧,y 随x 的增大而增大.在2x y -=的图象上正好相反.
(3)、在2x y =中y 有最小值,即0=x 时,y 最小值=0;在2x y -=中,y 有最大值.即当0=x 时,y 最大值=0.
(4)、2x y =有最低点,2x y -=有最高点.
相同点:
(1)、图象都是抛物线.
(2)、图象都与x 轴交于点(0,0).
(3)、图象都关于y 轴对称.
联系:它们的图象关于x 轴对称.
6、思考拓展.
从2x y =和2x y -=两个二次函数的解析式来比较,只是相差一个符号,而图象的开口方向却正好相反.你认为二次函数的图象的开口方向到底跟什么有关呢?
我们现在来看这几个二次函数的图象22x y =、23x y =(二次项系数均为正值),再来看另几个二次函数图象22x y -=、23x y -=(二次项系数均为负值),你们发现了什么规律?
结论:对于2ax y =这类二次函数来说,a 与其张口大小、张口方向都有关系.(并就本节整体内容进行总结,并给学生以感想的时间.)
(三)布置作业。