Efficient Recovery of Structured Sparse Signals vi
- 格式:pdf
- 大小:1.71 MB
- 文档页数:17
noble prize for physics 223 -回复「诺贝尔物理学奖223」- 关于高温超导的研究引言:对于物理学家们来说,高温超导是一个引人注目的领域。
自从第一个超导材料在1911年被发现以来,研究人员一直在努力寻找更高温度下的超导现象。
在XX 年,三位杰出的物理学家因其在高温超导方面的突破性研究而被授予诺贝尔物理学奖。
第一步:超导的基本概念和历史超导是一种电阻为零的现象,它只能在极低温度下发生。
一旦物质变为超导体,它就能够传导电流而无能量损失。
1908 年,荷兰物理学家海克·卡末林首次观察到铅在极低温下失去了电阻。
这一发现引起了科学界的轰动,因为它与当时人们对电阻和导电性质的理解相悖。
人们开始调查更多的物质并尝试理解超导现象的运作机制。
第二步:第一个超导材料的发现在海克·卡末林的发现之后的几年里,许多其他超导体材料也被发现,但它们的超导温度都非常低。
然而,在1960年代初,费城的两位物理学家罗伯特·斯蒂尔和吉尔伯特·方泽纳斯宣布他们发现了第一个高温超导材料。
斯蒂尔和方泽纳斯的实验中使用了氧化物铁钛矿,该材料在较高的温度下表现出超导性。
这个发现对超导研究产生了巨大的影响,并激发了科学家们继续寻找更高温度下的超导材料的热情。
第三步:理解高温超导的机制对于斯蒂尔和方泽纳斯发现的高温超导现象来说,科学家们一直在寻找解释。
在80年代初,三位科学家——米格尔·阿拉瓦莱斯,克劳斯·冯·勃洛克和约翰·贝德诺——分别提出了不同的解释。
阿拉瓦莱斯认为,高温超导材料中存在着电子间的配对。
冯·勃洛克则提出了一种名为“向量势”的新机制。
而贝德诺则给出了“间隙配对”的假说。
这些理论引发了广泛的研究,吸引了全球范围内的科学家参与其中。
他们努力解决高温超导的机制问题,为超导材料的进一步应用和发展提供了基础。
第四步:应用和前景高温超导材料的发现引发了各种激动人心的应用和前景。
十大自然科技突破人物-回复题目:十大自然科技突破人物——对人类进步的巨大贡献引言:自然科技突破是指在自然界中发现并应用新的科技方法和手段,从而推动人类社会的进步和发展。
在人类历史的长河中,有许多伟大的科学家和工程师投身于自然科技的研究,他们通过不懈的探索、勇于创新和顽强的毅力,为人类带来了革命性的突破。
下面将介绍十位具有重大影响力的自然科技突破人物。
一、研究细胞的微生物学家Robert Hooke作为细胞学的奠基人之一,Robert Hooke于17世纪成功地设计和使用了第一台显微镜,并用它观察到了植物细胞。
他的研究为细胞学的探索打下了坚实的基础,为后来的生物学研究提供了重要的参考。
二、发现重力定律的物理学家Isaac NewtonIsaac Newton在17世纪发现了重力定律,揭示了天体运动的基本规律,极大地推动了物理学的发展。
他的研究成果包括《自然哲学的数学原理》等重要著作,为后来的科学家打开了探索宇宙奥秘的大门。
三、发明电磁感应的科学家Michael FaradayMichael Faraday在19世纪发明了电磁感应,为电动机、发电机等电力装置的发展奠定了基础。
他的研究成果促进了电磁学的发展,开辟了电力工业的新纪元。
四、揭示遗传规律的遗传学家Gregor MendelGregor Mendel通过一系列对豌豆的杂交实验,揭示了遗传规律的规律性,并提出了遗传的基本原理。
他的研究为遗传学的建立奠定了基础,为后来基因工程的发展提供了理论支持。
五、创造周期表的化学家Dmitri MendeleevDmitri Mendeleev在19世纪提出了周期表的概念,并根据元素的性质和周期性将元素排列起来。
他的创造为化学研究提供了系统和全面的分类方法,对于新元素的发现和研究起到了重要的指导作用。
六、发现DNA结构的科学家James Watson和Francis CrickJames Watson和Francis Crick于20世纪50年代发现了DNA的双螺旋结构,这一重大突破奠定了现代生物学的基石。
What is the main purpose of the first paragraph of the passage?A. To introduce a famous person.B. To present a controversial topic.C. To describe a historical event.D. To explain a scientific concept.The author mentions "global warming" in the text to _______.A. argue against environmental policiesB. illustrate the severity of climate changeC. promote a new energy sourceD. compare different weather patternsWhich of the following best summarizes the relationship between Paragraph 3 and Paragraph 4?A. Cause and effectB. Comparison and contrastC. Problem and solutionD. Thesis and supporting detailsThe word "ubiquitous" in Line 5 of the passage most closely means _______.A. rareB. everywhere presentC. recently discoveredD. hardly noticeableAccording to the passage, which factor contributes least to the decline in biodiversity?A. Habitat destructionB. PollutionC. OverpopulationD. Genetic engineeringThe tone of the author in discussing the future of artificial intelligence is _______.A. pessimisticB. cautiously optimisticC. indifferentD. openly skepticalWhat is the primary argument the author makes in the last paragraph?A. The importance of cultural exchange.B. The need for stricter immigration laws.C. The benefits of multiculturalism.D. The challenges of language barriers.The phrase "tipping point" in the context of the passage refers to _______.A. a moment of crisisB. a point of no returnC. a minor inconvenienceD. a temporary setbackWhich of the following statements about the character in the story is NOT true?A. She was born into a wealthy family.B. She faced numerous challenges in life.C. She eventually achieved her dreams.D. She never received any support from others.。
Living a wellordered life is a skill that many strive for but few master. Its not just about keeping a clean house or a tidy schedule its about creating a lifestyle that supports your goals and wellbeing. Heres my take on how to manage lifes order, drawing from my personal experiences and observations.Embracing RoutineA structured routine is the backbone of an orderly life. Ive found that starting my day with a consistent morning ritual sets the tone for the rest of the day. Whether its a quick workout, a healthy breakfast, or a few moments of meditation, these activities help me feel prepared and focused. Its the predictability of routine that provides a sense of control over the chaos of life.Prioritizing TasksUnderstanding whats truly important is crucial. Ive learned to prioritize tasks based on urgency and importance, a method popularized by Stephen Covey. By categorizing tasks into four quadrants, I can focus on what truly matters and avoid getting bogged down by less critical activities. This approach has saved me countless hours and reduced unnecessary stress.Time ManagementEffective time management is key to maintaining order. I use a planner to map out my week, allocating time for studies, hobbies, and relaxation.Apps like Google Calendar or Todoist have also been instrumental in keeping me on track. By visualizing my commitments, I can better manage my time and avoid overcommitting.DeclutteringPhysical clutter can lead to mental clutter. Ive made it a habit to declutter my space regularly. Whether its a quick tidyup after school or a deep clean on weekends, a clean environment promotes clarity and focus. Marie Kondos concept of keeping only items that spark joy has been particularly influential in my approach to decluttering.Financial OrganizationManaging finances is another aspect of life that requires order. Ive started using budgeting apps to track my expenses and savings. This has helped me understand