带电粒子在磁场中的圆周运动
- 格式:ppt
- 大小:501.50 KB
- 文档页数:33
磁场中圆周运动知识点总结概述及解释说明1. 引言1.1 概述:本文主要介绍了磁场中圆周运动的相关知识点,并对其进行解释和说明。
圆周运动是物理学中重要的概念之一,广泛应用于科学研究和技术领域。
通过研究磁场对带电粒子所施加的力和影响,我们可以更好地理解圆周运动的原理和特征,也为相关领域的应用提供了基础。
1.2 文章结构:本文共分为五个部分,在引言部分之后是圆周运动基础知识点,接着是磁场对圆周运动的影响,然后是圆周运动相关现象和应用案例分析,最后是结论部分。
1.3 目的:本文旨在总结并解释磁场中圆周运动的相关知识点,并深入探讨其在科学与技术领域中的重要性。
通过该文可以帮助读者更全面地了解圆周运动及其在实际应用中的价值,并为未来相关领域的研究提供参考和启示。
2. 圆周运动基础知识点:2.1 什么是圆周运动圆周运动是指一个物体在磁场或其他外力作用下沿着一个固定半径的圆形路径进行的运动。
在圆周运动中,物体始终保持距离中心点一定距离,并以恒定的速度绕着中心点旋转。
2.2 圆周运动的特征圆周运动具有以下几个特征:- 运动轨迹呈现为一个闭合的圆形路径。
- 物体在每个时刻都受到向心力的作用,该力始终指向圆心。
- 物体在同样时间内走过相等弧长,即角速度恒定。
- 物体沿着切线方向具有线速度,并且线速度大小与距离中心点的距离成正比。
2.3 圆周运动的数学表达方式对于圆周运动,可以通过以下几种数学表达方式描述其特征:- 角速度(ω):表示单位时间内物体绕着圆心转过的角度。
单位通常为弧度/秒。
- 周期(T):表示物体完成一次完整周期所需时间。
周期与角速度存在反比关系,即T = 2π/ω。
- 频率(f):表示单位时间内物体完成的周期数。
频率与角速度存在正比关系,即f = ω/2π。
- 线速度(v):表示物体在圆周运动中在切线方向上运动的速度。
线速度与角速度和半径之间存在关系,即v = ωr。
以上是圆周运动基础知识点的概述,了解这些知识有助于理解后续关于磁场对圆周运动的影响以及相关现象和应用案例的内容。
带电粒子在磁场中做圆周运动的分析方法湖北省郧西县第二中学王兴青带电粒子在有界、无界磁场中的运动类试题在高考试题中出现的几率几乎为l00%,涉及临界状态的推断、轨迹图象的描绘等。
试题综合性强、分值大、类型多,能力要求高,有较强的选拔功能,故平时学习时应注意思路和方法的总结。
解答此类问题的基本规律是“四找”:找圆心、找半径、找周期或时间、找几何关系。
一、知识点:若v⊥B,带电粒子在垂直于磁感线的平面内以入射速度v做匀速圆周运动,如右图所示。
1、轨道半径带电粒子在磁场中受到的洛伦兹力: F=qvB粒子做匀速圆周运动的向心力:v2F向=mrv2粒子受到的洛伦兹力提供向心力: qvB=mrm v所以轨道半径公式: r=Bq带电粒子在匀强磁场中做匀速圆周运动的半径跟粒子的运动速率成正比.速率越大.轨道半径也越大.2、周期由r=Bqm v 和T=v r π2得:T= qB m π2 带电粒子在匀强磁场中做匀速圆周运动的周期T 跟轨道半径r 和运动速度v 无关.二、带电粒子在磁场中做圆周运动的分析方法1、圆心的确定带电粒子进入一个有界磁场后的轨道是一段圆弧,如何确定圆心是解决问题的前提,也是解题的关键。
首先,应有一个最基本的思路:即圆心一定在与速度方向垂直的直线上。
在实际问题中圆心位置的确定极为重要,通常有四种情况:(1)已知入射方向和出射方向,通过入射点和出射点分别作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图l 所示,图中P 为入射点,M 为出射点)(2)已知入射方向和出射点的位置时,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心(如图2所示,P为入射点,M 为出射点)。
(3)两条弦的中垂线:如图3所示,带电粒子在匀强磁场中分别经过0、A 、B 三点时,其圆心O ’在OA 、OB 的中垂线的交点上. (4)已知入射点、入射方向和圆周的一条切线:如图4所示,过入射点A 做v 垂线A0.延长v 线与切线CD 交于C 点,做∠ACD 的角平分线交A0于0点,0点即为圆心,求解临界问题常用。
