结构力学讲义 (2)
- 格式:docx
- 大小:161.13 KB
- 文档页数:7
《结构⼒学》复习讲义第⼀讲平⾯体系的⼏何组成分析及静定结构受⼒分析【内容提要】平⾯体系的基本概念,⼏何不变体系的组成规律及其应⽤。
静定结构受⼒分析⽅法,反⼒、内⼒计算与内⼒图绘制,静定结构特性及其应⽤。
【重点、难点】静定结构受⼒分析⽅法,反⼒、内⼒计算与内⼒图绘制⼀、平⾯体系的⼏何组成分析(⼀)⼏何组成分析按机械运动和⼏何学的观点,对结构或体系的组成形式进⾏分析。
(⼆)刚⽚结构由杆(构)件组成,在⼏何分析时,不考虑杆件微⼩应变的影响,即每根杆件当做刚⽚。
(三)⼏何不变体系体系的形状(或构成结构各杆的相对位置)保持不变,称为⼏何不变体系,如图6-1-1 (四)⼏何可变体系体系的位置和形状可以改变的结构,如图6-1-2。
图6-1-1 图6-1-2(五)⾃由度确定体系位置所需的独⽴运动参数数⽬。
如⼀个刚⽚在平⾯内具有3个⾃由度。
(六)约束减少体系独⽴运动参数(⾃由度)的装置。
1.外部约束指体系与基础之间的约束,如链杆(或称活动铰),⽀座(固定铰、定向铰、固定⽀座)。
2.内部约束指体系内部各杆间的联系,如铰接点,刚接点,链杆。
规则⼀:⼀根链杆相当于⼀个约束。
规则⼆:⼀个单铰(只连接2个刚⽚)相当于两个约束。
推论:⼀个连接n 个刚⽚的铰(复铰)相当于(n- 1)个单铰。
规则三:⼀个单刚性结点相当于三个约束。
推论:⼀个连接个刚⽚的复刚性结点相当于( n- 1)个单刚性结点。
3.必要约束如果在体系中增加⼀个约束,体系减少⼀个⾃由度,则此约束为必要约束。
4.多余约束如果体系中增加⼀个约束,对体系的独⽴运动参数⽆影响,则此约束称为多余约束。
(七)等效作⽤1.虚铰两根链杆的交叉点或其延长线的交点称为(单)虚铰,其作⽤与实铰相同。
平⾏链杆的交点在⽆限远处。
2.等效刚⽚⼀个内部⼏何不变的体系,可⽤⼀个刚⽚来代替。
3.等效链杆。
两端为铰的⾮直线形杆,可⽤⼀连接两铰的直线链杆代⼆、⼏何组成分析(⼀)⼏何不变体系组成的基本规则1.两刚⽚规则平⾯两刚⽚⽤不相交于⼀点的三根链杆连接成的体系,是内部⼏何不变且⽆多余约束的体系。
第一章绪论§1-1结构力学的研究对象和任务一、力:物体之间的相互作用;力学:理论力学,弹性力学,材料力学,结构力学,塑性力学,粘塑性力学,液体力学,断裂力学等结构:用建筑材料组成在建筑物中承担荷载并起骨架作用的部分,称为结构。
如梁、柱、楼板、桥梁、堤坝及码头等。
结构力学:研究杆件结构的组成形式及外因作用下的强度、刚度和稳定性问题。
构件:结构中的各个组成部分称为构件。
二、结构的类型:从结构型式划分:砖混结构、框架结构、框架剪力墙结构、框剪结构、筒体结构等;从建筑材料划分:砖石结构、混凝土结构、钢筋混凝土结构、钢结构、组合结构等;从空间角度划分:平面结构、空间结构等以上结构从几何角度来分,有:杆系结构:由杆件组成,杆件的长度远大于其横截面的宽度和高度,这是本课的研究内容。
板壳结构:厚度尺寸远小于长度和宽度,即薄壁结构;弹性力学实体结构:长、宽、高三个几何尺寸属于同一数量级;弹性力学结构力学研究对象:平面杆系结构注:结构力学:常指狭义的方面,即杆件结构力学。
三、任务:(土木工程项目建设过程)1)业主投资:可行性研究、报建立项、城建规划土地批文、招标投标2)设计:方案、(工艺)、建筑、结构、设备(水暖电火自控)[初步、技术、施工]3)施工(承包人、材料供应、运输、保险、质检、定额、银行)、投入运行4)全过程控制:监理5)结构设计:结构方案(合理布置)、竖向承重体系、水平承重体系、附属结构体系、施工图6)初步方案+尺寸+材料、外力(静动荷载+支座反力)、内力(应力)+位移(应变变形)、强度刚度稳定性设计动力响应、最后尺寸材料(钢、木、钢筋混凝土、组合)(修正或验证)四、为了使结构既能安全、正常地工作,又能符合经济的要求,就要对其进行强度、刚度和稳定性(三种破坏形式)的计算。
材料力学:研究单个杆件的强度、刚度及稳定性问题;结构力学:以杆件结构为研究对象;弹性力学:对杆件作更精确的分析,并以板、壳、块体等实体结构为研究对象。
