带电粒子在磁场中的运动:动态圆问题
- 格式:ppt
- 大小:1.18 MB
- 文档页数:34
巧用“动态圆”处理带电粒子在磁场中的运动问题作者:彭俊昌来源:《物理教学探讨》2007年第22期处理带电粒子在匀强磁场中的运动问题,一种重要的方法是作图法:作出粒子的运动轨迹,找到它的圆心,再由平面几何的知识列出几何关系的方程。
而当粒子在磁场中运动的方向可变时,运用作“动态圆”的方法可以较快的解决问题。
下面通过几道例题的分析来说明这种方法的运用。
例1 (2005年全国理综高考第20题)如图1所示,在一块水平放置的平板MN的上方有匀强磁场,磁感应强度大小为B,磁场方向垂直纸面向里。
许多质量为m,带电量为+q的粒子,以相同的速率v沿位于纸面内的各个方向,由小孔O射入磁场区域。
不计重力,不计粒子间的相互影响。
下列图中阴影部分表示带电粒子可能经过的区域,其中R=mvBq。
哪个图是正确的?解析因为带电粒子的速率方向可变,所以它们在磁场中的运动轨迹是通过O点的一系列圆弧。
如图2所示,阴影部分即为带电粒子可能出现的区域。
故正确答案为A。
例2 纸面内水平线MN的下方存在垂直于纸面向里的磁感应强度为B的匀强磁场。
在MN 线上某点O的正下方与O点相距为L的质子源S,可在纸面内360°范围内发射质量为m、电量为e、速度为v=BeL/m的质子,如图所示。
质子的重力不计。
试画出MN线下方有质子出现的区域。
解析质子作圆周运动的向心力由洛仑兹力提供,即:evB=mv2r,所以质子作圆周运动的半径为:r=mveB=meB·eBLm=L。
因质子源可在纸面内360°范围内发射,所有轨迹都应通过S点,所以这些轨迹圆弧的圆心均在圆周a上。
以圆弧a上的一系列点为圆心作出一系列圆弧,这些圆弧与MN的交点离O点最远为A点和B点,这些圆弧过S点的直径的另一端的连线为实线圆弧AdC,圆弧BcC为另一边界线.所以质子可能出现的区域如图中阴影部分所示。
例3 在真空中半径r=3cm的圆形区域内有一匀强磁场,磁场的磁感应强度B=0.2T,方向如图5所示。
用“动态圆”模型求解磁场题带电粒子在磁场中的运动经常涉及动态圆。
常见的动态圆模型有两种,往往都还涉及边界(极值)问题。
模型1如图1,一束带负电的粒子以初速度垂直进入匀强磁场,若初速度方向相同,大小不同,所有粒子运动轨迹的圆心都在垂直于初速度的直线上,速度增大时,轨道半径随着增大,所有粒子的轨迹组成一组动态的内切圆。
模型2如图2,一束带负电的粒子以初速度垂直进入匀强磁场,若初速度大小相同,方向不同,则所有粒子运动的轨道半径相同,但不同粒子的圆心位置不同,其共同规律是:所有粒子的圆心都在以入射点为圆心,以轨道半径为半径的圆上,从而可以找出动态圆的圆心轨迹。
使用时应注意各圆的绕向。
其他模型:粒子的射入位置变化对应的平移圆:练习:1.如图所示,在圆形区域内存在一垂直于纸面向里的匀强磁场,一束速率各不相同的质子从A点沿圆形磁场的半径方向射入磁场。
关于质子在该磁场内的运动情况,下列说法正确的是()A.运动时间越长的,其轨迹越长B.运动时间越长的,其射出磁场时的速率越大C.运动时间越长的,其轨迹对应的圆心角越大D.运动时间越长的,其速度方向的偏转角越大2.一束电子以不同的速率沿如图所示方向飞入横截面是一个正方形的,方向垂直于纸面向里的匀强磁场中,则下列说法中正确的是()A.在磁场中运动时间越长的电子,其轨迹线一定越长B.在磁场中运动时间相同的电子,其轨迹线一定重合C.在磁场中运动时间越长的电子,其轨迹所对应的圆心角一定越大D.速率不同的电子,在磁场中运动时间一定不同3.(单选)如图所示,在正三角形区域内存在着方向垂直于纸面向外、磁感应强度大小为B 的匀强磁场.