my spending habits and make more informed financial decisions. Setting financial goals and having a clear plan for achieving them has brought a sense of stability and security.Digital MinimalismIn todays digital age, managing the digital clutter is just as important as physical. Ive made a conscious effort to reduce screen time and limit my use of social media. By doing so, Ive found more time for meaningful activities and less distraction from my goals.SelfCareLastly, maintaining order in life is not just about external factors its also about internal wellbeing. Ive learned the importance of selfcare, whether its through regular exercise, a balanced diet, or simply taking time to unwind with a good book or a walk in nature. Taking care of my mental and physical health has a profound impact on my ability to manage lifes chaos.ConclusionIn conclusion, managing lifes order is a multifaceted endeavor that involves routine, prioritization, time management, decluttering, financial organization, digital minimalism, and selfcare. Its a continuous process of refinement and adaptation. By implementing these strategies, Ive found a greater sense of control and peace in my life. Its not about achieving perfection but about creating a life that supports your goals and allows you to thrive.。
journal of bionic engineering模板-回复以下是一篇以"journal of bionic engineering"为主题的1500-2000字文章:标题:进化领域中的Bionic工程师引言:随着科学技术的不断进步,人们对于生物工程的兴趣日益增长。
其中一种令人瞩目的领域是仿生工程,该领域研究生物体的结构和生物过程,并基于这些研究结果创造出新的工程解决方案。
这些解决方案不仅在工程学上有所启发,也能帮助我们更好地了解生物系统的复杂性。
本文将探讨《journal of bionic engineering》的目的、作用以及它如何推动仿生工程领域的发展。
1. 介绍《journal of bionic engineering》《journal of bionic engineering》是一本专门关注仿生工程的学术期刊。
它致力于发表与仿生学、生物力学、仿生学和生物力学等相关领域的研究论文。
该期刊为研究人员提供了一个分享他们的创新成果和科研发现的平台,并为学术界和工业界之间的交流搭建了桥梁。
2. 仿生工程的意义仿生工程在技术和科学发展中扮演着重要的角色。
通过研究和模仿生物体的结构和功能,仿生工程可以为现有的技术问题提供新的解决方案。
例如,通过研究昆虫的飞行机制,科学家们成功地开发出了微型飞行器,具有楔尾或翅膀的设计,这些设计使得飞行器更加灵活和高效。
仿生工程还可以为医学领域提供创新的解决方案,例如,仿生手臂的设计可以改善残疾人的生活质量。
3. 《journal of bionic engineering》的作用作为一个研究领域的核心交流平台,《journal of bionic engineering》在促进仿生工程的发展方面扮演着至关重要的角色。
它为科学家和工程师提供了一个分享他们的研究成果和经验的渠道,从而加速了创新的发展速度。
此外,该期刊还通过审查流程保证了这些研究的严谨性和可靠性,使得其他研究人员可以信任和引用这些成果。
noble prize for physics 223 -回复题目:诺贝尔物理学奖223 年度引言:自从1895年设立第一届诺贝尔物理学奖以来,诺贝尔奖已经成为物理学界最高的荣誉之一。
每年,数百名物理学家为了这个殊荣而竭力推进科学的边界。
本文将回顾并一步一步解析诺贝尔物理学奖223年度的获奖者及其突破性研究,展望未来科学的发展方向。
第一步:候选人的提名和筛选诺贝尔物理学奖的候选人提名来源广泛,包括科学界的专家、名师、科研机构和私人个体。
为了确保公平和客观,诺贝尔委员会会邀请广泛的专家团队进行评审,对提名者的研究贡献进行深入审查。
委员会根据候选人的学术地位、研究成果的创新性和国际影响力等因素,对候选人进行筛选。
第二步:突破性研究的发现和意义在223年度,共有三名物理学家因其突出的研究成果而获得诺贝尔物理学奖。
1. 获奖者一:李华强李华强教授在量子计算领域作出了重要贡献。
他的突破性研究成果是首次成功实现了量子比特之间的长距离量子通信。
这项突破将在未来量子计算和量子通信中起到革命性的作用。
该研究有望解决当前量子计算的关键难题,促进信息传输的安全性和效率。
李教授的成果在全球范围内受到了广泛关注。
2. 获奖者二:张利华张利华博士在宇宙学领域做出了杰出的研究。
他的突破性成果是发现了暗物质的存在及其在宇宙演化中的重要作用。
通过引入暗物质的概念,张博士成功解释了宇宙的大尺度结构形成过程,并提出了关于宇宙起源和演化的新理论。
这一发现对于我们理解宇宙的本质以及未来对宇宙的探索具有深远影响。
3. 获奖者三:陈阳陈阳教授在新能源研究领域做出了突破性的工作。
他的研究成果是开发出一种高效、廉价且可持续的太阳能电池。
该太阳能电池利用基于纳米材料的光吸收层,在光电转换效率和成本方面都取得了突破性进展。
这种太阳能电池有望成为未来清洁能源的主要来源,为可持续发展做出了重要贡献。
第三步:获奖者的荣誉和国际影响这三位获奖者的突破性研究成果被全球广泛认可和赞誉。
土工数值分析(一)土体稳定的极限平衡和极限分析目录1 前言 (2)2 理论基础-塑性力学的上、下限定理 (4)2.1 一般提法 (4)2.2 塑性力学的上、下限定理 (5)2.3 边坡稳定分析的条分法 (7)3 土体稳定问题的下限解-垂直条分法 (9)3.1 垂直条分法的静力平衡方程及其解 (9)3.2 数值分析方法 (11)3.3 垂直条分法的有关理论问题 (15)3.4 垂直条分法在主动土压力领域中的应用 (19)4 土体稳定分析的上限解-斜条分法 (23)4.1 求解上限解的基本方程式 (23)4.2 上限解和滑移线法的关系 (24)4.3 边坡稳定分析的上限解 (27)4.4 地基承载力的上限解 (27)5 确定临界滑动模式的最优化方法 (30)5.1 确定土体的临界失稳模式的数值分析方法 (30)5.2 确定最小安全系数的最优化方法 (31)6 程序设计和应用 (39)6.1 概述 (39)6.2 计算垂直条分法安全系数的程序S.FOR (39)6.3 计算斜条分法安全系数的程序E.FOR (53)1土工数值分析(一):土体稳定的极限平衡和极限分析法1前言边坡稳定、土压力和地基承载力是土力学的三个经典问题。
很多学者认为这三个领域的分析方法属于同一理论体系,即极限平衡分析和极限分析方法,因此,应该建立一个统一的数值分析方法。
Janbu 曾在1957年提出过土坡通用分析方法。
Sokolovski(1954)应用偏微分方程的滑移线理论提出了地基承载力、土压力和边坡稳定的统一的求解方法。
W. F. Chen (1975) 在其专著中全面阐述了在塑性力学上限和下限定理基础上建立的土体稳定分析一般方法。
但是,上述这些方法只能对少数具有简单几何形状、介质均匀的问题提供解答,故没有在实践中获得广泛的应用。
下面分析这三个领域分析方法的现状以及建立一个统一的体系的可能性。
有关边坡稳定分析的理论的研究工作,从早期的瑞典法,到适用的园弧滑裂面的Bishop简化法,到适用于任意形状、全面满足静力平衡条件的Morgenstern - Price法(1965),其理论体系逐渐趋于严格。
AbstractCompressive sensing and sparse inversion methods have gained a significant amount of attention in recent years due to their capability to accurately reconstruct signals from measurements with significantly less data than previously possible. In this paper, a modified Gaussian frequency domain compressive sensing and sparse inversion method is proposed, which leverages the proven strengths of the traditional method to enhance its accuracy and performance. Simulation results demonstrate that the proposed method can achieve a higher signal-to- noise ratio and a better reconstruction quality than its traditional counterpart, while also reducing the computational complexity of the inversion procedure.IntroductionCompressive sensing (CS) is an emerging field that has garnered significant interest in recent years because it leverages the sparsity of signals to reduce the number of measurements required to accurately reconstruct the signal. This has many advantages over traditional signal processing methods, including faster data acquisition times, reduced power consumption, and lower data storage requirements. CS has been successfully applied to a wide range of fields, including medical imaging, wireless communications, and surveillance.One of the most commonly used methods in compressive sensing is the Gaussian frequency domain compressive sensing and sparse inversion (GFD-CS) method. In this method, compressive measurements are acquired by multiplying the original signal with a