第2章 轴心受压构件的稳定第1节 理想轴心受压构件的弹性失稳● 理想:材料符合虎克定律;无初缺陷、初偏心;保向力作用;微小变形。
● 两端简支构件图2.1.1 两端简支轴心受压构件在微弯状态(随遇平衡状态)下建立平衡方程(此时的荷载值为临界荷载cr P ): 0=+''Py y EI设 EI P k /2=,则02=+''y k y(1)其通解为: kx B kx A y cos sin += (2)由边界条件: 0=x 时0=y 得上式中0=B ,则kx A y sin = (3)当l x =时,0=y ,得0sin =kl A若0=A ,表示0=y 为直线平衡状态,不是微弯状态,所以0≠A ,因此必有0sin =kl ,从而得πn kl = (=n 1,2,3,……)由EI P k /2=得222l EI n P cr π=(4)相应的挠度曲线lxn A y n πsin= (=n 1,2,3,……) -EIy ”≈-EI /ρ (小挠度)图2.1.2 两端简支轴心受压构件挠度曲线实际上22lEIP P E cr π== (Euler 临界力) (5)lxA y πsin=(6)临界荷载是保持中性平衡状态下的最小荷载。
相应的临界应力为22λπσσEAP E E cr ===(7)由于钢材的弹性模量相同,故临界应力cr σ仅与长细比λ有关。
图2.1.3• 边界条件和计算长度图2.1.4PP cry不稳定平衡微弯状态,中性平衡稳定平衡000=''---y EI x lM Py M 令 EI P k /2=,则)1(02l xEI M y k y -=+'' (8) 解为:)1(cos sin 0lxP M kx B kx A y -++=(9)边界条件:当0=x 时,0=y ,0='y 当l x =时,0=y 由此得三个齐次线性方程式⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=-⋅+⋅=++⋅00cos sin 000000kl B kl A Pl M B k A P M B A (10) 微弯时,A 、B 、0M 不同时为0,上式有非零解的条件是:0010110=-=∆klcos kl sin Pl /kP /(11)展开上式得kl tgkl =此超载方程的最小根为 49.4=kl 于是222)7.0(02.2l EIl EI P cr π==(12)可见一端固定一端自由构件相当于长度l l 7.00=的两端简支构件(这是0l 的物理意义)。
2.1 几何可变系统和几何不变系统工程结构是用来承受和传递外载荷的系统。
一个工程结构通常是由若干个构件用某种方法联结而成的。
它在承受载荷作用时,各构件只允许发生材料的弹性变形,而不应发生构件间相对的机械运动。
如图2.1(a)所示的系统,如果不考虑弹性变形,系统也未发生破坏,则其几何形状与位置均保持不变,这样的系统,我们称之为几何不变系统。
但是,对如图2.1(b)所示的系统,在载荷作用下,即使不考虑弹性变形,它的形状和位置也将改变,这样的系统,我们称之为几何可变系统,它是不能用来承受和传递外载荷的。
所以,凡是工程结构必须是几何不变系统。
图2.1对系统进行几何组成分析的目的在于:判断该系统是否为几何不变系统,以决定其能否作为工程结构使用;研究并掌握几何不变系统的组成规则,以便合理安排构件,设计出合理的结构;根据系统的组成规则,确定结构的性质(静定系统还是静不定系统),以便选用相应的计算方法。
3.2 静定桁架的内力桁架是由某些杆系结构经过简化而得到的计算模型,其特点是:(1)各元件均为直杆;(2)各杆两端均用没有摩擦的理想铰链相连接;(3)杆的轴线通过铰心,称铰心为桁架的结点;(4)载荷和支座反力仅作用在各结点上。
由于理想铰链没有摩擦力,故不能传递力矩。
显然,在载荷仅作用在结点上时,若不计杆的自重,各杆都只受到两端结点的作用力,且在此二力作用下处于平衡。
因此,桁架的杆件均为“二力杆”,即杆两端受到大小相等、方向相反、沿着杆轴线的两个力作用。