一个质量为m 、电量为+q 的带电粒子(重力不计)从AB 边以速度V 进入磁场,粒子进入磁场时的速度方向垂直于磁场且与AB 边的夹角为60°.若粒子能从AB 边穿出磁场,则粒子在磁场中运动的过程中,粒子到AB 边的最大距离为( )A. B. C. D.4.(单选)如图所示,直角三角形ABC 区域中存在一匀强磁场,比荷相同的两个粒子(不计重力)沿AB 方向射入磁场,分别从AC 边上的P 、Q 两点射出,则( )A .从P 点射出的粒子速度大B .两个粒子射出磁场时的速度一样大C .从Q 点射出的粒子在磁场中运动的时间长D .两个粒子在磁场中运动的时间一样长5.(单选)如图,沿x 方向有界、沿y 方向无界的匀强磁场,磁感应强度的方向垂直纸面向内,大量的速率不同的电子(不计重力)从O 点沿x轴正方向进入磁场,最终离开磁场,下列判断正确的是 A .所有的电子都向x 轴下方偏转 B .所有的电子都做类平抛运动C .所有的电子在磁场中运动时速度不变D .只要是速率不同的电子,它们在磁场中运动的时间就一定不同 6.(多选)如图所示,一足够长的矩形区域abcd 内充满方向垂直纸面向里的、磁感应强度为B 的匀强磁场,在ad 边中点O ,方向垂直磁场向里射入一速度方向跟ad 边夹角θ=30°、大小为v 0的带正电粒子,已知粒子质量为m ,电量为q ,ad 边长为L ,ab 边足够长,粒子重力不计,则粒子不能从ab 边上射出磁场的v 0为 A .03qBL qBL v m m <≤ B .0qBL v m > C .03qBL v m ≤ D .02qBLv m≤7.如图,在一水平放置的平板MN 的上方有匀强磁场,磁感应强度的大小为B ,磁场方向垂直于纸面向里.许多质量为m 带电量为+q 的粒子,以相同的速率v 沿位于纸面内的各个方向,由小孔O 射入磁场区域.不计重力,不计粒子间的相互影响。
带电粒子在磁场中的动态圆问题高亚敏1、在y>0的区域内存在匀强磁场,磁场垂直于图中的Oxy 平面,方向指向纸外,原点O 处有一离子源,沿各个方向射出速率相等的同价正离子,对于速度在Oxy 平面内的离子,它们在磁场中做圆弧运动的圆心所在的轨迹,可用下面给出的四个半圆中的一个来表示,其中正确的是( )2、如图,真空室内存在匀强磁场,磁场方向垂直于纸面向里,磁感应强度的大小B=0.60T ,磁场内有一块平面感光板ab ,板面与磁场方向平行,在距ab 的距离l=16cm 处,有一个点状的α放射源S ,它向各个方向发射α粒子,α粒子的速度都是,已知α粒子的电荷与质量之比,现只考虑在图纸平面中运动的α粒子,求ab 上被α粒子打中的区域的长度。
3、电子质量为m ,电荷量为e ,从坐标原点O 处沿xOy 平面射入第一象限,射入时速度方向不同,速度大小均为v 0,如图所示。
现在某一区域加一方向向外且垂直于xOy 平面的匀强磁场,磁感应强度为B ,若这些电子穿过磁场后都能垂直射到荧光屏MN 上,荧光屏与y 轴平行,求: (1)荧光屏上光斑的长度; (2)所加磁场范围的最小面积。
DCBAxyO xy O xy O xy O4、如图,ABCD 是边长为a 的正方形。
质量为m 、电荷量为e 的电子以大小为v0的初速度沿纸面垂直于BC 变射入正方形区域。
在正方形内适当区域中有匀强磁场。
电子从BC 边上的任意点入射,都只能从A 点射出磁场。
不计重力,求: (1)此匀强磁场区域中磁感应强度的方向和大小; (2)此匀强磁场区域的最小面积。