匀强磁场中带电粒子运动半径计算公式1.概述在物理学中,磁场是一种十分重要的物理现象,它对带电粒子的运动轨迹有着重要影响。
当带电粒子穿过均匀磁场时,会受到洛伦兹力的作用而产生弯曲的运动轨迹。
在研究带电粒子在磁场中的运动时,运动半径是一个十分重要的物理量,它可以描述带电粒子在磁场中的轨迹大小。
2.洛伦兹力和带电粒子的运动轨迹当带电粒子在磁场中运动时,会受到洛伦兹力的作用。
洛伦兹力的大小和方向分别与带电粒子的电荷、速度以及磁场的强度和方向有关。
具体来说,洛伦兹力的大小可以通过以下公式来计算:\[F = qvBsin\theta\]其中,\(F\)表示洛伦兹力的大小,\(q\)表示带电粒子的电荷,\(v\)表示带电粒子的速度,\(B\)表示磁场的强度,\(\theta\)表示磁场和带电粒子速度的夹角。
根据洛伦兹力的作用,带电粒子在磁场中会产生圆周运动。
为了描述这种圆周运动的大小,引入了运动半径的概念。
3.带电粒子运动半径计算公式带电粒子在磁场中的运动半径可以通过以下公式来计算:\[r = \frac{mv}{qB}\]其中,\(r\)表示运动半径,\(m\)表示带电粒子的质量,\(v\)表示带电粒子的速度,\(q\)表示带电粒子的电荷,\(B\)表示磁场的强度。
4.运动半径计算公式的推导关于带电粒子在磁场中的运动半径计算公式的推导,可以通过牛顿第二定律和洛伦兹力的平衡来进行。
根据牛顿第二定律,带电粒子在磁场中的圆周运动可以描述为:\[F = \frac{mv^2}{r}\]其中,\(F\)表示圆周运动的向心力,\(m\)表示带电粒子的质量,\(v\)表示带电粒子的速度,\(r\)表示运动半径。
将洛伦兹力的大小公式代入上面的式子中,可以得到:\[qBv = \frac{mv^2}{r}\]整理上式可以得出带电粒子运动半径的计算公式:\[r = \frac{mv}{qB}\]这就是带电粒子在磁场中运动半径的计算公式。
带电粒子在磁场中的运动因为洛伦兹力F始终与速度v垂直,即F只改变速度方向而不改变速度的大小,所以运动电荷非平行与磁感线进入匀强磁场且仅受洛伦兹力时,一定做匀速圆周运动,由洛伦磁力提==2/。
带电粒子在磁场中运动问题大致可分两种情况:1. 做供向心力,即F qvB mv R完整的圆周运动(在无界磁场或有界磁场中);2. 做一段圆弧运动(一般在有界磁场中)。
无论何种情况,其关键均在圆心、半径的确定上。
1. 找圆心方法1:若已知粒子轨迹上的两点的速度方向,则可根据洛伦兹力F⊥v,分别确定两点处洛伦兹力F的方向,其交点即为圆心。
方法2:若已知粒子轨迹上的两点和其中一点的速度方向,则可作出此两点的连线(即过这两点的圆弧的弦)的中垂线,再画出已知点v的垂线,中垂线与垂线的交点即为圆心。
2. 求半径圆心确定下来后,半径也随之确定。
一般可运用平面几何知识来求半径的长度。
3. 画轨迹在圆心和半径确定后可根据左手定则和题意画出粒子在磁场中的轨迹图。
4. 应用对称规律带电粒子如果从一直线边界进入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,入射速度方向与出射速度方向与边界的夹角相等,利用这一结论可以轻松画出粒子的轨迹。
临界点是粒子轨迹发生质的变化的转折点,所以只要画出临界点的轨迹就可以使问题得解。
一、由两速度的垂线定圆心例1. 电视机的显像管中,电子(质量为m,带电量为e)束的偏转是用磁偏转技术实现的。
电子束经过电压为U的加速电场后,进入一圆形匀强磁场区,如图1所示,磁场方向垂直于圆面,磁场区的中心为O,半径为r。
当不加磁场时,电子束将通过O点打到屏幕的中心M点。
为了让电子束射到屏幕边缘P,需要加磁场,使电子束偏转一已知角度θ,此时磁场的磁感强度B应为多少?图1解析:如图2所示,电子在匀强磁场中做圆周运动,圆周上的两点a、b分别为进入和射出的点。
做a、b点速度的垂线,交点O1即为轨迹圆的圆心。