杆子横截面上只有轴力,这些轴力就是所要计算的桁架内力。
静定桁架是一种没有多余约束的结构,它的内力计算原则上,只要把桁架分解为若干自由体(结点)和约束(杆),用未知力代替约束的作用,对所有的自由体列出全部静力平衡方程式,所得方程式数与包含的未知力数相等。
由于结构是几何不变的,方程组有唯一解。
解这联立方程组就可得到静定桁架的内力。
但在工程实际中,往往可以运用下述两种方法:结点法和截面法。
结构力学讲义第1章绪论§1-1 杆件结构力学的研究对象和任务结构的定义: 建筑物中支承荷载而起骨架作用的部分。
结构的几何分类:按结构的空间特征分类:空间结构和平面结构。
杆件结构力学的任务:(1)讨论结构组成规律与合理形式,以及结构计算简图的合理选择;(2)内力与变形的计算方法.进行结构的强度和刚度验算;(3)讨论结构稳定性及在动力荷载作用下的结构反应。
结构力学的内容(从解决工程实际问题的角度提出)(1) 将实际结构抽象为计算简图;(2) 各种计算简图的计算方法;(3) 将计算结果运用于设计和施工。
§1-2 杆件结构的计算简图1.结构体系的简化一般的构结都是空间结构。
但是,当空间结构在某一平面内的杆系结构承担该平面内的荷载时,可以把空间结构分解成几个平面结构进行计算。
本课程主要讨论平面结构的计算。
当然,也有一些结构具有明显的空间特征而不宜简化成平面结构。
2.杆件的简化铰支座(2) 滚轴支座(3) 固定支座4.(4)定向支座M5.材料性质的简化将结构材料视为连续、均匀、各向同性、理想弹性或理想弹塑性。
6.荷载的简化集中荷载与分布荷载§1-3 杆件结构的类型§1-4 荷载的分类2.4.刚架5.组合结构6.A B荷载可分为恒载和活载。
一、按作用时间的久暂荷载可分为集中荷载和分布荷载 荷载可分为静力荷载和动力荷载 荷载可分为固定荷载和移动荷载。
二、按荷载的作用范围三、按荷载作用的性质四、按荷载位置的变化• §2-1 几何组成分析的目的和概念几何构造分析的目的主要是分析、判断一个体系是否几何可变,或者如何保证它成为几何不变体系,只有几何不变体系才可以作为结构。
几何不变体系:不考虑材料应变条件下,体系的几何形状和位置保持不变的体系一、几何不变体系和几何可变体系几何可变体系:不考虑材料应变条件下,体系的几何形状和位置可以改变的体系。
二、自由度杆系结构是由结点和杆件构成的,我们可以抽象为点和线,分析一个体系的运动,必须先研究构成体系的点和线的运动。
第一章绪论§1.1 结构和结构的分类一、结构(structure)由建筑材料筑成,能承受、传递荷载而起骨架作用的构筑物称为工程结构。
如:梁柱结构、桥梁、涵洞、水坝、挡土墙等等.二、结构的分类:按几何形状结构可分为:1、杆系结构(structure of bar system) :构件的横截面尺寸<<长度尺寸;2、板壳结构(plate and shell structure) :构件的厚度〈〈表面尺寸。
3、实体结构(massive structure):结构的长、宽、厚三个尺寸相仿。
三、杆系结构的分类:按连接方法,杆系结构可分为:§1.2 结构力学的研究对象、任务和方法一、各力学课程的比较:二、结构力学的任务:1、研究荷载等因素在结构中所产生的内力(强度计算);2、计算荷载等因素所产生的变形(刚度计算);3、分析结构的稳定性(稳定性计算);4、探讨结构的组成规律及合理形式。
进行强度、稳定性计算的目的,在于保证结构满足安全和经济的要求。
计算刚度的目的,在于保证结构不至于发生过大的变形,以至于影响正常使用。
研究组成规律目的,在于保证结构各部分,不至于发生相对的刚体运动,而能承受荷载维持平衡。
探讨结构合理的形式,是为了有效地利用材料,使其性能得到充分发挥。
三、研究方法:在小变形、材料满足虎克定律的假设下综合考虑:1、静力平衡;2、几何连续;3、物理关系三方面的条件,建立各种计算方法。
§1.3 结构的计算简图(computing model of structure )一、选取结构的计算简图必要性、重要性:将实际结构作适当地简化,忽略次要因素,显示其基本的特点。