5、一水平放置的平板MN 的上方有匀强磁场,磁感应强度的大小为B ,磁场方向垂直于纸面向里.许多质量为m 带电量为+q 的粒子,以相同的速率v 沿位于纸面内的各个方向,由小孔O 射入磁场区域. 不计重力,不计粒子间的相互影响. 下列图中阴影部分表示带电粒子可能经过的区域,其中正确的图是 ( )6、如图1,半径为cm r 10=的匀强磁场区域边界跟y 轴相切于坐标原点O ,磁感强度T B 332.0=,方向垂直纸面向里.在O 处有一放射源S ,可向纸面各个方向射出速度为s m v /102.36⨯=的粒子.已知α粒子质量kg m 271064.6-⨯=,电量C q 19102.3-⨯=,试画出α粒子通过磁场空间做圆周运动的圆心轨道,求出α粒子通过磁场空间的最大偏角. 图1xo y⨯s ⨯⨯⨯⨯⨯⨯⨯7、如图14所示,在真空中坐标xoy 平面的0>x 区域内,有磁感强度T B 2100.1-⨯=的匀强磁场,方向与xoy 平面垂直,在x 轴上的)0,10(p 点,有一放射源,在xoy 平面内向各个方向发射速率s m v /100.14⨯=的带正电的粒子,粒子的质量为kg m 25106.1-⨯=,电量为C q 18106.1-⨯=,求带电粒子能打到y 轴上的范围.带电粒子在磁场中运动的多解问题8.如图5所示,垂直纸面向里的匀强磁场以MN 为边界,左侧磁感应强度为B 1,右侧磁感应强度为B 2,B 1=2B 2=2T ,荷质比为2×106C/kg 的带正电粒子从O 点以v 0=4×104m/s 的速度垂直MN 进入右侧的磁场区域,求粒子通过距离O 点4cm 的磁场边界上的P 点所需的时间。
带电粒子在磁场中的运动旋转圆问题带电粒子在磁场中的运动旋转圆问题在自然界中,存在这一类有趣的物理现象:当带电粒子在磁场中运动时,其轨迹会形成一个旋转圆,这是磁场对带电粒子施加力的结果。
这一现象既有理论意义,也有实际应用价值,因此一直受到科学家们的广泛关注。
本文将深入探讨带电粒子在磁场中的运动旋转圆问题,从基础知识到研究进展,希望能够对读者深入了解这一问题提供帮助。
1. 磁场基础知识我们需要了解一些基础的磁场知识。
磁场是由带电粒子或磁体所产生的一种物理现象,其对带电粒子的运动具有显著的影响。
磁场的存在可以通过磁力线来描述,磁力线以箭头指向磁场的方向,用于表示磁场的强度和方向。
在磁场中,带电粒子会受到洛伦兹力的作用,该力的方向垂直于带电粒子的运动方向和磁场的方向。
2. 带电粒子在磁场中的运动规律当带电粒子在磁场中运动时,它会受到洛伦兹力的作用,从而产生一个向心力。
这个向心力使得带电粒子在磁场中做圆周运动,形成一个旋转圆。
带电粒子的圆周运动半径由其质量、速度和所受磁场的强度决定。
具体而言,向心力的大小可以由下式表示:F = qvB其中,F表示向心力,q表示带电粒子的电荷量,v表示带电粒子的速度,B表示磁场强度。
根据这个式子可以看出,当带电粒子的电荷量或速度增大,或磁场强度增大时,向心力也会增大,从而使得带电粒子的圆周运动半径增大。
3. 带电粒子在磁场中的应用带电粒子在磁场中的运动旋转圆问题不仅在理论物理中具有重要意义,也在实际应用领域有着广泛的应用。
一种常见的应用是在粒子加速器中,利用磁场的作用使得带电粒子在环形加速器中做圆周运动,从而达到高能量的粒子碰撞。
在核磁共振技术中,利用磁场的作用对带电粒子进行操控,从而实现对物质结构的研究和应用。
4. 对带电粒子在磁场中的运动旋转圆问题的个人观点和理解带电粒子在磁场中的运动旋转圆问题是一个非常有趣的物理现象,我个人对此有着浓厚的兴趣。
通过研究和分析这一问题,我们可以深入了解磁场对带电粒子运动的影响,并且可以应用于实际技术中。