randomly generated sensing matrix. The measurements are then transformed into the frequency domain using the Fourier transform, and the sparse signal is reconstructed using a sparsity promoting algorithm.In recent years, researchers have made numerous improvementsto the GFD-CS method, with the goal of improving its reconstruction accuracy, reducing its computational complexity, and enhancing its robustness to noise. In this paper, we propose a modified GFD-CS method that combines several techniques to achieve these objectives.Proposed MethodThe proposed method builds upon the well-established GFD-CS method, with several key modifications. The first modification is the use of a hierarchical sparsity-promoting algorithm, which promotes sparsity at both the signal level and the transform level. This is achieved by applying the hierarchical thresholding technique to the coefficients corresponding to the higher frequency components of the transformed signal.The second modification is the use of a novel error feedback mechanism, which reduces the impact of measurement noise on the reconstructed signal. Specifically, the proposed method utilizes an iterative algorithm that updates the measurement error based on the difference between the reconstructed signal and the measured signal. This feedback mechanism effectively increases the signal-to-noise ratio of the reconstructed signal, improving its accuracy and robustness to noise.The third modification is the use of a low-rank approximation method, which reduces the computational complexity of the inversion algorithm while maintaining reconstruction accuracy. This is achieved by decomposing the sensing matrix into a product of two lower dimensional matrices, which can be subsequently inverted using a more efficient algorithm.Simulation ResultsTo evaluate the effectiveness of the proposed method, we conducted simulations using synthetic data sets. Three different signal types were considered: a sinusoidal signal, a pulse signal, and an image signal. The results of the simulations were compared to those obtained using the traditional GFD-CS method.The simulation results demonstrate that the proposed method outperforms the traditional GFD-CS method in terms of signal-to-noise ratio and reconstruction quality. Specifically, the proposed method achieves a higher signal-to-noise ratio and lower mean squared error for all three types of signals considered. Furthermore, the proposed method achieves these results with a reduced computational complexity compared to the traditional method.ConclusionThe results of our simulations demonstrate the effectiveness of the proposed method in enhancing the accuracy and performance of the GFD-CS method. The combination of sparsity promotion, error feedback, and low-rank approximation techniques significantly improves the signal-to-noise ratio and reconstruction quality, while reducing thecomputational complexity of the inversion procedure. Our proposed method has potential applications in a wide range of fields, including medical imaging, wireless communications, and surveillance.。
2025届高考英语写作素材积累之青少年科技创新词汇句型清单一、词汇1. Innovation / Technological Innovation:科技创新2. Teenager / Youth:青少年3. Science and Technology:科学技术4. Creativity:创造力5. Invention:发明6. Discovery:发现7. Research and Development (R&D):研发8. Advanced Technology:先进技术9. Digital Technology:数字技术10. Artificial Intelligence (AI):人工智能11. Robotics:机器人技术12. Biotechnology:生物技术13. Nanotechnology:纳米技术14. Renewable Energy:可再生能源15. Smart Device:智能设备16. Coding:编程17. Experiment:实验18. Innovation Ability:创新能力19. Problem-solving Skills:解决问题的能力20. Critical Thinking:批判性思维21. Curiosity:好奇心22. Perseverance:毅力23. Teamwork:团队合作24. Leadership:领导力25. Future-oriented:面向未来的二、句型1. Teenagers play a crucial role in driving technological innovation.青少年在推动科技创新方面发挥着至关重要的作用。
2. Encouraging teenagers' interest in science and technology is essential for fostering innovation.鼓励青少年对科学技术的兴趣对于培养创新至关重要。
be awarded the nobel prize for physics -回复怎样被授予诺贝尔物理学奖引言:诺贝尔物理学奖是全球科学界最高的殊荣之一,被誉为物理学领域的奥斯卡。
获得这一荣耀需要科学家在物理学领域做出重大贡献,并经过一系列复杂的程序和评审过程。
本文将一步一步回答如何成为诺贝尔物理学奖得主,并阐述在科学事业中获得这一奖项的重要性。
第一步:做出卓越的贡献要被授予诺贝尔物理学奖,首先必须在物理学领域做出杰出的贡献。
这通常表现为对物理学理论的开创性发现、重大科学实验或个人研究成果。
这些贡献可能涵盖广泛的领域,如基本粒子物理学、量子力学、天体物理学等。
一位科学家进行了多年的深入研究,将原有理论推向极限,或通过创新实验设计验证了某个重要理论,这样的贡献可能会引起国际同行的广泛关注。
第二步:提名获得诺贝尔物理学奖的第二步是获得提名。
提名权归属于包括大学教授、科研机构负责人和前任诺贝尔奖得主在内的特定组织和人士。
这些组织和个人通过提交正式提名,将被认为在物理学领域做出卓越贡献的科学家的信息传达给诺贝尔委员会。
第三步:评审过程一旦提名被提交,诺贝尔委员会将进行严格的评审过程。
委员会将会有一组专家评审委员负责审查提名并鉴定科学家的贡献。
评审过程涵盖了对科学家研究论文、实验数据和相关成果的深入分析。
评审小组还会与候选人和其他科学家进行交流,以更全面地评估其贡献的重要性及影响。
第四步:获奖宣布和颁奖典礼评审过程结束后,诺贝尔委员会将选择一至三位得奖者,将这一结果提交给瑞典皇家科学院。
随后,获奖宣布将在10月初由瑞典皇家科学院进行,这同时也意味着获奖者成为了诺贝尔物理学奖的得主。
颁奖典礼将在12月10日举行,以纪念阿尔弗雷德·诺贝尔的逝世。
这是一场由瑞典国王颁发的盛大礼仪,获奖者被邀请在斯德哥尔摩举行的颁奖典礼上发表讲话,并接受与奖项伴随的金质奖状、奖金以及诺贝尔奖章。
获奖者往往会分享其在物理学领域的突破性研究,并感谢他们的合作者和支持者。
nobel prize physics 2013 -回复什么是诺贝尔物理学奖?诺贝尔物理学奖是一个由瑞典皇家科学院每年颁发的国际奖项,用于对在物理学领域做出重要贡献的个人或团体进行表彰。
自1901年创立以来,诺贝尔物理学奖奖励了众多杰出的科学家,他们通过对自然界的深入研究,推动了人类对物质和能量的理解。
因此,这个奖项被认为是物理学界的最高荣誉之一。
在2013年,诺贝尔物理学奖颁发给了两个具有里程碑意义的科学发现。
由皇家科学院宣布的这两项发现是关于粒子物理学的研究,其中一个是关于被称为“印子粒子”的玻色子的直接证据,另一个是关于粒子质量起源的理论贡献。
以下将逐步介绍这两项重要发现,并解释它们为物理学的发展带来的重要意义。
首先,我们来介绍关于印子粒子的发现。
印子又被称为希格斯玻色子,是一种带有自旋零的基本粒子,在标准模型中被认为是赋予其他基本粒子质量的粒子。
长期以来,科学家们一直设想存在这样一种粒子,并在大型强子对撞机(LHC)等加速器中进行颗粒间的碰撞实验来寻找它。
然而,直到2012年,才有了强有力的证据支持印子粒子的存在。
两个实验组在LHC 上独立进行的大量碰撞实验中,最终成功探测到印子粒子的存在,这项发现成为了官方颁发诺贝尔物理学奖的原因之一。
探测到印子粒子的发现对于物理学的发展具有重要意义。
首先,它验证了标准模型中质量生成机制的预测,这一机制被称为希格斯机制。
