带电粒子在圆形磁场中的偏转分析
- 格式:ppt
- 大小:1.68 MB
- 文档页数:44
带电粒子在磁场中的运动是一个充满深度和广度的问题,涉及到物理学中的许多重要概念和原理。
从宏观到微观,从经典到量子,这一主题的探讨可以帮助我们更深入地理解粒子在磁场中的行为,以及相关的物理规律。
一、带电粒子在磁场中的受力和运动1.受力分析当带电粒子进入磁场时,它会受到洛伦兹力的作用,这个力会使粒子发生偏转,并导致其在磁场中运动。
洛伦兹力的大小和方向取决于粒子的电荷大小、速度方向以及磁场的强度和方向。
2.运动轨迹在磁场中,带电粒子的运动轨迹通常是圆形或螺旋形的,具体取决于粒子的速度和磁场的强度。
这种运动旋转圆问题是研究带电粒子在磁场中行为的重要内容之一。
二、经典物理学对带电粒子运动的描述1.运动方程根据洛伦兹力和牛顿定律,可以建立带电粒子在磁场中的运动方程。
通过对这个方程的分析,可以得到粒子在磁场中的运动轨迹和运动规律。
2.圆周运动对于静止的带电粒子,它会在磁场中做匀速圆周运动;而对于具有初始速度的带电粒子,它会做螺旋运动。
这种经典的描述为我们理解带电粒子在磁场中的运动提供了重要参考。
三、量子物理学对带电粒子运动的描述1.量子力学效应在微观尺度下,带电粒子在磁场中的运动会受到量子力学效应的影响,比如磁量子效应和磁旋效应等。
这些效应对带电粒子的运动规律产生重要影响,需要通过量子力学来描述。
2.自旋和磁矩带电粒子除了具有电荷和质量外,还具有自旋和磁矩。
这些特性在磁场中会影响粒子的运动,使得其运动规律更加复杂和微妙。
四、个人观点和理解对于带电粒子在磁场中的运动旋转圆问题,我认为它不仅具有重要的理论意义,还在许多实际应用中发挥着关键作用。
比如在核磁共振成像技术中,正是利用了带电粒子在外加磁场中的运动规律,实现了对人体组织和器官进行高分辨率成像。
深入理解这一问题,不仅可以帮助我们认识自然界的规律,还有助于科学技术的发展和进步。
总结回顾一下,带电粒子在磁场中的运动旋转圆问题是一个充满深度和广度的物理学问题,涉及到经典物理学和量子物理学的交叉领域。
带电粒子在电磁场中运动的应用1、电视机电视机的显像管中,电子束的偏转是用磁偏转技术实现的。
电子束经过电压为U 的加速电场后,进入一圆形匀强磁场区。
磁场方向垂直于圆面。
磁场区的中心为O ,半径为r 。
当不加磁场时,电子束将通过O 点而打到屏幕的中心M 点。
为了让电子束射到屏幕边缘P ,需要加磁场,使电子束转一已知角度θ,此时磁场的磁感应强度B 应为多少?解析: 电子在磁场中沿圆弧运动,如图所示,圆心为O ′,半径为R 。
以v 表示电子进入磁场时的速度,m 、e 分别表示电子的质量和电量,则221mv eU = R mv evB 2= Rr tg =2θ 由以上各式解得 221θtg e mU r B = 2、电磁流量计电磁流量计广泛应用于测量可导电流体(如污水)在管中的流量(在单位时间内通过管内横截面的流体的体积)。
为了简化,假设流量计是如图所示的横截面为长方形的一段管道,其中空部分的长、宽、高分别为图中的a 、b 、c ,流量计的两端与输送液体的管道相连接(图中虚线)。
图中流量计的上下两面是金属材料,前后两面是绝缘材料,现于流量计所在处加磁感强度为B 的匀强磁场,磁场方向垂直于前后两面。
当导电液体稳定地流经流量计时,在管外将流量计上、下两表面分别与一串接了电阻R 的电流表的两端连接,I 表示测得的电流值。
已知流体的电阻率为ρ,不计电流表的内阻,则可求得流量为 A. )(ac bR B I ρ+ B. )(c b aR B I ρ+ C. )(b a cR B I ρ+ D. )(abc R B I ρ+ 答案: A3、质谱仪下图是测量带电粒子质量的仪器工作原理示意图。
设法是某有机化合物的气态分子导入图中所示的容器A 中,使它受到电子束轰击,失去一个电子变成正一价的分子离子。
分子离子从狭缝s 1以很小的速度进入电压为U 的加速电场区(初速不计),加速后,再通过狭缝s 2、s 3射入磁感强度为B 的匀强磁场,方向垂直于磁场区的界面PQ 。