一模型界定本模型主要是指带电粒子在磁场中做匀速圆周运动时,由于粒子的速度不同、入射位置不同等因素而引起粒子在磁场中运动轨迹的差异,从而在有界磁场中形成不同的临界状态与极值问题的一类物理情景.二模型破解1. 处理“带电粒子在匀强磁场中的圆周运动”的基本知识点(i)圆心位置的确定①利用速度的垂线;②利用弦的中垂线;③利用两速度方向夹角的角平分线;④利用运动轨迹的半径大小.具体来说,如图1所示:①已知两位置的速度,分别过两位置作速度的垂线,交点处为运动轨迹的圆心②已知一点的速度与另一点的位置,过已知速度的点作该点速度的垂线,再作两点连线的中垂线,交点处为运动轨迹的圆心③已知一点的速度与另一不知位置的点的速度方向,过已知速度的点作该点速度的垂线,再作两速度夹角的平分线,交点处为运动轨迹的圆心④已知一点的速度与粒子运动的轨迹半径,过该点作速度的垂线,再在垂线上取一点,使其到已知点间距离等于粒子运动的轨迹半径,该点即为运动轨迹的圆心⑤已知不知位置的两点的速度方向与粒子运动的轨迹半径,作两速度的夹角平分线,再在平分线上取一点,使其到两已知两已知速度所在直线间的距离等于粒子运动的轨迹半径,该点即为运动轨迹的圆心⑥已知一不知位置的点的速度方向与粒子运动的轨迹半径,可确定粒子运动的轨迹圆心位置在与该速度所在直线相平行且距离等于轨迹半径的直线上⑦已知运动轨迹上三点的位置,连接其中两点所得任两条弦,作此两条弦的中垂线,交点处为运动轨迹的圆心⑧已知运动轨迹上两点的位置与粒子运动的轨迹半径,作连接两已知点所得弦的中垂线,再在中垂线上取一点,使其到已知点间距离等于粒子运动的轨迹半径,该点即为运动轨迹的圆心(ii)两个重要几何关系①粒子速度的偏向角ϕ等于回旋角θ,并等于AB 弦与切线的夹角(弦切角α)的2倍,即:ϕ=θ=2α=ωt.②相对的弦切角θ相等,与相邻的弦切角'θ互补,即πθθ=+'(iii)两个重要的对称性①如图2所示,带电粒子如果从一直线边界进入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,入射速度方向、出射速度方向与边界的夹角相等;②如图3所示,在圆形磁场区域内,沿径向射入的粒子,必沿径向射出;不沿半径射入的粒子必不沿半径射出,但速度方向与入射点、出射点所在半径之间的夹角相等,入射速度与出射速度的交点、轨迹圆的圆心、磁场区域圆的圆心都在弧弦的中垂线上.图2(iV)两类重要的临界状态与极值条件①刚好穿出磁场边界的条件是带电粒子在磁场中的运动轨迹与边界相切②当粒子运动的速率一定(即在磁场中运动的轨迹半径一定)时,通过的弧长越长,转过的圆心角越大,粒子在有界匀强磁场中运动的时间越长.由图1可以看到,R l 22sin =θ,粒子在磁场中转过一个劣弧时,对应的弦长越长,转过的圆心角越大,运动时间越长;粒子在磁场中转过一个优弧时则相反.2.动态圆的问题处理方法(i)旋转"半圆"法处理速率相同的动态圆问题如图4所示,对于大量的同种粒子,从空间同一位置以相同的速率υ沿不同的方向垂直..进入某匀强磁场时,由于速度方向的差异,引起粒子在空间运动轨迹的不同,它们在空间运动的基本特征是:①所有粒子运动的轨迹半径qBmv R =相同 ②所有粒子运动轨迹平面都在垂直于磁场的同一平面内③所有粒子运动轨迹的圆心都在以入射点为圆心、R 为半径的圆周上图4 图3④所有粒子的运动轨迹所覆盖的空间区域是以入射点为圆心、2R 圆形区域○5同一时刻射入的粒子在经过相同时间t ∆后,每个粒子速度方向改变的角度(偏向角)ϕ、转过的圆心角度α相同,t m qB ∆⋅==ϕα;到入射点的距离l 相同,即位于以射点为圆心、以l 为半径的同一圆周上,其中2sin 2αR l =。
巧用动态圆求解带电粒子在有界匀强磁场中运动的问题丁千军江苏省泰州市民兴实验中学225300“带电粒子在磁场中的运动”是历年高考中的一个重要考点,而“带电粒子在有界磁场中的运动”则是此考点中的一个难点。
它难在带电粒子进入设定的有界磁场后只运动一段圆弧就飞出磁场边界,其轨迹不是完整的圆,它要求考生根据带电粒子运动的几何图形去寻找几何关系,分析临界条件,然后应用数学工具和相应的物理规律处理问题。