图2设电子进入磁场时的速度为v,对电子在电场中的运动过程有=22/eU mv对电子在磁场中的运动(设轨道半径为R)有=2/evB mv R由图可知,偏转角θ与r、R的关系为θ2=r Rtan(/)/联立以上三式解得θ122=(/)/tan(/)B r mU e二、由两条弦的垂直平分线定圆心例2. 如图3所示,有垂直坐标平面的范围足够大的匀强磁场,磁感应强度为B,方向向里。
带电粒子在匀强磁场中的运动一、带电粒子在匀强磁场中的匀速圆周运动1.洛伦兹力的作用效果洛伦兹力只改变带电粒子速度的方向,不改变带电粒子速度的大小,或者说洛伦兹力不对带电粒子做功,不改变粒子的能量。
2.带电粒子的运动规律沿着与磁场垂直的方向射入磁场的带电粒子,在匀强磁场中做匀速圆周运动。
洛伦兹力总与速度方向垂直,正好起到了向心力的作用。
公式:q v B =m v 2rr =m vqBT =2πm qB3.圆心、半径、运动时间的分析思路(1)圆心的确定:带电粒子垂直进入磁场后,一定做圆周运动,其速度方向一定沿圆周的切线方向,因此圆心的位置必是两速度方向垂线的交点,如图(a)所示,或某一速度方向的垂线与圆周上两点连线中垂线的交点,如图(b)所示.(2)运动半径大小的确定:一般先作入射点、出射点对应的半径,并作出相应的辅助三角形,然后利用三角函数求解出半径的大小.(3)运动时间的确定:首先利用周期公式T =2πm qB ,求出运动周期T ,然后求出粒子运动的圆弧所对应的圆心角α,其运动时间t =α2πT .(4)圆心角的确定:①带电粒子射出磁场的速度方向与射入磁场的速度方向间的夹角φ叫偏向角.偏向角等于圆心角即φ=α,如图所示.②某段圆弧所对应的圆心角是这段圆弧弦切角的二倍,即α=2θ.[特别提醒]带电粒子(不计重力)以一定的速度v 进入磁感应强度为B 的匀强磁场时的运动轨迹:(1)当v ∥B 时,带电粒子将做匀速直线运动.(2)当v ⊥B 时,带电粒子将做匀速圆周运动.(3)当带电粒子斜射入磁场时,带电粒子将沿螺旋线运动.4、带电粒子在三类有界磁场中的运动轨迹特点(1)直线边界:进出磁场具有对称性。
(2)平行边界:存在临界条件。
(3)圆形边界:沿径向射入必沿径向射出。
【例题1】如图所示,一束电荷量为e 的电子以垂直于磁场方向(磁感应强度为B )并垂直于磁场边界的速度v 射入宽度为d 的磁场中,穿出磁场时速度方向和原来射入方向的夹角为θ=60°.求电子的质量和穿越磁场的时间.答案:23dBe 3v 23πd 9v解析:过M 、N 作入射方向和出射方向的垂线,两垂线交于O 点,O 点即电子在磁场中做匀速圆周运动的圆心,过N 作OM 的垂线,垂足为P ,如图所示.由直角三角形OPN 知,电子的轨迹半径r =d sin 60°=233d ①由圆周运动知e v B =m v 2r②解①②得m =23dBe 3v.电子在无界磁场中运动周期为T =2πeB ·23dBe 3v =43πd 3v.电子在磁场中的轨迹对应的圆心角为θ=60°,故电子在磁场中的运动时间为t =16T =16×43πd 3v =23πd 9v.带电粒子在磁场中的圆周运动问题处理方法(1)定圆心:圆心一定在与速度方向垂直的直线上,也在弦的中垂线上,也是圆的两个半径的交点.(2)求半径的两种方法:一是利用几何关系求半径,二是利用r =m v Bq 求半径.(3)求时间:可以利用T =2πr v 和t =Δl v 求时间,也可以利用t =θ2πT 求时间.【例题2】如图所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带电粒子以速度v从A 点沿直径AOB 方向射入磁场,经过t 时间从C 点射出磁场,OC 与OB 成60°角。
带电粒子在磁场中的运动半径
当带电粒子进入一个磁场时,它会受到洛伦兹力的作用,这个力会使粒子在磁场中做圆周运动。
这种运动的半径可以用以下公式来描述:
r = mv / (|q|B)。
其中,r是运动半径,m是粒子的质量,v是粒子的速度,q是粒子的电荷量,B是磁场的磁感应强度。
这个公式揭示了带电粒子在磁场中运动半径与粒子的质量、速度、电荷量以及磁场的强度之间的关系。
从这个公式可以看出,当粒子的速度增大或者磁场的强度增大时,运动半径也会增大;而当粒子的质量增大时,运动半径则会减小。
带电粒子在磁场中的运动半径不仅仅是一个理论概念,它还有着许多实际的应用。