带电粒子在圆形有界磁场中运动的总结结论一、沿径向射入必沿径向射出【例1】如图1所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带电粒子以速度v 从A 点沿直径AOB 方向射入磁场,经过Δt 时间从C 点射出磁场,OC 与OB 成60°角。
现将带电粒子的速度变为v /3,仍从A 点沿原方向射入磁场,不计重力,则粒子在磁场中的运动时间变为()A. 12Δt B. 2Δt C. 13Δt D. 3Δt 解析:带电粒子在匀强磁场中做匀速圆周运动,由洛伦兹力提供向心力,根据牛顿第二定律,有qvB =m v 2r故粒子第一次通过磁场区时的半径为r =mv qB圆弧AC 所对应的圆心角∠AO 'C =60°,粒子经过的 Δt =60°360°T T 为粒子在匀强磁场中运动的周期,大小为T =2em qB,与粒子速度大小无关。
当粒子速度减小为v 3后,根据r =mv qB 知其在磁场中的轨道半径变为r 3,粒子将从D 点射出,根据图2中几何关系得圆弧AD 所对应的圆心角∠AC 'D =120°,经历的时间为Δt =60°360°T =2Δt由此可知选项B正确。
答案:B结论二、电粒子从圆形匀强磁场区域圆周上一点沿垂直于磁场方向进入磁场,当带电粒子做圆周运动的轨道半径与圆形磁场区域半径相同时,所有带电粒子都以平行于磁场区域圆周上入射点的切线射出磁场;相反,若带电粒子以相互平行的速度射入磁场时,这些带电粒子在磁场中做圆周运动后,将会聚于磁场区域圆周上一点,该点的切线与带电粒子射入磁场时的速度方向平行。
【例2】如图3所示,在xOy坐标系中,以(r,O)为圆心、r为半径的圆形区域内存在匀强磁场,磁场的磁感应强度大小为B,方向垂直于纸面向里。
在y>r的足够大的区域内,存在沿Y轴负方向的匀强电场,场强大小为E.从O点以相同速率向不同方向发射质子,质子的运动轨迹均在纸面内,且质子在磁场中运动的轨迹半径也为r。
带电粒子在磁场中做圆周运动的分析方法湖北省郧西县第二中学王兴青带电粒子在有界、无界磁场中的运动类试题在高考试题中出现的几率几乎为l00%,涉及临界状态的推断、轨迹图象的描绘等。
试题综合性强、分值大、类型多,能力要求高,有较强的选拔功能,故平时学习时应注意思路和方法的总结。
解答此类问题的基本规律是“四找”:找圆心、找半径、找周期或时间、找几何关系。
一、知识点:若v⊥B,带电粒子在垂直于磁感线的平面内以入射速度v做匀速圆周运动,如右图所示。
1、轨道半径带电粒子在磁场中受到的洛伦兹力: F=qvB粒子做匀速圆周运动的向心力:v2F向=mrv2粒子受到的洛伦兹力提供向心力: qvB=mrm v所以轨道半径公式: r=Bq带电粒子在匀强磁场中做匀速圆周运动的半径跟粒子的运动速率成正比.速率越大.轨道半径也越大.2、周期由r=Bqm v 和T=v r π2得:T= qB m π2 带电粒子在匀强磁场中做匀速圆周运动的周期T 跟轨道半径r 和运动速度v 无关.二、带电粒子在磁场中做圆周运动的分析方法1、圆心的确定带电粒子进入一个有界磁场后的轨道是一段圆弧,如何确定圆心是解决问题的前提,也是解题的关键。
首先,应有一个最基本的思路:即圆心一定在与速度方向垂直的直线上。
在实际问题中圆心位置的确定极为重要,通常有四种情况:(1)已知入射方向和出射方向,通过入射点和出射点分别作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图l 所示,图中P 为入射点,M 为出射点)(2)已知入射方向和出射点的位置时,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心(如图2所示,P为入射点,M 为出射点)。