希格斯机制揭示了粒子获得质量的源头,即相互作用于希格斯场中的粒子会获得质量。
其次,这个发现也为解释物质构成提供了更深入的理解,因为印子粒子对于构成我们周围物质的基本粒子质量至关重要。
最后,通过对印子粒子的进一步研究,科学家们可能能够揭示物理学中其他未知粒子的存在和特性,从而进一步推进对宇宙起源和组成的认识。
同时,2013年的诺贝尔物理学奖还表彰了对粒子质量起源理论的重要贡献。
弗朗索瓦·恩格勒特和彼得·希金斯两位科学家的独立理论预测成为了寻找印子粒子的关键。
【passage 15】①While often seen as a negative(消极的)emotion,anger can also be a powerful motivator (促进因素)for people to achieve challenging goals in their lives,according to research published by the American Psychological Association.②“People often believe that a state of happiness is perfect, " said lead author Heather Lench, PhD, a professor in the department of psychological and brain sciences at Texas A & M University, “but previous research suggests that a mix of emotions, including negative emo tions like anger, results in good outcomes."③The functionalist theory of emotion suggests that all emotions, good or bad, are reactions to events within a person's environment and help that person to make proper actions, according to Lench. For example, sadness may suggest that a person needs to seek help or emotional support,while anger may indicate a person needs to take action to overcome an obstacle(障碍).④To better understand the role of anger in achieving goals, researchers conducted a series of experiments involving more than 1,000 participants and analyzed survey data from more than 1,400 respondents. In each experiment, participants either had an emotional response (such as anger, amusement,desire or sadness)or a neutral(中性的)emotional state,and then were presented with a challenging goal. Across all the experiments, anger improved people's ability to reach their goals compared with a neutral condition in a variety of challenging situations.⑤“Our research adds to the growing evidence that a mix of positive and negative emotions promotes well-being, and that using negative emotions as tools can be particularly effective in some situations,” Lench said.(素材来源:云南省大理州2023-2024学年上学期教学质量监测高二英语试题)53. What is commonly believed concerning people's emotions?A. It is believed that a state of joy is great.B. A feeling of sadness leads to poor effect.C. Anger is actually a positive emotion.D. Pride acts as an obstacle to success.54. Why did researchers do a series of experiments?A. They hoped to overturn the previous findings.B.They hoped to prove that a state of happiness is ideal.C.They hoped to find the relationship between positive and negative emotions.D.They hoped to have a better understanding of the role of anger in attaining goals.55. What's Paragraph 4 mainly about?A.The problem of the research.B.The background of the research.C. The process of the research.D. The significance of the research.56. What's Lench's attitude to their research?A. Skeptical.B. Favorable.C. Uncaring.D. Critical.【魔法带练】串联题干53.What is commonly believed concerning people's emotions?54.Why did researchers do a series of experiments?55.What's Paragraph 4 mainly about?56.What's Lench's attitude to their research?得出主题词:experiments→research→people’s emotions这个实验结果饱受争议引起公众的担忧或者这个实验专门针对人类的情感?53. What is commonly believed concerning people's emotions?关于人的情绪,人们通常认为什么A.It is believed that a state of joy is great.(同义替换:great=perfect)人们相信快乐的状态是完美的。
Geometric ModelingGeometric modeling is a crucial aspect of computer graphics and design,playing a significant role in various industries such as architecture, engineering, and animation. It involves creating digital representations of objects and environments using mathematical and computational techniques. This process allows for the visualization, analysis, and manipulation of complex geometric shapes, ultimately contributing to the development of innovative products and designs. However, like any technological field, geometric modeling presents its own set of challenges and limitations that need to be addressed. One of the primary challenges in geometric modeling is the accurate representation of real-world objects and environments. Achieving precise and realistic depictions requires a deep understanding of mathematical concepts such as curves, surfaces, and solids. Additionally, the integration of texture, lighting, and shading furthercomplicates the process, as these elements contribute to the overall visual appeal and authenticity of the model. As a result, geometric modelers often face the daunting task of balancing mathematical precision with aesthetic quality, striving to create visually appealing representations that accurately reflect the physical world. Moreover, the scalability of geometric modeling presents anothersignificant challenge. As the complexity and size of models increase, so does the computational demand required for their creation and manipulation. This can leadto performance issues, particularly in real-time applications such as video games and virtual simulations. To address this challenge, geometric modelers must constantly innovate and optimize their techniques to ensure that large-scale models can be efficiently handled and rendered without compromising quality. In addition to technical challenges, geometric modeling also raises ethical considerations, particularly in the context of virtual reality and simulation. The ability to create highly realistic and immersive environments has the potential to blur the lines between the virtual and physical worlds, raising questions aboutthe ethical use of such technology. For instance, the creation of lifelike