这种代替实际结构的简化图形,称为结构的计算简图。
合理地选取结构的计算简图是结构计算中的一项极其重要而又必须首先解决的问题。
二、选取结构的计算简图的原则:1、能反映结构的实际受力特点,使计算结果接近实际情况.2、忽略次要因素,便于分析计算。
第⼆节静定结构受⼒分析和特性 ⼀、静定结构的定义 静定结构是没有多余约束的⼏何不变体系。
在任意荷载作⽤下,其全部⽀座反⼒和内⼒都可由静⼒平衡条件确定,即满⾜静⼒平衡条件的静定结构的反⼒和内⼒的解答是的。
但必须指出,静定结构任意截⾯上的应⼒和应变却不能仅由静⼒平衡条件确定,还需要附加其他条件和假设才能求解。
⼆、计算静定结构反⼒和内⼒的基本⽅法 在静定结构的受⼒分析中不涉及结构材料的性质,将整个结构或结构中的任⼀杆件都作为刚体看待。
静定结构受⼒分析的基本⽅法有以下三种。
(⼀)数解法 将受⼒结构的整体及结构中的某个或某些隔离体作为计算对象,根据静⼒平衡条件建⽴⼒系的平衡⽅程,再由平衡⽅程求解结构的⽀座反⼒和内⼒。
(⼆)图解法 静⼒平衡条件也可⽤⼒系图解法中的闭合⼒多边形和闭合索多边形来代替。
其中闭合⼒多边形相当于静⼒投影平衡⽅程,闭合索多边形相当于⼒矩平衡⽅程。
据此即可⽤图解法确定静定结构的⽀座反⼒和内⼒。
(三)基于刚体系虚位移原理的⽅法 受⼒处于平衡的刚体系,要求该⼒系在满⾜刚体系约束条件的微⼩的虚位移上所做的虚功总和等于零。
据此,如欲求静定结构上某约束⼒(反⼒或内⼒)时,可去除相应的约束,使所得的机构沿该约束⼒⽅向产⽣微⼩的虚位移,然后由虚位移原理即可求出该约束⼒。
三、直杆弯矩图的叠加法 绘制线弹性结构中直杆段的弯矩图,采⽤直杆弯矩图的叠加法。
直杆弯矩图的叠加法可叙述为:任⼀直杆,如果已知两端的弯矩,则杆件的弯矩图等于在两端弯矩坐标的连线上再叠加将该杆作为简⽀梁在荷载作⽤下的弯矩图,如图2-1所⽰。
作弯矩图时,弯矩值坐标绘在杆件受拉⼀边,弯矩图中不要标明正、负号。
(a) (b) 图2-1 四、直杆内⼒图的特征 在直杆中,根据荷载集度q,弯矩M、剪⼒V之间的微分关系dV/dx=q,dM/dx=V、d2M/dx2=q,可推出荷载与内⼒图的⼀些对应关系,这些对应关系构成了弯矩图与剪⼒图的形状特征(表2—1)。
结构力学教案第一章 绪论§1、结构力学的对象和任务 一、对象结构:承受并传递荷载的骨架部分结构分为:杆件结构,板壳结构和实体结构。
是由长度远大于其宽度和高度的杆件组成的结构。
二、任务(1)结构组成规则和合理形式。
(2)结构内力和位移计算。
(3)结构稳定性和结构反应。
§2、杆件结构的计算简图 一、简化内容(1)杆件的简化: 杆件的轴线 (2)体系简化:空间结构 平面结构 (3)荷载简化:集中力、集中力偶、分布荷载 (4)结点简化:⎪⎩⎪⎨⎧组合结点。
半铰结点:处产生相对转动。
所连接各杆不能在结点刚结点:动。
所连接各杆可以自由转铰结点:(5)支座简化:⎪⎪⎩⎪⎪⎨⎧滑动支座或定向支座:固定支座固定铰支:活动铰支:;支座外形、受力和位移特点§3、杆件结构分类 (1) 梁:受弯构件(2) 拱:受力产生水平推力。
(3) 刚架:由直杆组成并具有刚结点。
(4) 桁架:由直杆组成且所有结点均为铰结点。
仅有轴力。
(5) 组合结构:由桁架和梁或刚架组合在一起的结构。
静定结构和超静定结构划分:第二章 平面体系几何构造分析考核要求:1、准确计算体系自由度2、运用三个简单组成规则进行几何构造分析§1、基本概念一、构造分析的基本假定:不考虑材料变形,即∞=EA二、几何不变和几何可变体系:刚体或刚片。
(形状可以任意代替)几何不变体系:在任意荷载作用下,几何形状及位置均保持不变的体系。
常变体系和瞬变体系。
§2、平面体系自由度一、自由度:确定体系位置所需的独立坐标数二、约束或联系:减少自由度的装置。
约束:⎪⎩⎪⎨⎧⎩⎨⎧复铰单铰铰链杆结论:(1)一根连杆为一个约束。
(2)一个单铰为两个约束。
(3)连接n 个刚片的复铰相当于n-1个单铰。