(3)两条弦的中垂线:如图3所示,带电粒子在匀强磁场中分别经过0、A 、B 三点时,其圆心O ’在OA 、OB 的中垂线的交点上. (4)已知入射点、入射方向和圆周的一条切线:如图4所示,过入射点A 做v 垂线A0.延长v 线与切线CD 交于C 点,做∠ACD 的角平分线交A0于0点,0点即为圆心,求解临界问题常用。
带电粒子在磁场中偏转的求解策略带电粒子在磁场中偏转问题是历年高考的重点问题,同时也是热点问题。
总结考试中的诸多失误,集中在对这类问题的解法缺乏规律性的认识。
为此本文就求解这类题型的某些规律归纳如下。
一、基本思想因为洛伦兹力F始终与速度v垂直,即F只改变速度方向而不改变速度的大小,所以运动电荷垂直磁感线进入匀强磁场且仅受洛伦兹力时,一定做匀速圆周运动,由洛伦磁力提供向心力,即F qvB mv R==2/。
带电粒子在磁场中运动问题大致可分两种情况:1. 做完整的圆周运动(在无界磁场或有界磁场中);2. 做一段圆弧运动(一般在有界磁场中)。
无论何种情况,其关键均在圆心、半径的确定上。
二、思路和方法1. 找圆心方法1:若已知粒子轨迹上的两点的速度方向,则可根据洛伦兹力F⊥v,分别确定两点处洛伦兹力F的方向,其交点即为圆心。
方法2:若已知粒子轨迹上的两点和其中一点的速度方向,则可作出此两点的连线(即过这两点的圆弧的弦)的中垂线,再画出已知点v的垂线,中垂线与垂线的交点即为圆心。
方法3:若已知粒子轨迹上的两点和能求得的半径R,则可作出此两点连线的中垂线,从连线的端点到中垂线上的距离为R的点即为圆心。
方法4:若已知粒子入射方向和出射方向,及轨迹半径R,但不知粒子的运动轨迹,则可作出此两速度方向夹角的平分线,在角平分线上与两速度方向直线的距离为R的点即为圆心。
方法5:若已知粒子圆周运动轨迹上的两条弦,则两条弦的中垂线的交点即为圆心。
2. 求半径圆心确定下来后,半径也随之确定。
一般可运用平面几何知识来求半径的长度。
3. 画轨迹在圆心和半径确定后可根据左手定则和题意画出粒子在磁场中的轨迹图。
4. 应用对称规律从一边界射入的粒子,若从同一边界射出时,则速度与边界的夹角相等;在圆形磁场区域内,若粒子沿径向射入,则必沿径向射出。
三、实例分析例1. 如图1所示,两电子沿MN 方向射入两平行直线间的匀强磁场,并分别以v v 12、的速度射出磁场。
带电粒子在圆形匀强磁场中的运动规律作者:张敏来源:《知识窗·教师版》2020年第08期摘要:带电粒子在匀强磁场中的运动是高中物理常见的问题,其中有界磁场是经常考查的知识点,也是学生学习的难点。
究其根源,是学生不理解其中的规律。
关键词:圆形匀强磁场; ;軌迹圆; ;磁场圆; ;磁发散; ;磁聚焦处理带电粒子在匀强磁场中的圆周运动问题,本质是平面几何知识与物理知识的综合运动。
带电粒子在圆形匀强磁场中的运动,主要是从带电粒子射入磁场的方向是否沿着磁场圆的半径、轨迹圆半径与磁场圆半径的大小关系这两个方面入手研究。
一、入射方向沿半径方向射入带电粒子入射速度方向是沿着圆形匀强磁场的半径射入,则出射速度方向的反向延长线必过区域圆的圆心,也就是沿着径向入,必沿着径向出。
如图1所示,设正离子从磁场区域的b 点射出,射出速度方向的延长线与入射方向的直径交点为O’。
正离子在磁场中运动的轨迹为一段圆弧,该轨迹圆弧对应的圆心O’位于初、末速度方向垂线的交点,也在弦ab的垂直平分线上,O’b与区域圆相切,弦ab既是轨迹圆弧对应的弦,又是区域圆的弦。
由此可知,OO’就是弦ab的垂直平分线,O点就是磁场区域圆的圆心。
二、入射方向不沿半径方向射入入射速度方向(不一定指向磁场圆的圆心)与轨迹圆弧对应的弦的夹角为θ(弦切角),则出射速度方向与入射速度方向的偏转角为2θ,轨迹圆强对应的圆心角也为2θ,并且初末速度方向的交点,轨迹圆的圆心,磁场圆的圆心都在孤弦的要直平分线上。
如图2所示,带电粒子从a点射入匀强磁场区城,初速度方向不指向区域圆圆心,若出射点为b,轨迹圆的圆心O’在初速度v0方向的垂线和弦ab的垂直平分线的交点上,入射速度方向与该中垂线的交点为d,可以证明:出射速度方向的反向延长线也过d点,O、d、O’都在弦ab的垂直平分线上。