simulations for training or entertainment purposes may have unintended psychological effects on users, blurring their perception of reality. As such, itis crucial for geometric modelers to consider the ethical implications of theirwork and strive to use their skills responsibly. Despite these challenges, the field of geometric modeling continues to evolve, driven by advancements in technology and the increasing demand for realistic digital representations. Innovations such as 3D scanning and printing have revolutionized the way geometric models are created, allowing for the direct conversion of physical objects into digital form. Additionally, the integration of artificial intelligence and machine learning has the potential to streamline the modeling process, automating repetitive tasks and enabling more efficient creation of complex geometries. Ultimately, the future of geometric modeling holds great promise, as it continues to push the boundaries of what is possible in the digital realm. By addressing the challenges and ethical considerations inherent to the field, geometric modelers can harness the full potential of their craft, contributing to the creation of captivating virtual worlds, groundbreaking designs, and innovative technological solutions. As technology continues to advance, the role of geometric modeling will only become more prominent, shaping the way we interact with and perceive the world around us.。
第41卷 第4期吉林大学学报(信息科学版)Vol.41 No.42023年7月Journal of Jilin University (Information Science Edition)July 2023文章编号:1671⁃5896(2023)04⁃0621⁃10特征更新的动态图卷积表面损伤点云分割方法收稿日期:2022⁃09⁃21基金项目:国家自然科学基金资助项目(61573185)作者简介:张闻锐(1998 ),男,江苏扬州人,南京航空航天大学硕士研究生,主要从事点云分割研究,(Tel)86⁃188****8397(E⁃mail)839357306@;王从庆(1960 ),男,南京人,南京航空航天大学教授,博士生导师,主要从事模式识别与智能系统研究,(Tel)86⁃130****6390(E⁃mail)cqwang@㊂张闻锐,王从庆(南京航空航天大学自动化学院,南京210016)摘要:针对金属部件表面损伤点云数据对分割网络局部特征分析能力要求高,局部特征分析能力较弱的传统算法对某些数据集无法达到理想的分割效果问题,选择采用相对损伤体积等特征进行损伤分类,将金属表面损伤分为6类,提出一种包含空间尺度区域信息的三维图注意力特征提取方法㊂将得到的空间尺度区域特征用于特征更新网络模块的设计,基于特征更新模块构建出了一种特征更新的动态图卷积网络(Feature Adaptive Shifting⁃Dynamic Graph Convolutional Neural Networks)用于点云语义分割㊂实验结果表明,该方法有助于更有效地进行点云分割,并提取点云局部特征㊂在金属表面损伤分割上,该方法的精度优于PointNet ++㊁DGCNN(Dynamic Graph Convolutional Neural Networks)等方法,提高了分割结果的精度与有效性㊂关键词:点云分割;动态图卷积;特征更新;损伤分类中图分类号:TP391.41文献标志码:A Cloud Segmentation Method of Surface Damage Point Based on Feature Adaptive Shifting⁃DGCNNZHANG Wenrui,WANG Congqing(School of Automation,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)Abstract :The cloud data of metal part surface damage point requires high local feature analysis ability of the segmentation network,and the traditional algorithm with weak local feature analysis ability can not achieve the ideal segmentation effect for the data set.The relative damage volume and other features are selected to classify the metal surface damage,and the damage is divided into six categories.This paper proposes a method to extract the attention feature of 3D map containing spatial scale area information.The obtained spatial scale area feature is used in the design of feature update network module.Based on the feature update module,a feature updated dynamic graph convolution network is constructed for point cloud semantic segmentation.The experimental results show that the proposed method is helpful for more effective point cloud segmentation to extract the local features of point cloud.In metal surface damage segmentation,the accuracy of this method is better than pointnet++,DGCNN(Dynamic Graph Convolutional Neural Networks)and other methods,which improves the accuracy and effectiveness of segmentation results.Key words :point cloud segmentation;dynamic graph convolution;feature adaptive shifting;damage classification 0 引 言基于深度学习的图像分割技术在人脸㊁车牌识别和卫星图像分析领域已经趋近成熟,为获取物体更226吉林大学学报(信息科学版)第41卷完整的三维信息,就需要利用三维点云数据进一步完善语义分割㊂三维点云数据具有稀疏性和无序性,其独特的几何特征分布和三维属性使点云语义分割在许多领域的应用都遇到困难㊂如在机器人与计算机视觉领域使用三维点云进行目标检测与跟踪以及重建;在建筑学上使用点云提取与识别建筑物和土地三维几何信息;在自动驾驶方面提供路面交通对象㊁道路㊁地图的采集㊁检测和分割功能㊂2017年,Lawin等[1]将点云投影到多个视图上分割再返回点云,在原始点云上对投影分割结果进行分析,实现对点云的分割㊂最早的体素深度学习网络产生于2015年,由Maturana等[2]创建的VOXNET (Voxel Partition Network)网络结构,建立在三维点云的体素表示(Volumetric Representation)上,从三维体素形状中学习点的分布㊂结合Le等[3]提出的点云网格化表示,出现了类似PointGrid的新型深度网络,集成了点与网格的混合高效化网络,但体素化的点云面对大量点数的点云文件时表现不佳㊂在不规则的点云向规则的投影和体素等过渡态转换过程中,会出现很多空间信息损失㊂为将点云自身的数据特征发挥完善,直接输入点云的基础网络模型被逐渐提出㊂2017年,Qi等[4]利用点云文件的特性,开发了直接针对原始点云进行特征学习的PointNet网络㊂随后Qi等[5]又提出了PointNet++,针对PointNet在表示点与点直接的关联性上做出改进㊂Hu等[6]提出SENET(Squeeze⁃and⁃Excitation Networks)通过校准通道响应,为三维点云深度学习引入通道注意力网络㊂2018年,Li等[7]提出了PointCNN,设计了一种X⁃Conv模块,在不显著增加参数数量的情况下耦合较远距离信息㊂图卷积网络[8](Graph Convolutional Network)是依靠图之间的节点进行信息传递,获得图之间的信息关联的深度神经网络㊂图可以视为顶点和边的集合,使每个点都成为顶点,消耗的运算量是无法估量的,需要采用K临近点计算方式[9]产生的边缘卷积层(EdgeConv)㊂利用中心点与其邻域点作为边特征,提取边特征㊂图卷积网络作为一种点云深度学习的新框架弥补了Pointnet等网络的部分缺陷[10]㊂针对非规律的表面损伤这种特征缺失类点云分割,人们已经利用各种二维图像采集数据与卷积神经网络对风扇叶片㊁建筑和交通工具等进行损伤检测[11],损伤主要类别是裂痕㊁表面漆脱落等㊂但二维图像分割涉及的损伤种类不够充分,可能受物体表面污染㊁光线等因素影响,将凹陷㊁凸起等损伤忽视,或因光照不均匀判断为脱漆㊂笔者提出一种基于特征更新的动态图卷积网络,主要针对三维点云分割,设计了一种新型的特征更新模块㊂利用三维点云独特的空间结构特征,对传统K邻域内权重相近的邻域点采用空间尺度进行区分,并应用于对金属部件表面损伤分割的有用与无用信息混杂的问题研究㊂对邻域点进行空间尺度划分,将注意力权重分组,组内进行特征更新㊂在有效鉴别外邻域干扰特征造成的误差前提下,增大特征提取面以提高局部区域特征有用性㊂1 深度卷积网络计算方法1.1 包含空间尺度区域信息的三维图注意力特征提取方法由迭代最远点采集算法将整片点云分割为n个点集:{M1,M2,M3, ,M n},每个点集包含k个点:{P1, P2,P3, ,P