如何巧用动态圆求解带电粒子在有界匀强磁场中运动的极值问题?我们可以从下列两个模型入手解决这类问题:模型一:如图1,一束带负电的粒子以初速度v垂直进入匀强磁场,若初速度v方向相同,大小不同,所有粒子运动轨迹的圆心都在垂直于初速度的直线上,速度增大时,轨道半径随着增大,所有粒子的轨迹组成了一组动态的内切圆。
例1.如图2所示,匀强磁场的边界为平行四边形ABDC,其中AC 边与对角线BC垂直。
一束电子以大小不同的速度沿BC从B点射入磁场,不计电子的重力和电子之间的相互作用,关于电子在磁场中运动的情况,下列说法中正确的是( )。
A.入射速度越大的电子,其运动时间越长B.入射速度越大的电子,其运动轨迹越长C.从AB边出射的电子的运动时间都相等D.从AC边出射的电子的运动时间都相等解析:电子以不同的速度沿BC从B点射入磁场,若电子从AB边射出,画出其运动轨迹。
由几何关系可知:在AB边射出的粒子轨迹所对的圆心角相等,在磁场中的运动时间相等,与速度无关,C对,A错;从AC边射出的电子轨迹所对圆心角不相等,且入射速度越大,其运动轨迹越短,在磁场中的运动时间不相等,B、D错。
答案:ACD。
模型二:如图3所示,一束带正电的粒子以初速度v垂直进入匀强磁场,若初速度v大小相同,方向不同,则所有粒子运动的轨道半径相同,但不同粒子的圆心位置不同,其共同规律是:所有粒子的圆心都在以入射点为圆心、以轨道半径为半径的圆上,从而可以找出动态圆的圆心轨迹。
第三节 用“动态圆”解决带电粒子在磁场中的运动问题解决带电粒子在磁场中运动问题的一般方法: (1) (2) (3)一、轨迹圆的缩放例题1.真空区域内存在如图所示的匀强磁场,磁感应强度B =0.60T ,磁场方向垂直于纸面向里,MN 、PQ 是磁场的边界,磁场区域的宽度L=2m 20.在O 点处有一质量为m ,带电量为-q 的粒子,沿与MN 夹角为30°的方向垂直于磁场射入,已知粒子的电荷与质量之比mq=5.0×107C/kg ,不计粒子的重力.要使粒子不能从PQ 边界射出磁场,粒子的速度v 应该满足什么条件?典型模型: 作图方法:变式训练: 如图所示,一足够长的矩形区域abcd 内充满方向垂直纸面向里的、磁感应强度为B 的匀强磁场,在ad 边中点O ,方向垂直磁场向里射入一速度方向跟ad 边夹角θ = 30°、大小为v 0的带正电粒子,已知粒子质量为m ,电量为q ,ad 边长为L ,ab 边足够长,粒子重力不计,求:(1)粒子能从ab 边上射出磁场的v 0大小范围.(2)如果带电粒子不受上述v 0大小范围的限制,求粒子在磁场中运动的最长时间.a bc二、轨迹圆的旋转例题2.如图所示,直线边界MN 上方有垂直纸面向里的匀强磁场,磁感应强度B =0.664T ,磁场区域足够大.今有质量m =6.64×10-27kg ,电荷量大小q =3.2×10-19C 的带电粒子,从边界MN 上的O 点垂直磁场方向射入,射入时的速度大小v =3.2×106m/s ,方向与边界MN 的夹角θ=30°,求:(1)带电粒子从磁场中射出时,出射点到O 点的距离; (2)带电粒子在磁场中的运动时间. 小结:变题1:若粒子带负电,从O 点以速度v 向各个方向垂直射入磁场,试作出所有粒子做圆周运动的圆心位置,求粒子从MN 边界射出时离O 点最远的距离;MNvOMNv O变题2:若粒子带负电,从O 点以速度v 向各个方向垂直射入磁场,试用阴影图画出粒子在磁场中能到达的区域,并求出该区域的面积;典型模型: 作图方法:变题3:若粒子带负电,从O 点以速度v 向各个方向垂直射入磁场,磁场有上边界,如图所示,上边界到MN 的距离为4cm ,求上边界上有粒子射出的长度?