三、比较磁场圆的半径与轨迹圆的半径大小关系1.当轨迹圆的半径与磁场圆的半径相等时,存在两条特殊规律磁发散是指带电粒子从圆形有界磁场边界上某点射入磁场,若圆周运动的半径与磁场半径相同,则无论在磁场内的速度方向如何,则粒子的出射速度方向与圆形磁场上入射点的切线方向平行,如图3所示。
带电粒子在磁场中的活动例1.如图所示,在宽度为d磁感应强度为B.程度向外的匀强磁场矩形区域内,一带电粒子以初速度v入射,粒子飞出时偏离原倾向60°,运用以上数据可求出下列物理量中的哪几个变式.若带电粒子以初速度v从A点沿直径入射至磁感应强度为B,半径为R 的圆形磁场,粒子飞出时偏离原倾向60°,运用以上数据可求出下列物理量中的哪几个运用1.如图所示,长方形 abcd 长 ad = ,宽 ab = , O.e分离是 ad.bc 的中点,以 ad 为直径的半圆内有垂直纸面向里的匀强磁场(鸿沟上无磁场),磁感应强度 B=0.25T .一群不计重力.质量 m =3 ×10-7 kg .电荷量 q =+2×10-3C 的带电粒子以速度v =5×l02m/s 沿垂直 ad 倾向且垂直于磁场射入磁场区域 ( )A.从 Od 边射入的粒子,出射点全体散布在 Oa 边 B.从 aO边射入的粒子,出射点全体散布在 ab 边C.从Od 边射入的粒子,出射点散布在Oa 边和 ab 边D.从aO边射入的粒子,出射点散布在ab 边和bc边运用2.在以坐标原点O为圆心.半径为r的圆形区域内,消失磁感应强度大小为B.倾向垂直于纸面向里的匀强磁场,如图10所示.一个不计重力的带电粒子从磁场鸿沟与x轴的交点A处以速度v沿-x倾向射入磁场,正好从磁场鸿沟与y轴的交点C处沿+y倾向飞出.(1)请断定该粒子带何种电荷,并求出其比荷q/m;(2)若磁场的倾向和地点空间规模不变,而磁感应强度的大小变成B′,该粒子仍从A处以雷同的速度射入磁场,但飞出磁场时的速度倾向相对于入射倾向转变了60°角,求磁感应强度B′多大?此次粒子在磁场中活动所用时光t是若干?例2.如图所示,一束电子流以不合速度,由鸿沟为圆形的匀强磁场的鸿沟上一点A,沿直径倾向射入磁场,已知磁感应强度倾向垂直圆平面,则电子在磁场中活动时:()A轨迹长的活动时光长B速度大的活动时光长C偏转角大的活动时光长D速度为某一值时不克不及穿出该磁场变式.如右图所示,直角三角形ABC中消失一匀强磁场,比荷雷同的两N O M P Q B B N O M P Q BB 个粒子沿AB 倾向射入磁场,分离从AC 边上的P.Q 两点射出,则例3.如右图所示,在半径为R 的圆形区域内充满磁感应强度为B 的匀强磁场,MN 是一竖直放置的感光板.从圆形磁场最高点P 垂直磁场射入大量的带正电.电荷量为q.质量为m.速度为v 的粒子,不斟酌粒子间的互相感化力,关于这些粒子的活动以下说法准确的是A.只要对着圆心入射,出射后均可垂直打在MN 上B.对着圆心入射的粒子,其出射倾向的反向延伸线不必定过圆心C.对着圆心入射的粒子,速度越大在磁场中经由过程的弧长越长,时光也越长m qBR v /=,沿不合倾向入射的粒子出射后均可垂直打在MN 上(出射速度有什么关系?)若雷同速度平行经由p 点的直径进入磁场,出射点又有什么纪律? 例4.如图所示,半径为R 的绝缘筒中为匀强磁场区域,磁感强度为B,磁感线垂直纸面向里.一个质量为m.电量为q 的正离子,以速度v 从圆筒上C 孔处沿直径倾向射入筒内,假如离子与圆筒碰撞两次(碰撞时不损掉能量,且碰撞所用的时光不计),从C 孔飞出,则离子在磁场中活动的时光为:( )A.v R π2B.v R π3C.qB m πD.qBm π32 拓展:一个质量为m.电量为q 的离子,以速度v 从圆筒上C 孔处沿直径倾向射入筒内,从R 孔飞出,则离子在磁场中活动的时光为( )例5.如图所示,直线MN 下方无磁场,上方空间消失一个匀强磁场,其鸿沟线是半径为R 的半圆,磁场倾向相垂直于纸面,磁感应强度大小为B.现有一质量为m.电荷量为q 的带负电微粒从P 点沿半径倾向向左侧射出,不计微粒的重力.P.O.Q 三点均在直线MN 上.