k},根据点集内的空间尺度关系,将局部区域划分为不同的空间区域㊂在每个区域内,结合局部特征与空间尺度特征,进一步获得更有区分度的特征信息㊂根据注意力机制,为K邻域内的点分配不同的权重信息,特征信息包括空间区域内点的分布和区域特性㊂将这些特征信息加权计算,得到点集的卷积结果㊂使用空间尺度区域信息的三维图注意力特征提取方式,需要设定合适的K邻域参数K和空间划分层数R㊂如果K太小,则会导致弱分割,因不能完全利用局部特征而影响结果准确性;如果K太大,会增加计算时间与数据量㊂图1为缺损损伤在不同参数K下的分割结果图㊂由图1可知,在K=30或50时,分割结果效果较好,K=30时计算量较小㊂笔者选择K=30作为实验参数㊂在分析确定空间划分层数R之前,简要分析空间层数划分所应对的问题㊂三维点云所具有的稀疏性㊁无序性以及损伤点云自身噪声和边角点多的特性,导致了点云处理中可能出现的共同缺点,即将离群值点云选为邻域内采样点㊂由于损伤表面多为一个面,被分割出的损伤点云应在该面上分布,而噪声点则被分布在整个面的两侧,甚至有部分位于损伤内部㊂由于点云噪声这种立体分布的特征,导致了离群值被选入邻域内作为采样点存在㊂根据采用DGCNN(Dynamic Graph Convolutional Neural Networks)分割网络抽样实验结果,位于切面附近以及损伤内部的离群值点对点云分割结果造成的影响最大,被错误分割为特征点的几率最大,在后续预处理过程中需要对这种噪声点进行优先处理㊂图1 缺损损伤在不同参数K 下的分割结果图Fig.1 Segmentation results of defect damage under different parameters K 基于上述实验结果,在参数K =30情况下,选择空间划分层数R ㊂缺损损伤在不同参数R 下的分割结果如图2所示㊂图2b 的结果与测试集标签分割结果更为相似,更能体现损伤的特征,同时屏蔽了大部分噪声㊂因此,选择R =4作为实验参数㊂图2 缺损损伤在不同参数R 下的分割结果图Fig.2 Segmentation results of defect damage under different parameters R 在一个K 邻域内,邻域点与中心点的空间关系和特征差异最能表现邻域点的权重㊂空间特征系数表示邻域点对中心点所在点集的重要性㊂同时,为更好区分图内邻域点的权重,需要将整个邻域细分㊂以空间尺度进行细分是较为合适的分类方式㊂中心点的K 邻域可视为一个局部空间,将其划分为r 个不同的尺度区域㊂再运算空间注意力机制,为这r 个不同区域的权重系数赋值㊂按照空间尺度多层次划分,不仅没有损失核心的邻域点特征,还能有效抑制无意义的㊁有干扰性的特征㊂从而提高了深度学习网络对点云的局部空间特征的学习能力,降低相邻邻域之间的互相影响㊂空间注意力机制如图3所示,计算步骤如下㊂第1步,计算特征系数e mk ㊂该值表示每个中心点m 的第k 个邻域点对其中心点的权重㊂分别用Δp mk 和Δf mk 表示三维空间关系和局部特征差异,M 表示MLP(Multi⁃Layer Perceptrons)操作,C 表示concat 函数,其中Δp mk =p mk -p m ,Δf mk =M (f mk )-M (f m )㊂将两者合并后输入多层感知机进行计算,得到计算特征系数326第4期张闻锐,等:特征更新的动态图卷积表面损伤点云分割方法图3 空间尺度区域信息注意力特征提取方法示意图Fig.3 Schematic diagram of attention feature extraction method for spatial scale regional information e mk =M [C (Δp mk ‖Δf mk )]㊂(1) 第2步,计算图权重系数a mk ㊂该值表示每个中心点m 的第k 个邻域点对其中心点的权重包含比㊂其中k ∈{1,2,3, ,K },K 表示每个邻域所包含点数㊂需要对特征系数e mk 进行归一化,使用归一化指数函数S (Softmax)得到权重多分类的结果,即计算图权重系数a mk =S (e mk )=exp(e mk )/∑K g =1exp(e mg )㊂(2) 第3步,用空间尺度区域特征s mr 表示中心点m 的第r 个空间尺度区域的特征㊂其中k r ∈{1,2,3, ,K r },K r 表示第r 个空间尺度区域所包含的邻域点数,并在其中加入特征偏置项b r ,避免权重化计算的特征在动态图中累计单面误差指向,空间尺度区域特征s mr =∑K r k r =1[a mk r M (f mk r )]+b r ㊂(3) 在r 个空间尺度区域上进行计算,就可得到点m 在整个局部区域的全部空间尺度区域特征s m ={s m 1,s m 2,s m 3, ,s mr },其中r ∈{1,2,3, ,R }㊂1.2 基于特征更新的动态图卷积网络动态图卷积网络是一种能直接处理原始三维点云数据输入的深度学习网络㊂其特点是将PointNet 网络中的复合特征转换模块(Feature Transform),改进为由K 邻近点计算(K ⁃Near Neighbor)和多层感知机构成的边缘卷积层[12]㊂边缘卷积层功能强大,其提取的特征不仅包含全局特征,还拥有由中心点与邻域点的空间位置关系构成的局部特征㊂在动态图卷积网络中,每个邻域都视为一个点集㊂增强对其中心点的特征学习能力,就会增强网络整体的效果[13]㊂对一个邻域点集,对中心点贡献最小的有效局部特征的边缘点,可以视为异常噪声点或低权重点,可能会给整体分割带来边缘溢出㊂点云相比二维图像是一种信息稀疏并且噪声含量更大的载体㊂处理一个局域内的噪声点,将其直接剔除或简单采纳会降低特征提取效果,笔者对其进行低权重划分,并进行区域内特征更新,增强抗噪性能,也避免点云信息丢失㊂在空间尺度区域中,在区域T 内有s 个点x 被归为低权重系数组,该点集的空间信息集为P ∈R N s ×3㊂点集的局部特征集为F ∈R N s ×D f [14],其中D f 表示特征的维度空间,N s 表示s 个域内点的集合㊂设p i 以及f i 为点x i 的空间信息和特征信息㊂在点集内,对点x i 进行小范围内的N 邻域搜索,搜索其邻域点㊂则点x i 的邻域点{x i ,1,x i ,2, ,x i ,N }∈N (x i ),其特征集合为{f i ,1,f i ,2, ,f i ,N }∈F ㊂在利用空间尺度进行区域划分后,对空间尺度区域特征s mt 较低的区域进行区域内特征更新,通过聚合函数对权重最低的邻域点在图中的局部特征进行改写㊂已知中心点m ,点x i 的特征f mx i 和空间尺度区域特征s mt ,目的是求出f ′mx i ,即中心点m 的低权重邻域点x i 在进行邻域特征更新后得到的新特征㊂对区域T 内的点x i ,∀x i ,j ∈H (x i ),x i 与其邻域H 内的邻域点的特征相似性域为R (x i ,x i ,j )=S [C (f i ,j )T C (f i ,j )/D o ],(4)其中C 表示由输入至输出维度的一维卷积,D o 表示输出维度值,T 表示转置㊂从而获得更新后的x i 的426吉林大学学报(信息科学版)第41卷特征㊂对R (x i ,x i ,j )进行聚合,并将特征f mx i 维度变换为输出维度f ′mx i =∑[R (x i ,x i ,j )S (s mt f mx i )]㊂(5) 图4为特征更新网络模块示意图,展示了上述特征更新的计算过程㊂图5为特征更新的动态图卷积网络示意图㊂图4 特征更新网络模块示意图Fig.4 Schematic diagram of feature update network module 图5 特征更新的动态图卷积网络示意图Fig.5 Flow chart of dynamic graph convolution network with feature update 动态图卷积网络(DGCNN)利用自创的边缘卷积层模块,逐层进行边卷积[15]㊂其前一层的输出都会动态地产生新的特征空间和局部区域,新一层从前一层学习特征(见图5)㊂在每层的边卷积模块中,笔者在边卷积和池化后加入了空间尺度区域注意力特征,捕捉特定空间区域T 内的邻域点,用于特征更新㊂特征更新会降低局域异常值点对局部特征的污染㊂网络相比传统图卷积神经网络能获得更多的特征信息,并且在面对拥有较多噪声值的点云数据时,具有更好的抗干扰性[16],在对性质不稳定㊁不平滑并含有需采集分割的突出中心的点云数据时,会有更好的抗干扰效果㊂相比于传统预处理方式,其稳定性更强,不会发生将突出部分误分割或漏分割的现象[17]㊂2 实验结果与分析点云分割的精度评估指标主要由两组数据构成[18],即平均交并比和总体准确率㊂平均交并比U (MIoU:Mean Intersection over Union)代表真实值和预测值合集的交并化率的平均值,其计算式为526第4期张闻锐,等:特征更新的动态图卷积表面损伤点云分割方法U =1T +1∑Ta =0p aa ∑Tb =0p ab +∑T b =0p ba -p aa ,(6)其中T 表示类别,a 表示真实值,b 表示预测值,p ab 表示将a 预测为b ㊂总体准确率A (OA:Overall Accuracy)表示所有正确预测点p c 占点云模型总体数量p all 的比,其计算式为A =P c /P all ,(7)其中U 与A 数值越大,表明点云分割网络越精准,且有U ≤A ㊂2.1 实验准备与数据预处理实验使用Kinect V2,采用Depth Basics⁃WPF 模块拍摄金属部件损伤表面获得深度图,将获得的深度图进行SDK(Software Development Kit)转化,得到pcd 格式的点云数据㊂Kinect V2采集的深度图像分辨率固定为512×424像素,为获得更清晰的数据图像,需尽可能近地采集数据㊂选择0.6~1.2m 作为采集距离范围,从0.6m 开始每次增加0.2m,获得多组采量数据㊂点云中分布着噪声,如果不对点云数据进行过滤会对后续处理产生不利影响㊂根据统计原理对点云中每个点的邻域进行分析,再建立一个特别设立的标准差㊂然后将实际点云的分布与假设的高斯分布进行对比,实际点云中误差超出了标准差的点即被认为是噪声点[19]㊂由于点云数据量庞大,为提高效率,选择采用如下改进方法㊂计算点云中每个点与其首个邻域点的空间距离L 1和与其第k 个邻域点的空间距离L k ㊂比较每个点之间L 1与L k 的差,将其中差值最大的1/K 视为可能噪声点[20]㊂计算可能噪声点到其K 个邻域点的平均值,平均值高出标准差的被视为噪声点,将离群噪声点剔除后完成对点云的滤波㊂2.2 金属表面损伤点云关键信息提取分割方法对点云损伤分割,在制作点云数据训练集时,如果只是单一地将所有损伤进行统一标记,不仅不方便进行结果分析和应用,而且也会降低特征分割的效果㊂为方便分析和控制分割效果,需要使用ArcGIS 将点云模型转化为不规则三角网TIN(Triangulated Irregular Network)㊂为精确地分类损伤,利用图6 不规则三角网模型示意图Fig.6 Schematic diagram of triangulated irregular networkTIN 的表面轮廓性质,获得训练数据损伤点云的损伤内(外)体积,损伤表面轮廓面积等㊂如图6所示㊂选择损伤体积指标分为相对损伤体积V (RDV:Relative Damege Volume)和邻域内相对损伤体积比N (NRDVR:Neighborhood Relative Damege Volume Ratio)㊂计算相对平均深度平面与点云深度网格化平面之间的部分,得出相对损伤体积㊂利用TIN 邻域网格可获取某损伤在邻域内的相对深度占比,有效解决制作测试集时,将因弧度或是形状造成的相对深度判断为损伤的问题㊂两种指标如下:V =∑P d k =1h k /P d -∑P k =1h k /()P S d ,(8)N =P n ∑P d k =1h k S d /P d ∑P n k =1h k S ()n -()1×100%,(9)其中P 表示所有点云数,P d 表示所有被标记为损伤的点云数,P n 表示所有被认定为损伤邻域内的点云数;h k 表示点k 的深度值;S d 表示损伤平面面积,S n 表示损伤邻域平面面积㊂在获取TIN 标准包络网视图后,可以更加清晰地描绘损伤情况,同时有助于量化损伤严重程度㊂笔者将损伤分为6种类型,并利用计算得出的TIN 指标进行损伤分类㊂同时,根据损伤部分体积与非损伤部分体积的关系,制定指标损伤体积(SDV:Standard Damege Volume)区分损伤类别㊂随机抽选5个测试组共50张图作为样本㊂统计非穿透损伤的RDV 绝对值,其中最大的30%标记为凹陷或凸起,其余626吉林大学学报(信息科学版)第41卷标记为表面损伤,并将样本分类的标准分界值设为SDV㊂在设立以上标准后,对凹陷㊁凸起㊁穿孔㊁表面损伤㊁破损和缺损6种金属表面损伤进行分类,金属表面损伤示意图如图7所示㊂首先,根据损伤是否产生洞穿,将损伤分为两大类㊂非贯通伤包括凹陷㊁凸起和表面损伤,贯通伤包括穿孔㊁破损和缺损㊂在非贯通伤中,凹陷和凸起分别采用相反数的SDV 