若所有粒子是同时从O 点射入的,试分析:当从上边界的最左端射出的粒子出磁场时,此时刻仍在磁场中的粒子的初速度方向与MN 之间的夹角范围.MNvOMNv O变式训练:如图,真空室内存在匀强磁场,磁场方向垂直于纸面向里,磁感应强度的大小B =0.60T ,磁场内有一块平面感光板ab ,板面与磁场方向平行,在距ab 的距离l =16cm 处,有一个点状的α放射源S ,它向各个方向发射α粒子,α粒子的速度都是v =3.0×106m/s ,已知α粒子的电荷与质量之比75.010C/kg qm=⨯,现只考虑在图纸平面中运动的α粒子,求ab 上被α粒子打中的区域的长度.变题:若α放射源S 向各个方向发射的α粒子的数目均相同,求能打到ab 上的粒子数占总粒子数的几分之几.。
带电粒子在磁场中的运动是一个充满深度和广度的问题,涉及到物理学中的许多重要概念和原理。
从宏观到微观,从经典到量子,这一主题的探讨可以帮助我们更深入地理解粒子在磁场中的行为,以及相关的物理规律。
一、带电粒子在磁场中的受力和运动1.受力分析当带电粒子进入磁场时,它会受到洛伦兹力的作用,这个力会使粒子发生偏转,并导致其在磁场中运动。
洛伦兹力的大小和方向取决于粒子的电荷大小、速度方向以及磁场的强度和方向。
2.运动轨迹在磁场中,带电粒子的运动轨迹通常是圆形或螺旋形的,具体取决于粒子的速度和磁场的强度。
这种运动旋转圆问题是研究带电粒子在磁场中行为的重要内容之一。
二、经典物理学对带电粒子运动的描述1.运动方程根据洛伦兹力和牛顿定律,可以建立带电粒子在磁场中的运动方程。
通过对这个方程的分析,可以得到粒子在磁场中的运动轨迹和运动规律。
2.圆周运动对于静止的带电粒子,它会在磁场中做匀速圆周运动;而对于具有初始速度的带电粒子,它会做螺旋运动。
这种经典的描述为我们理解带电粒子在磁场中的运动提供了重要参考。
三、量子物理学对带电粒子运动的描述1.量子力学效应在微观尺度下,带电粒子在磁场中的运动会受到量子力学效应的影响,比如磁量子效应和磁旋效应等。
这些效应对带电粒子的运动规律产生重要影响,需要通过量子力学来描述。
2.自旋和磁矩带电粒子除了具有电荷和质量外,还具有自旋和磁矩。
这些特性在磁场中会影响粒子的运动,使得其运动规律更加复杂和微妙。
四、个人观点和理解对于带电粒子在磁场中的运动旋转圆问题,我认为它不仅具有重要的理论意义,还在许多实际应用中发挥着关键作用。
比如在核磁共振成像技术中,正是利用了带电粒子在外加磁场中的运动规律,实现了对人体组织和器官进行高分辨率成像。
深入理解这一问题,不仅可以帮助我们认识自然界的规律,还有助于科学技术的发展和进步。
总结回顾一下,带电粒子在磁场中的运动旋转圆问题是一个充满深度和广度的物理学问题,涉及到经典物理学和量子物理学的交叉领域。
专题训练:带电粒子在磁场中的运动—-动态圆问题一、单选题(共13小题,每小题5。
0分,共65分)1。
如图所示,边界OA与OC之间分布有垂直纸面向里的匀强磁场,边界OA上有一粒子源S。
某一时刻,从S平行于纸面向各个方向发射出大量带正电的同种粒子(不计粒子的重力及粒子间的相互作用),所有粒子的初速度大小相同,经过一段时间有大量粒子从边界OC射出磁场.已知∠AOC=60°,从边界OC 射出的粒子在磁场中运动的最长时间等于T/2(T为粒子在磁场中运动的周期),则从边界OC 射出的粒子在磁场中运动的最短时间为( )A.T/2B.T/4C.T/6D.T/82。
在真空室中,有垂直于纸面向里的匀强磁场,三个质子1、2和3分别以大小相等、方向如图所示的初速度v1、v2和v3,经过平板MN上的小孔O射入匀强磁场,这三个质子打到平板MN上的位置到小孔O的距离分别是s1、s2和s3,则有()A.s1>s2>s3B.s1<s2<s3C.s1=s3>s2D.s1=s3<s23.如图所示,在荧屏MN上方分布了水平方向的匀强磁场,磁感应强度的大小B=0。
1T,方向与纸面垂直。