(1)微粒在磁场中活动的周期?(2)可否回到Q 点?(3)若在半圆形内加一磁场强度也为B 的磁场,可否回到Q 点,若能请画出粒子的活动轨迹(至少三种).(4)小结:圆形磁场区域中速度与轨迹的几何特色? 运用1:如图所示,直线MN 下方无磁场,上方空间消失两个匀强磁场Ⅰ和Ⅱ,其分界限是以O 为圆心.半径为R 的半圆弧,Ⅰ和Ⅱ的磁场倾向相反且垂直于纸面,磁感应强度大小都为B.现有一质量为m.电荷量为q 的带负电微粒从P 点沿PM 倾向向左侧射出不计微粒的重力.P.O.Q 三点均在直线MN 上,求:(1)若微粒只在磁场Ⅰ中活动,可否到达Q 点? (2)画出可以或许到达Q 点的离子活动轨迹(至少二种) (3)求出可以或许到达Q 点的离子的最大速度.运用2.如图所示,直线MN 下方无磁场,上方空间消失两个匀强磁场,其分界限B 是半径为R 的半圆,两侧的磁场倾向相反且垂直于纸面,磁感应强度大小都为B .现有一质量为m.电荷量为q 的带负电微粒从P 点沿半径倾向向左侧射出,最终打到Q 点,不计微粒的重力.求:(1)微粒在磁场中活动的周期.(2)从P 点到Q 点,微粒的活动速度大小及活动时光.(3)若向里磁场是有界的,散布在以O点为圆心.半径为R 和2R 的两半圆之间的区域,上述微粒仍从P 点沿半径倾向向左侧射出,且微粒仍能到达Q 点,求其速度的最大值.3.结论:带电粒子进入圆形磁场,,中垂线经由两圆的圆心,课后演习1.在直径为d 的圆形区域内消失着平均磁场,磁感应强度为B,磁场倾向垂直于圆面指向纸外.一电荷量为q.质量为m 的带正电粒子,从磁场区域的一条直径AC 上的A 点沿纸面射入磁场,其速度倾向与AC 成︒=15α角,如图所示.若此粒子在磁场区域活动进程,速度的倾向一共转变了90º.重力可疏忽不计,求:(1)该粒子在磁场区域内活动所用的时光?(2)该粒子射入时的速度大小?3.如图,半径为R=10cm 的圆形匀强磁场,区域鸿沟跟y 轴相切于坐标原点O,磁感应强度B = 0.332T,倾向垂直纸面向里,在O 处有一放射源S,可沿纸面向各个倾向射出速度均为v=3.2×106m/s 的α粒子,已知α粒子质量为m=6.64×10-27kg,电荷量q=3.2×10-19C.(1)画出α粒子经由过程磁场空间做圆周活动的圆心点的连线线外形;(2)求出α粒子经由过程磁场的最大倾向角;(3)再以过O 并垂直纸面的直线为轴扭转磁场区域,能使穿过磁场区域且偏转角最大的α粒子射出磁场后,沿y 轴正倾向活动,则圆形磁场直径OA 至少应转过多大角度?4.如图(a)所示,在以O 为圆心,表里半径分离为R1和R2的圆环区域内,消失辐射状电场和垂直纸面的匀强磁场,表里圆间的电势差U 为常量,R1=R0,R2=3R0.一电荷量为+q.质量为m 的粒子从内圆上的A 点进入该区域,不计重力.(1)已知粒子从外圆上以速度v1射出,求粒子在A 点的初速度v0的大小(2)若撤去电场,如图(b),已知粒子从OA 延伸线与外圆的交点C 以速度v2射出,倾向与OA 延伸线成45°角,求磁感应强度的大小及粒子在磁场中活动的时光(3)在图19(b)中,若粒子从A 点进入磁场,速度大小为v3,倾向不肯定,要使粒子必定可以或许从外圆射出,磁感应强度应小于若干?解:(1)由 200v Bqv m R = (2分) 02r T v π= (2分)得2m T qBπ= (1分) (2)粒子的活动轨迹将磁场鸿沟分成n 等分(n=2,3,4……) 由几何常识可得:2n πθ= ;tan r Rθ= ; (1分)又 200v Bv q m r = (1分)得 0tan 2BqR v m n π= (n=2,3,4……) (1分) 当n 为偶数时,由对称性可得 2n nm t T Bqπ== (n=2,4,6……) (1分) 当n 为奇数时,t 为周期的整数倍加上第一段的活动时光,即21(1)22n n m n t T T nBqππππ+-+=+= (n=3,5,7……) (1分)得 2cos 1sin 22n n ππ>+ (当n=2时 不成立,如图 (1分)比较当n=3.n=4时的活动半径,知 当n=3时,活动半径最大,粒子的速度最大.tan 2mv r R n Bq π=== (2分)得:0v = (1分)。