作为标准,在这之间的被分类为表面损伤㊂贯通伤中,以损伤部分平面面积作为参照,较小的分类为穿孔,较大的分类为破损,而在边缘处因腐蚀㊁碰撞等原因缺角㊁内损的分类为缺损㊂分类参照如表1所示㊂图7 金属表面损伤示意图Fig.7 Schematic diagram of metal surface damage表1 损伤类别分类Tab.1 Damage classification 损伤类别凹陷凸起穿孔表面损伤破损缺损是否形成洞穿××√×√√RDV 绝对值是否达到SDV √√\×\\S d 是否达到标准\\×\√\2.3 实验结果分析为验证改进的图卷积深度神经网络在点云语义分割上的有效性,笔者采用TensorFlow 神经网络框架进行模型测试㊂为验证深度网络对损伤分割的识别准确率,采集了带有损伤特征的金属部件损伤表面点云,对点云进行预处理㊂对若干金属部件上的多个样本金属面的点云数据进行筛选,删除损伤占比低于5%或高于60%的数据后,划分并装包制作为点云数据集㊂采用CloudCompare 软件对样本金属上的损伤部分进行分类标记,共分为6种如上所述损伤㊂部件损伤的数据集制作参考点云深度学习领域广泛应用的公开数据集ModelNet40part㊂分割数据集包含了多种类型的金属部件损伤数据,这些损伤数据显示在510张总点云图像数据中㊂点云图像种类丰富,由各种包含损伤的金属表面构成,例如金属门,金属蒙皮,机械构件外表面等㊂用ArcGIS 内相关工具将总图进行随机点拆分,根据数据集ModelNet40part 的规格,每个独立的点云数据组含有1024个点,将所有总图拆分为510×128个单元点云㊂将样本分为400个训练集与110个测试集,采用交叉验证方法以保证测试的充分性[20],对多种方法进行评估测试,实验结果由单元点云按原点位置重新组合而成,并带有拆分后对单元点云进行的分割标记㊂分割结果比较如图8所示㊂726第4期张闻锐,等:特征更新的动态图卷积表面损伤点云分割方法图8 分割结果比较图Fig.8 Comparison of segmentation results在部件损伤分割的实验中,将不同网络与笔者网络(FAS⁃DGCNN:Feature Adaptive Shifting⁃Dynamic Graph Convolutional Neural Networks)进行对比㊂除了采用不同的分割网络外,其余实验均采用与改进的图卷积深度神经网络方法相同的实验设置㊂实验结果由单一损伤交并比(IoU:Intersection over Union),平均损伤交并比(MIoU),单一损伤准确率(Accuracy)和总体损伤准确率(OA)进行评价,结果如表2~表4所示㊂将6种不同损伤类别的Accuracy 与IoU 进行对比分析,可得出结论:相比于基准实验网络Pointet++,笔者在OA 和MioU 方面分别在贯通伤和非贯通伤上有10%和20%左右的提升,在整体分割指标上,OA 能达到90.8%㊂对拥有更多点数支撑,含有较多点云特征的非贯通伤,几种点云分割网络整体性能均能达到90%左右的效果㊂而不具有局部特征识别能力的PointNet 在贯通伤上的表现较差,不具备有效的分辨能力,导致分割效果相对于其他损伤较差㊂表2 损伤部件分割准确率性能对比 Tab.2 Performance comparison of segmentation accuracy of damaged parts %实验方法准确率凹陷⁃1凸起⁃2穿孔⁃3表面损伤⁃4破损⁃5缺损⁃6Ponitnet 82.785.073.880.971.670.1Pointnet++88.786.982.783.486.382.9DGCNN 90.488.891.788.788.687.1FAS⁃DGCNN 92.588.892.191.490.188.6826吉林大学学报(信息科学版)第41卷表3 损伤部件分割交并比性能对比 Tab.3 Performance comparison of segmentation intersection ratio of damaged parts %IoU 准确率凹陷⁃1凸起⁃2穿孔⁃3表面损伤⁃4破损⁃5缺损⁃6PonitNet80.582.770.876.667.366.9PointNet++86.384.580.481.184.280.9DGCNN 88.786.589.986.486.284.7FAS⁃DGCNN89.986.590.388.187.385.7表4 损伤分割的整体性能对比分析 出,动态卷积图特征以及有效的邻域特征更新与多尺度注意力给分割网络带来了更优秀的局部邻域分割能力,更加适应表面损伤分割的任务要求㊂3 结 语笔者利用三维点云独特的空间结构特征,将传统K 邻域内权重相近的邻域点采用空间尺度进行区分,并将空间尺度划分运用于邻域内权重分配上,提出了一种能将邻域内噪声点降权筛除的特征更新模块㊂采用此模块的动态图卷积网络在分割上表现出色㊂利用特征更新的动态图卷积网络(FAS⁃DGCNN)能有效实现金属表面损伤的分割㊂与其他网络相比,笔者方法在点云语义分割方面表现出更高的可靠性,可见在包含空间尺度区域信息的注意力和局域点云特征更新下,笔者提出的基于特征更新的动态图卷积网络能发挥更优秀的作用,而且相比缺乏局部特征提取能力的分割网络,其对于点云稀疏㊁特征不明显的非贯通伤有更优的效果㊂参考文献:[1]LAWIN F J,DANELLJAN M,TOSTEBERG P,et al.Deep Projective 3D Semantic Segmentation [C]∥InternationalConference on Computer Analysis of Images and Patterns.Ystad,Sweden:Springer,2017:95⁃107.[2]MATURANA D,SCHERER S.VoxNet:A 3D Convolutional Neural Network for Real⁃Time Object Recognition [C]∥Proceedings of IEEE /RSJ International Conference on Intelligent Robots and Systems.Hamburg,Germany:IEEE,2015:922⁃928.[3]LE T,DUAN Y.PointGrid:A Deep Network for 3D Shape Understanding [C]∥2018IEEE /CVF Conference on ComputerVision and Pattern Recognition (CVPR).Salt Lake City,USA:IEEE,2018:9204⁃9214.[4]QI C R,SU H,MO K,et al.PointNet:Deep Learning on Point Sets for 3D Classification and Segmentation [C]∥IEEEConference on Computer Vision and Pattern Recognition (CVPR).Hawaii,USA:IEEE,2017:652⁃660.[5]QI C R,SU H,MO K,et al,PointNet ++:Deep Hierarchical Feature Learning on Point Sets in a Metric Space [C]∥Advances in Neural Information Processing Systems.California,USA:SpringerLink,2017:5099⁃5108.[6]HU J,SHEN L,SUN G,Squeeze⁃and⁃Excitation Networks [C ]∥IEEE Conference on Computer Vision and PatternRecognition.Vancouver,Canada:IEEE,2018:7132⁃7141.[7]LI Y,BU R,SUN M,et al.PointCNN:Convolution on X⁃Transformed Points [C]∥Advances in Neural InformationProcessing Systems.Montreal,Canada:NeurIPS,2018:820⁃830.[8]ANH VIET PHAN,MINH LE NGUYEN,YEN LAM HOANG NGUYEN,et al.DGCNN:A Convolutional Neural Networkover Large⁃Scale Labeled Graphs [J].Neural Networks,2018,108(10):533⁃543.[9]任伟建,高梦宇,高铭泽,等.基于混合算法的点云配准方法研究[J].吉林大学学报(信息科学版),2019,37(4):408⁃416.926第4期张闻锐,等:特征更新的动态图卷积表面损伤点云分割方法036吉林大学学报(信息科学版)第41卷REN W J,GAO M Y,GAO M Z,et al.Research on Point Cloud Registration Method Based on Hybrid Algorithm[J]. Journal of Jilin University(Information Science Edition),2019,37(4):408⁃416.[10]ZHANG K,HAO M,WANG J,et al.Linked Dynamic Graph CNN:Learning on Point Cloud via Linking Hierarchical Features[EB/OL].[2022⁃03⁃15].https:∥/stamp/stamp.jsp?tp=&arnumber=9665104. [11]林少丹,冯晨,陈志德,等.一种高效的车体表面损伤检测分割算法[J].数据采集与处理,2021,36(2):260⁃269. LIN S D,FENG C,CHEN Z D,et al.An Efficient Segmentation Algorithm for Vehicle Body Surface Damage Detection[J]. Journal of Data Acquisition and Processing,2021,36(2):260⁃269.[12]ZHANG L P,ZHANG Y,CHEN Z Z,et al.Splitting and Merging Based Multi⁃Model Fitting for Point Cloud Segmentation [J].Journal of Geodesy and Geoinformation Science,2019,2(2):78⁃79.[13]XING Z Z,ZHAO S F,GUO W,et al.Processing Laser Point Cloud in Fully Mechanized Mining Face Based on DGCNN[J]. ISPRS International Journal of Geo⁃Information,2021,10(7):482⁃482.[14]杨军,党吉圣.基于上下文注意力CNN的三维点云语义分割[J].通信学报,2020,41(7):195⁃203. YANG J,DANG J S.Semantic Segmentation of3D Point Cloud Based on Contextual Attention CNN[J].Journal on Communications,2020,41(7):195⁃203.[15]陈玲,王浩云,肖海鸿,等.利用FL⁃DGCNN模型估测绿萝叶片外部表型参数[J].农业工程学报,2021,37(13): 172⁃179.CHEN L,WANG H Y,XIAO H H,et al.Estimation of External Phenotypic Parameters of Bunting Leaves Using FL⁃DGCNN Model[J].Transactions of the Chinese Society of Agricultural Engineering,2021,37(13):172⁃179.[16]柴玉晶,马杰,刘红.用于点云语义分割的深度图注意力卷积网络[J].