三、计算自由度 (1)一般平面体系)2(3r h m W +-=连杆个数单铰个数)刚片个数(不包括地基计算自由度----r h m W例题:图2-4。
《结构力学》试卷二(参考答案)
一、选择题(3⨯2=6分)
1.如图所示体系是(A )
A 无多余联系的几何不变体系
B 有多余联系的几何不变体系
C 几何常变体系
D 几何瞬变体系 2.图示结构中轴力等于零的杆为( D )
A 1杆和4杆
B 1,4,7杆
C 5杆和6杆
D 1,4,7,5,6杆 二、填空题(共12分) 1.(2分)在图示荷载作用下,对称三铰拱的合理拱轴线的形状是 圆弧曲线。
2.(3分)超静定刚架如图(a )所示,若选取如图(b )所示基本结构,试将下列力法典型方程写完整。
333323213123232221211313212111=∆+++-=∆+++-=∆+++∆∆∆X X X X X X a X X X δδδβδδδδδδ
3.(3分)用力矩分配法计算图示结构时,其分配系数µBC = 4/7 ,µBA = 3/7 。
固端弯矩M BC = -100kNm 。
4.(4分)结构的结点编号及单元编号如图,试以子块形式写出结构的原始刚度矩阵。
三、判断题(2⨯4=8分,对的打“∨”,错的答“⨯”)
1.静定结构改变材料的性质,或改变横截面的形状和尺寸,不会改变其内力分布。
(∨)
2.图示梁D截面弯矩影响线的最大竖标发生在D截面。
(⨯)
3.下列图乘结果为。
(⨯)
4.不计轴向变形,图示体系的振动自由度为2。
(⨯)
四、(15分)作图示刚架的M、Q、N图。
五、(16分)利用对称性,用力法计算图示刚架,作M 图。
各杆刚度均为EI ,EI=常数。
解:1.将荷载分组,在正对称荷载作用下,不产生弯矩,因此只计算凡对称荷载情况。
根据对称性,取半结构计算简图如图所示,为一次超静定结构。
2.取基本结构如图,力法方程为:01111=∆+P X δ
3.求系数和自由项
EI 6311=δ EI
P 5401-=∆
4.解方程求未知力:KN X 57.87
60
1==(↑) 5.作弯矩图
六、(16分)用位移法计算图示刚架,求B结点的转角和C点的水平线位移。
解:1.基本未知量 n=2
2.取基本体系如图所示,位移法方程为:
r
11Z
1
+r
12
Z
2
+R
1P
=0
r 21Z
1
+r
22
Z
2
+R
2P
=0
3.求系数和自由项
r 11=7i r
12
=-6i/L r
22
=12i/L2 R
1P
=4KNm R
2P
=-24KN
4.解方程求未知量
024126046722121=-+-=+-
Z L i
Z L i Z L
i
iZ
EI i Z 216
54
1==(顺时针) EI
i
Z 44
112=
=(向右) 七、(14分)作图示梁C 截面的M 、Q 影响线,利用影响线求可任意分割的均布荷载q=10KN/m 作用下C 截面的最大弯矩M max 。
Mmax=160)3
8
1221(10=⨯⨯⨯=∑ωq KNm
八、(13分)试求梁的自振频率和主振型,并画出振型图。
梁的自重忽略不计,EI=常数。
解:结构有两个自由度
EI
a a a a EI 3
2311]23131[1=+=δ
EI
a 6322
=δ EI a 432112-==δδ
令:
η=EI a 3 ηδ=11 ηδ6122-= ηδδ41
2112-== EI
m a m m m m m m 32
2211526.11526.12])4
1
(61[8)62()62(==---+++=ηηηηηηηηλ
EI
m a m m
m 321808
.01808.029718.034
==-=ηηηλ 3
31
1931.01526.11
ma
EI
m a EI ==
=
λω 3
32
2352
.21808.01
ma EI
m a EI ==
=
λω 1
307
.01
2
121
1121
)1(1
)1(21-=
-=
=
m m A
A
δδω
ρ 1640
.11
2121
1122)2(1
)2(22=
-==m m A A δδωρ。