带电粒子在磁场中运动之磁场最小范围问题剖析江苏省扬中高级中学刘风华近年来在考题中多次出现求磁场的最小范围问题,这类题对学生的平面几何知识与物理知识的综合运用能力要求较高。
其难点在于带电粒子的运动轨迹不是完整的圆,其进入边界未知的磁场后一般只运动一段圆弧后就飞出磁场边界,运动过程中的临界点(如运动形式的转折点、轨迹的切点、磁场的边界点等)难以确定。
下面我们以实例对此类问题进行分析。
一、磁场范围为圆形例1 一质量为、带电量为的粒子以速度从O点沿轴正方向射入磁感强度为的一圆形匀强磁场区域,磁场方向垂直于纸面,粒子飞出磁场区后,从处穿过轴,速度方向与轴正向夹角为30?,如图1所示(粒子重力忽略不计)。
试求:(1)圆形磁场区的最小面积;(2)粒子从O点进入磁场区到达点所经历的时间;(3)点的坐标。
解析:(1)由题可知,粒子不可能直接由,点经半个圆周偏转到点,其必在圆周运动不到半圈时离开磁场区域后沿直线运动到点。
可知,其离开磁场时的临界点与,点都在圆周上,到圆心的距离必相等。
如图2,过点逆着速度的方向作虚线,与轴相交,由于粒子在磁场中偏转的半径一定,且圆心位于轴上,距O点距离和到虚线上点垂直距离相等的点即为圆周运动的圆心,圆的半径。
由,得。
弦长为:,要使圆形磁场区域面积最小,半径应为的一半,即:,面积0 (2)粒子运动的圆心角为120,时间。
(3)距离,故点的坐标为(,0)。
点评:此题关键是要找到圆心和粒子射入、射出磁场边界的临界点,注意圆心必在两临界点速度垂线的交点上且圆心到这两临界点的距离相等;还要明确所求最小圆形磁场的直径等于粒子运动轨迹的弦长。
二、磁场范围为矩形例2 如图3所示,直角坐标系第一象限的区域存在沿轴正方向的匀强电场。
现有一质量为,电量为的电子从第一象限的某点(,)以初速度沿轴的负方向开始运动,经过轴上的点(,0)进入第四象限,先做匀速直线运动然后进入垂直纸面的矩形匀强磁场区域,磁场左边界和上边界分别与轴、轴重合,电子偏转后恰好经过坐标原点,并沿轴的正方向运动,不计电子的重力。
高中物理 带电粒子在圆形有界磁场中的运动之--磁聚焦与磁发散模型概述带电粒子在圆形有界匀强磁场中运动时,会出现一束平行粒子经磁场偏转后会聚于边界一点,此现象为磁聚焦;一束粒子从边界一点向不同方向经磁场偏转后平行射出,此现象为磁发散。
等半径原理:圆形磁场半径与粒子运动半径相等时,会出现菱形,如下图所示。
当粒子入射方向指向磁场区域圆心,或粒子入射方向不指向磁场区域圆心,根据几何关系,易证明四边形AOCO'为菱形。
物理建模:模型:如图所示。
当圆形磁场区域半径R 与轨迹圆半径r 相等时,从磁场边界上任一点向各个方向射入圆形磁场的粒子全部平行射出,出射方向与过入射点的磁场圆直径垂直(磁发散);反之,平行粒子束射入圆形磁场必会聚在磁场边界上某点,且入射方向与过出射点的磁场圆直径垂直(磁聚焦)。
O A证明:如图所示,任意取一带电粒子以速率v从A点射入时,粒子在磁场中的运动轨迹圆半径为R,有界圆形磁场的半径也为R,带电粒子从区域边界C点射出,其中O为有界圆形磁场的圆心,B为轨迹圆的圆心。
图中AO、OC、CO'、O'A的长度均为R,故AOCO'为菱形。
由几何关系可知CO'∥AO,即从C点飞出的粒子速度方向与OA垂直,因此粒子飞出圆形有界磁场时速度方向均与OA垂直。
反之也成立。
解题切入点:分析发现粒子轨道半径与磁场区域圆半径的关系,二者相等为磁聚焦或磁发散,否则不满足该关系,但满足怎么进入怎么出去的角度关系,借助几何关系解答。
【典例1】(磁聚焦)如图所示,x轴正方向水平向右,y轴正方向竖直向上。
在xOy平面内有与y轴平行的匀强电场,在半径为R的圆内还有与xOy平面垂直的匀强磁场。