例如,在粒子加速器中,科学家们需要精确地控制带电粒子的运动轨迹,从而需要准确地计算出粒子在磁场中的运动半径。
另外,在核磁共振成像技术中,也需要利用带电粒子在磁场中的运动规律来获取图像信息。
总之,带电粒子在磁场中的运动半径是一个重要的物理概念,它不仅有着深刻的理论意义,而且在许多实际应用中都发挥着重要作用。
对这一概念的深入理解和研究,将有助于推动物理学和相关领域的发展。
磁场中圆周运动动量定理摘要:一、磁场中圆周运动的基本概念1.粒子在磁场中做圆周运动的条件2.圆周运动的特征二、动量定理在磁场中圆周运动中的应用1.动量的定义及计算方法2.动量在磁场中圆周运动中的变化三、磁场中圆周运动的周期公式1.周期公式的推导过程2.周期公式的应用四、磁场中圆周运动的相关问题1.向心力的来源2.磁场中圆周运动的速度与磁感应强度的关系正文:一、磁场中圆周运动的基本概念在磁场中,当带电粒子受到洛伦兹力作用时,会做圆周运动。
这种运动具有以下特征:粒子在磁场中的速度方向始终与磁场方向垂直,因此速度的大小不变,但方向会发生改变。
由于动量是矢量,速度方向的改变意味着动量的改变,所以动量的改变量并不为0。
二、动量定理在磁场中圆周运动中的应用动量定理是用来描述物体动量变化的物理定律。
在磁场中,带电粒子受到洛伦兹力作用,其动量会发生改变。
根据动量定理,动量的变化量等于作用在粒子上的力的冲量。
在磁场中,洛伦兹力提供向心力,使粒子做圆周运动。
因此,可以通过动量定理来分析粒子在磁场中圆周运动的性质。
三、磁场中圆周运动的周期公式带电粒子在匀强磁场中做匀速圆周运动的周期公式为:T = 2πm/Bq,其中m为粒子质量,B为磁感应强度,q为粒子的电量。
根据这个公式,可以计算出粒子在磁场中圆周运动的周期。
需要注意的是,周期与运动速度v无关,这是磁场中圆周运动的一个特性。
四、磁场中圆周运动的相关问题在磁场中,圆周运动的向心力来源于洛伦兹力。
洛伦兹力始终与速度方向垂直,因此不会对粒子做功。
带电粒子在磁场中匀速圆周运动的时间是一个物理学中的重要问题,涉及到磁场、带电粒子的运动规律等多个方面的知识。
本文将从相关概念的解释、物理公式的推导、实验验证等方面细致地分析带电粒子在磁场中做匀速圆周运动的时间问题,以期为读者深入理解这一问题提供一定的帮助。
一、带电粒子在磁场中匀速圆周运动的基本概念1.1 磁场的基本概念磁场是指物质中存在的与电流或磁矩相关的物理量。
处于磁场中的带电粒子会受到一个叫洛伦兹力的作用力而产生运动。
1.2 带电粒子在磁场中的运动规律处于磁场中的带电粒子会受到一个洛伦兹力,导致其做匀速圆周运动。
二、带电粒子在磁场中匀速圆周运动时间的物理公式推导2.1 带电粒子在磁场中受到的洛伦兹力带电粒子在磁场中受到的洛伦兹力可以表示为:F = qvBsinθ,其中q 为带电粒子的电荷量,v为带电粒子的速度,B为磁感应强度,θ为带电粒子速度方向与磁感应强度方向之间的夹角。
2.2 圆周运动的基本物理公式带电粒子在磁场中做匀速圆周运动的时间问题,可以通过圆周运动的基本公式来推导。
圆周运动的基本公式为:v = 2πr / T,其中v为速度,r为半径,T为运动周期。
2.3 带电粒子在磁场中做匀速圆周运动的时间推导通过将带电粒子在磁场中受到的洛伦兹力与圆周运动的基本公式相结合,可以得到带电粒子在磁场中做匀速圆周运动的时间公式:T = 2πm / (qB),其中m为带电粒子的质量,q为带电粒子的电荷量,B 为磁感应强度。
三、实验验证带电粒子在磁场中匀速圆周运动时间的方法3.1 实验装置为了验证带电粒子在磁场中做匀速圆周运动的时间,可以搭建一个简单的实验装置。
实验装置主要包括磁铁、电源、导线等。
3.2 实验步骤首先在实验装置中生成一个磁场,然后将带电粒子引入磁场中,观察带电粒子是否做匀速圆周运动,并测量带电粒子在磁场中做匀速圆周运动的时间。
3.3 实验结果分析通过实验数据的分析,可以验证带电粒子在磁场中做匀速圆周运动的时间公式的准确性,从而进一步验证相关理论。
第 1 页 共 1 页 带电粒子在匀强磁场中的圆周运动
1.匀速圆周运动的规律
若v ⊥B ,带电粒子仅受洛伦兹力作用,在垂直于磁感线的平面内以入射速度v 做匀速圆周运动.