距离荧屏h=16cm处有一粒子源S,以速度v=1×106m/s不断地在纸面内向各个方向发射比荷的带正电粒子,不计粒子的重力,则粒子打在荧屏范围的长度为( )A.12cmB.16cmC.20cmD.24cm4.如图,圆形区域内有一垂直纸面的匀强磁场,P为磁场边界上的一点。
有无数带有同样电荷、具有同样质量的粒子在纸面内沿各个方向以同样的速率通过P点进入磁场.这些粒子射出边界的位置均处于边界的某一段弧上,这段圆弧的弧长是圆周长的1/3.将磁感应强度的大小从原来的B1变为B2,结果相应的弧长变为原来的一半,则B2与B1等于()A.2 B.3C.D.5。
在一空心圆柱面内有一垂直于纸面的匀强磁场,磁感应强度为B,其横截面如图所示,磁场边界为同心圆,内,外半径分别为r和().圆心处有一粒子源不断地沿半径方向射出质量为,电量为q的带电粒子,不计粒子重力.为使这些粒子不射出磁场外边界,粒子从圆心处射出时速度不能超过()A.B.C.D.6。
用动态圆分析带电粒子在磁场中运动的极值问题带电粒子在磁场中运动的极值问题是学生普遍认为的学习的难点。
中学阶段,考虑到带电粒子以速度V 垂直于磁场方向进入有界匀强磁场,在只受洛仑兹力作用时,粒子做匀速圆 周运动的这一特点,而极问题又涉及到 粒子的初速度的大小、方向,以及磁场的形状、边界等条件的约束。
能否从分析带电粒子在磁场中所做圆运动轨迹的变化出发,运用直观的几何知识来简单地解决具体问题呢?为了突破这一难点,本文就用动态圆分析带电粒子在磁场中运动的极值问题,谈谈个人的教学体会。
应用这个方法的思考过程如下:建立物理图景(通过动态圆)→由渐变到突变(约束条件)→临界状态(运用几何知识)→寻求极值。
下面通过具体实例说明这个方法的运用。
【例1】如图1所示,经X 轴的上方(0≥y )存在着垂直纸面向外的磁场,磁感应强度为B ,在原点O 处有一离子源向X 轴上方任意方向发射质量为m ,电量为q 的正离子,速率都为V 。
对那些在XOY 平面内运动的离子,在磁场中可能达到的最大位移X= ,最大位移Y= 。
(重力不计) 【分析与解答】由于离子在O 点向X 轴上方任意方向以相同的速率V 发射,很容易确定全部离子在磁场中做圆周运动的动态圆的圆心,都 在以O 为圆心、半径为Bqmv r =的半圆周ADC弧上,如左图。
很显然,沿Y 轴入射以D 为圆心做圆周运动的离子将在X 轴上有最大位移X ,且X=OP=2Bqmvr 2=;同理沿X 轴负方向入射的离子,在Y 轴上有最大的位移Y ,且Y=OQ=2Bqmvr 2=。
【点评】离子以相同的速率、不同方向射入磁场,动态圆的圆心在半个圆周上。
【例2】如图,在边界为AA /、DD /狭长区域内,匀强磁场的磁感应强度为B ,方向垂直纸面向里,磁场区域宽度为d 。
电子以不同的速率V 从边界AA /的S 处沿垂直于磁场方向射入磁场,入射方向跟AA /的夹角为θ.已知电子的质量为m ,带电量为e 。
带电粒子在磁场中运动的“动态圆”问题
单艳辉
【期刊名称】《高中数理化》
【年(卷),期】2011(000)022
【摘要】1 由速度方向变化引发的动态圆或动态圆弧问题rn例1 如图1所示,在0≤x〈√3a的区域内存在与xOy平面垂直的匀强电场,磁感应强度大小为B,【总页数】2页(P36-37)
【作者】单艳辉
【作者单位】河北乐亭第一中学
【正文语种】中文
【中图分类】G633.7
【相关文献】
1.用动态圆巧解带电粒子在磁场中运动的临界问题
2.运用"动态圆"分析带电粒子在磁场中运动的问题
3.利用动态圆来处理带电粒子在电磁场中的运动问题
4.一种绘制带电粒子在匀强磁场中运动轨迹的教学仪器——动态圆作图仪
5.GeoGebra软件在物理习题教学中的应用——以“带电粒子在磁场中运动动态圆的应用”为例
因版权原因,仅展示原文概要,查看原文内容请购买。