在圆的左边放置一带电微粒发射装置,它沿x轴正方向发射出一束具有相同质量m、电荷量q(q>0)和初速度v的带电微粒。
发射时,这束带电微粒分布在0<y<2R的区间内.已知重力加速度大小为g。
(1)从A点射出的带电微粒平行于x轴从C点进入有磁场区域,并从坐标原点O沿y轴负方向离开,求电场强度和磁感应强度的大小与方向。
带电粒子在“圆形磁场区域”中的运动粒子沿圆形磁场区的半径方向垂直磁场射入,由对称性可知出射线的反向延长线必过磁场圆的圆心。
由几何关系可得:偏向角与两圆半径间的关系:t a n r Rθ=2 偏转时间的关系式:m t T qBθθπ=∙=2 O 、O ′分别为 磁场圆与轨迹圆的圆心;r 、R 分别为 磁场圆与轨迹圆的半径 。
例1、如图所示,在圆心为O ,半径为r 的圆形区域内,有匀强磁场,磁感应强度为B ,方向垂直纸面向里.一个带电粒子以速度v 射入磁场,初速度方向指向圆心O ,它穿过磁场后,速度方向偏转α角,则该带电粒子的荷质比______=mq .例2、 在以坐标原点O 为圆心、半径为r 的圆形区域内,存在磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场,如图所示。
一个不计重力的带电粒子从磁场边界与x 轴的交点A 处以速度v 沿-x 方向射入磁场,它恰好从磁场边界与y轴的交点C 处沿+y 方向飞出。
(1)请判断该粒子带何种电荷,并求出其比荷q/m ;(2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B ′,该粒子仍从A 处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求:磁感应强度B ′多大?此次粒子在磁场中运动所用时间t 是多少?例3、如图所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带电粒子以速度v 从A 点沿直径AOB 方向射入磁场,经过Δt 时间从C 点射出磁场,OC 与OB 成60°角。
现将带电粒子的速度变为,仍从A 点沿原方向射入磁场,不计重力,则粒子在磁场中的运动时间变为( ) A.Δt B.2Δt C.Δt D.3Δt例4、如图所示,在纸面内半径为R 的圆形区域中充满了垂直于纸面向里、磁感应强度为B 的匀强磁场,一点电荷从图中A 点以速度v 0垂直磁场射入,当该电荷离开磁场时,速度方向刚好改变了180°,不计电荷的重力,下列说法正确的是( )A. 该点电荷离开磁场时速度方向的反向延长线通过O 点B. 该点电荷的比荷为q m =2v 0BRC. 该点电荷在磁场中的运动时间t =πR 3v 0D. 该点电荷带正电1、如图,半径为R 的圆是一圆柱形匀强磁场区域的横截面(纸面),磁感应强度大小为B ,方向垂直于纸面向外,一电荷量为q (q >0)。
带电粒子在圆形磁场区域的运动规律处理带电粒子在匀强磁场中的圆周运动问题,关键就是综合运用平面几何知识与物理知识。
最重要的是,画出准确、清晰的运动轨迹。
对于带电粒子在圆形磁场区域中做匀速圆周运动,有下面两个规律,可以帮助大家准确、清晰画出带电粒子的圆周运动的轨迹。
规律一:带电粒子沿着半径方向射入圆形边界内的匀强磁场,经过一段匀速圆周运动偏转后,离开磁场时射出圆形区域的速度的反向延长通过边界圆的圆心。
规律二:入射速度方向(不一定指向区域圆圆心)与轨迹圆弧对应的弦的夹角为θ(弦切角),则出射速度方向与入射速度方向的偏转角为2θ,轨迹圆弧对应的圆心角也为θ2,并且初末速度方向的交点、轨迹圆的圆心、区域圆的圆心都在弧弦的垂直平分线上。