(1)基本公式:
q v B =m v 2R
(2)半径R =m v Bq
(3)周期T =2πR v =2πm qB
2.圆心的确定
(1)已知入射点、出射点、入射方向和出射方向时,可通过入射点和出射点分别作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图1甲所示,P 为入射点,M 为出射点).
图1
(2)已知入射方向、入射点和出射点的位置时,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨迹的圆心(如图乙所示,P 为入射点,M 为出射点).
3.半径的确定
可利用物理学公式或几何知识(勾股定理、三角函数等)求出半径大小.
4.运动时间的确定
粒子在磁场中运动一周的时间为T ,当粒子运动的圆弧所对应的圆心角为θ时,其运动时间
表示为t =θ2π
T (或t =θR v ).。
带电粒子在圆形磁场区域的运动规律处理带电粒子在匀强磁场中的圆周运动问题,关键就是综合运用平面几何知识与物理知识。
最重要的是,画出准确、清晰的运动轨迹。
对于带电粒子在圆形磁场区域中做匀速圆周运动,有下面两个规律,可以帮助大家准确、清晰画出带电粒子的圆周运动的轨迹。
规律一:带电粒子沿着半径方向射入圆形边界内的匀强磁场,经过一段匀速圆周运动偏转后,离开磁场时射出圆形区域的速度的反向延长通过边界圆的圆心。
规律二:入射速度方向(不一定指向区域圆圆心)与轨迹圆弧对应的弦的夹角为θ(弦切角),则出射速度方向与入射速度方向的偏转角为2θ,轨迹圆弧对应的圆心角也为θ2,并且初末速度方向的交点、轨迹圆的圆心、区域圆的圆心都在弧弦的垂直平分线上。
以上两个规律,利用几何知识很容易证明,在解题时,可以直接应用,请看下面的两个例子:例1如图1所示,在平面坐标系xoy 内,第Ⅱ、Ⅲ象限内存在沿y 轴正方向的匀强电场,第I 、Ⅳ象限内存在半径为L的圆形匀强磁场,磁场圆心在M (L ,0)点,磁场方向垂直于坐标平面向外.一带正电粒子从第Ⅲ象限中的Q (一2L ,一L )点以速度0v 沿x 轴正方向射出,恰好从坐标原点O 进入磁场,从P (2L ,O )点射出磁场.不计粒子重力,求: (1)电场强度与磁感应强度大小之比 (2)粒子在磁场与电场中运动时间之比 解析:(1)设粒子的质量和所带正电荷分别为m 和q ,粒子在电场中运动,由平抛运动规律得:102t v L =2121at L =,又牛顿运动定律得:ma qE = 粒子到达O 点时沿y +方向分速度为0v at v y ==,1tan 0==v v y α 故045=α,粒子在磁场中的速度为02v v =,应用规律二,圆心角为:0902=α,画出的轨迹如图2所示,由rm v Bqv 2=,由几何关系得L r 2=得:2v B E = (2)在磁场中运动的周期vrT π2=粒子在磁场中运动时间为02241v L T t π==图2图1得412π=t t 例2如图3所示,真空中有一以(r ,O )为圆心,半径为r 的圆柱形匀强磁场区域,磁场的磁感应强度大小为B ,方向垂直于纸面向里,在y ≤一r 的范围内,有方向水平向右的匀强电场,电场强度的大小为E 。
带电粒子在匀强磁场中的圆周运动由于带电粒子在匀强磁场中的受力情况特殊,其运动轨迹呈现为圆周运动。
本文将详细介绍带电粒子在匀强磁场中的圆周运动原理及相关公式。