以上两个规律,利用几何知识很容易证明,在解题时,可以直接应用,请看下面的两个例子:例1如图1所示,在平面坐标系xoy 内,第Ⅱ、Ⅲ象限内存在沿y 轴正方向的匀强电场,第I 、Ⅳ象限内存在半径为L的圆形匀强磁场,磁场圆心在M (L ,0)点,磁场方向垂直于坐标平面向外.一带正电粒子从第Ⅲ象限中的Q (一2L ,一L )点以速度0v 沿x 轴正方向射出,恰好从坐标原点O 进入磁场,从P (2L ,O )点射出磁场.不计粒子重力,求: (1)电场强度与磁感应强度大小之比 (2)粒子在磁场与电场中运动时间之比 解析:(1)设粒子的质量和所带正电荷分别为m 和q ,粒子在电场中运动,由平抛运动规律得:102t v L =2121at L =,又牛顿运动定律得:ma qE = 粒子到达O 点时沿y +方向分速度为0v at v y ==,1tan 0==v v y α 故045=α,粒子在磁场中的速度为02v v =,应用规律二,圆心角为:0902=α,画出的轨迹如图2所示,由rm v Bqv 2=,由几何关系得L r 2=得:2v B E = (2)在磁场中运动的周期vrT π2=粒子在磁场中运动时间为02241v L T t π==图2图1得412π=t t 例2如图3所示,真空中有一以(r ,O )为圆心,半径为r 的圆柱形匀强磁场区域,磁场的磁感应强度大小为B ,方向垂直于纸面向里,在y ≤一r 的范围内,有方向水平向右的匀强电场,电场强度的大小为E 。
带电粒子在磁场中的运动轨迹的分析报告
略带电的微粒子在磁场中的运动轨迹呈现出螺旋形,具体的运动轨迹是由离子的电荷
和大小、离子的电荷和磁场的角度、离子的速度等因素综合作用的结果。
例如,当离子在垂直于磁场的方向上具有恒定的速度时,离子会围绕磁场线旋转,运
动轨迹呈圆形或螺旋形;当离子在磁场方向上具有恒定的速度时,离子将沿着磁场线运动,而不会改变方向。
二、磁场对带电粒子运动的影响
磁场对带电粒子的影响主要表现在轨道形状和动力学行为方面。
1.轨道形状
当带电粒子运动时,其轨道形状受到磁场的影响。
如果磁场是均匀子,则带电粒子的
轨迹是一条螺旋线,如果磁场是非均匀的,则粒子的轨迹将是曲线而不是螺旋形。
2.动力学行为
磁场会影响带电粒子的动力学行为,如速度,能量和角动量。
在磁场中,带电粒子的
速度和速度方向随着时间变化而改变。
这可以解释为一个角动量守恒的结果。
总的来说,带电粒子在磁场中的运动轨迹和动力学行为受到磁场的影响。
磁场的强弱、方向和时间的变化会改变带电粒子的运动形式。
这对于理解带电粒子的特性和物理学的发
展具有重要的意义。
高中物理-“带电粒子在磁场中的圆周运动”解析“带电粒子在磁场中的圆周运动”解析处理带电粒子在匀强磁场中的圆周运动问题,其本质是平面几何知识与物理知识的综合运用。
重要的是正确建立完整的物理模型,画出准确、清晰的运动轨迹。
下面我们从基本问题出发对“带电粒子在磁场中的圆周运动”进行分类解析。
一、“带电粒子在磁场中的圆周运动”的基本型问题找圆心、画轨迹是解题的基础。
带电粒子垂直于磁场进入一匀强磁场后在洛仑兹力作用下必作匀速圆周运动,抓住运动中的任两点处的速度,分别作出各速度的垂线,则二垂线的交点必为圆心;或者用垂径定理及一处速度的垂线也可找出圆心;再利用数学知识求出圆周运动的半径及粒子经过的圆心角从而解答物理问题。
【例1】图示在y<0的区域内存在匀强磁场,磁场方向垂直于xy平面并指向纸面外,磁场的磁感应强度为B;一带正电的粒子以速度V从O点射入磁场中,入射方向在xy平面内,与x轴正方向的夹角为θ;若粒子射出磁场的位置与O点的距离为L。
求①该粒子的电荷量和质量比;②粒子在磁场中的运动时间。
分析:①粒子受洛仑兹力后必将向下偏转,过O点作速度V的垂线必过粒子运动轨迹的圆心O’;由于圆的对称性知粒子经过点P时的速度方向与x轴正方向的夹角必为θ,故点P作速度的垂线与点O处速度垂线的交点即为圆心O’(也可以用垂径定理作弦OP的垂直平分线与点O处速度的垂线的交点也为圆心)。
由图可知粒子圆周运动的半径由有。
再由洛仑兹力作向心力得出粒子在磁场中的运动半径为故有,解之。
②由图知粒子在磁场中转过的圆心角为,故粒子在磁场中的运动时间为。
【例2】如图以ab为边界的二匀强磁场的磁感应强度为B1=2B2,现有一质量为m带电+q的粒子从O点以初速度V沿垂直于ab 方向发射;在图中作出粒子。