根据洛伦兹力的作用,当带电粒子运动时,受到匀强磁场的力会使其偏离直线路径,而呈现出圆周运动。
该力的方向垂直于带电粒子的速度方向与磁场方向,符合右手螺旋定则。
由于受力方向始终向心,因此粒子在磁场中做圆周运动。
带电粒子在匀强磁场中的圆周运动可以通过以下公式进行描述:1.某物质在匀强磁场中的圆周运动半径:$$r=\frac{mv}{|qB|}$$其中,$r$为圆周运动半径,$m$为粒子质量,$v$为粒子速度,$q$为粒子电荷量,$B$为磁感应强度。
2.圆周运动的周期:$$T=\frac{2\pi m}{|q|B}$$其中,$T$为圆周运动的周期,$m$为粒子质量,$q$为粒子电荷量,$B$为磁感应强度。
3.圆周运动的频率:$$f=\frac{1}{T}=\frac{|q|B}{2\pi m}$$其中,$f$为圆周运动的频率,$T$为圆周运动的周期,$q$为粒子电荷量,$B$为磁感应强度,$m$为粒子质量。
从以上公式可以看出,带电粒子的质量、速度、电荷量以及磁感应强度都会对其圆周运动的半径、周期和频率产生影响。
在匀强磁场中,不同的带电粒子具有不同的圆周运动轨迹。
根据质量和电荷量的不同,带电粒子的圆周运动半径、周期和频率都会有所差异。
因此,通过对带电粒子在匀强磁场中的圆周运动进行观测和测量,可以对粒子的性质进行研究和分析。
带电粒子在匀强磁场中的圆周运动在物理学和实际应用中具有重要的意义。
它可以被应用于粒子物理实验、质谱仪、核磁共振等领域。
了解带电粒子在匀强磁场中的圆周运动的原理及相关公式,有助于理解和应用这些技术和方法。
总结了带电粒子在匀强磁场中的圆周运动原理及相关公式,希望对读者对该主题有一个清晰的了解。
高中物理-“带电粒子在磁场中的圆周运动”解析“带电粒子在磁场中的圆周运动”解析处理带电粒子在匀强磁场中的圆周运动问题,其本质是平面几何知识与物理知识的综合运用。
重要的是正确建立完整的物理模型,画出准确、清晰的运动轨迹。
下面我们从基本问题出发对“带电粒子在磁场中的圆周运动”进行分类解析。
一、“带电粒子在磁场中的圆周运动”的基本型问题找圆心、画轨迹是解题的基础。
带电粒子垂直于磁场进入一匀强磁场后在洛仑兹力作用下必作匀速圆周运动,抓住运动中的任两点处的速度,分别作出各速度的垂线,则二垂线的交点必为圆心;或者用垂径定理及一处速度的垂线也可找出圆心;再利用数学知识求出圆周运动的半径及粒子经过的圆心角从而解答物理问题。
【例1】图示在y<0的区域内存在匀强磁场,磁场方向垂直于xy平面并指向纸面外,磁场的磁感应强度为B;一带正电的粒子以速度V从O点射入磁场中,入射方向在xy平面内,与x轴正方向的夹角为θ;若粒子射出磁场的位置与O点的距离为L。
求①该粒子的电荷量和质量比;②粒子在磁场中的运动时间。
分析:①粒子受洛仑兹力后必将向下偏转,过O点作速度V的垂线必过粒子运动轨迹的圆心O’;由于圆的对称性知粒子经过点P时的速度方向与x轴正方向的夹角必为θ,故点P作速度的垂线与点O处速度垂线的交点即为圆心O’(也可以用垂径定理作弦OP的垂直平分线与点O处速度的垂线的交点也为圆心)。
由图可知粒子圆周运动的半径由有。
再由洛仑兹力作向心力得出粒子在磁场中的运动半径为故有,解之。
②由图知粒子在磁场中转过的圆心角为,故粒子在磁场中的运动时间为。
【例2】如图以ab为边界的二匀强磁场的磁感应强度为B1=2B2,现有一质量为m带电+q的粒子从O点以初速度V沿垂直于ab 方向发射;在图中作出粒子。