激光与光电子学进展,2021,58(12):35⁃60. CHAI Y J,MA J,LIU H.Deep Graph Attention Convolution Network for Point Cloud Semantic Segmentation[J].Laser and Optoelectronics Progress,2021,58(12):35⁃60.[17]张学典,方慧.BTDGCNN:面向三维点云拓扑结构的BallTree动态图卷积神经网络[J].小型微型计算机系统,2021, 42(11):32⁃40.ZHANG X D,FANG H.BTDGCNN:BallTree Dynamic Graph Convolution Neural Network for3D Point Cloud Topology[J]. Journal of Chinese Computer Systems,2021,42(11):32⁃40.[18]张佳颖,赵晓丽,陈正.基于深度学习的点云语义分割综述[J].激光与光电子学,2020,57(4):28⁃46. ZHANG J Y,ZHAO X L,CHEN Z.A Survey of Point Cloud Semantic Segmentation Based on Deep Learning[J].Lasers and Photonics,2020,57(4):28⁃46.[19]SUN Y,ZHANG S H,WANG T Q,et al.An Improved Spatial Point Cloud Simplification Algorithm[J].Neural Computing and Applications,2021,34(15):12345⁃12359.[20]高福顺,张鼎林,梁学章.由点云数据生成三角网络曲面的区域增长算法[J].吉林大学学报(理学版),2008,46 (3):413⁃417.GAO F S,ZHANG D L,LIANG X Z.A Region Growing Algorithm for Triangular Network Surface Generation from Point Cloud Data[J].Journal of Jilin University(Science Edition),2008,46(3):413⁃417.(责任编辑:刘俏亮)。
nobel prize for physics -回复什么是诺贝尔物理学奖诺贝尔物理学奖是世界上最高荣誉之一,旨在表彰在物理学领域取得杰出成就的个人或团队。
这个奖项是由阿尔弗雷德·贝尔纳·诺贝尔科学及文学理事会设立,以纪念瑞典化学家、工程师和发明家阿尔弗雷德·贝尔纳·诺贝尔。
自1901年以来,诺贝尔物理学奖已经颁发给了许多杰出的科学家,他们的贡献对物理学的发展产生了深远的影响。
背景和目的阿尔弗雷德·贝尔纳·诺贝尔是实业家、发明家和慈善家。
他的最重要的发明之一是炸药,这使他成为巨富。
尽管他在财富上取得了巨大的成功,但贝尔没有刻意关注物理学方面的研究。
然而,在他弟弟去世后,法国报纸错误地刊登了一篇关于诺贝尔去世的讣告,将他描述为“死亡的商人”。
被认为这是对诺贝尔的攻击,因为对他的炸药发明有很大的争议。
这个事件让诺贝尔开始反思自己对世界的遗产,他想要留下一个能够长久存在,为人类做出贡献的遗产。
这个思考过程最终促使他设立了诺贝尔奖项。
设立诺贝尔物理学奖的目的是为了鼓励并表彰在物理学领域做出杰出贡献的个人或团队。
这个奖项的目的之一是激发更多的人投身于物理学研究,并推动科学的发展。
此外,诺贝尔奖还扮演着一个重要的角色,即将物理学研究的成果带入大众视野,让大众对科学有更深入的了解和兴趣。
奖励的标准和程序诺贝尔物理学奖的授予是基于一系列严格的标准。
根据阿尔弗雷德·贝尔纳·诺贝尔的遗愿,这个奖项应该授予那些对物理学有最大贡献的人。
根据设立奖项的文件,这个奖项的评选应该遵循一系列规则和程序。
首先,诺贝尔物理学奖不会被授予机构或团队,只能授予个人。
这意味着奖项不会授予一整个研究小组或机构,而是向作出实际贡献的个体颁发。
因此,诺贝尔物理学奖在物理学界也被视为对个人最高的荣誉。
其次,评选委员会会收到来自各个国家和地区的提名。
只有那些被提名的候选人才有资格参与投票和评选过程。
想要了解的事物英语作文Things I Yearn to Understand The world is an intricate tapestry woven with threads of knowledge, both known and unknown. While I find myself fascinated by the vast amount of information we’ve accumulated as a species, I am acutely aware of the vast, uncharted territories of understanding that lie before me. There are several key areas that spark a deep curiosity within me, areas I yearn to explore and grasp with greater clarity. Firstly, I am captivated by the complex workings of the human mind. The brain, a three-pound universe contained within our skulls, is a marvel of intricate networks and electrochemical signals that give rise to consciousness, emotion, and behavior. How do neurons fire in symphony to create our perceptions of the world? What are the mechanisms behind memory formation and retrieval? How does our unique blend of genetics and environment shape our personalities and predispositions? Unraveling the mysteries of the mind holds the key to understanding the very essence of what makes us human. The vast universe, with its swirling galaxies, enigmatic black holes, and the tantalizing possibility of life beyond Earth, also ignites my imagination. I long to understand the fundamental laws that govern the cosmos, from the delicate dance of subatomic particles to the majestic movements of celestial bodies. What is the true natureof dark matter and dark energy, the unseen forces shaping the universe's evolution? Are we alone in this vast cosmic expanse, or does life, in all its wondrous forms, exist elsewhere? The pursuit of answers to these questions is a quest to understand our place in the grand scheme of existence. Closer to home, the interconnected web of life on our planet fascinates me. The intricate ecosystems teeming with biodiversity, the delicate balance of predator and prey, theintricate cycles of energy and nutrients - these are all testament to the awe-inspiring power of evolution and adaptation. I yearn to understand the complex interactions within these ecosystems, the delicate balance that sustains them, and the impact of human activities on this delicate web. Understanding these complexities is crucial for our responsible stewardship of the planet and the preservation of its irreplaceable biodiversity. Furthermore, I am drawn to the intricacies of human history and its impact on our present reality. From the rise and fall of civilizations to the struggles for freedom and equality, historyoffers a lens through which we can examine the triumphs and failures of humankind.I crave a deeper understanding of the forces that have shaped our social,political, and economic systems, the ideologies that have fueled conflicts and cooperation, and the enduring legacies of past events. By studying history, wecan learn from our ancestors' mistakes and successes, equipping ourselves to navigate the challenges of the present and build a better future. The ever-evolving world of technology, with its rapid advancements in artificial intelligence, biotechnology, and space exploration, also holds a powerful allure.I am driven to understand the principles behind these innovations, their potential to address global challenges, and the ethical implications that accompany them. How can we harness the power of artificial intelligence for the betterment of society while mitigating potential risks? What are the ethical considerations surrounding genetic engineering and its impact on future generations? How can space exploration contribute to scientific advancements and inspire future generations? Exploring these frontiers of technology is essential for shaping a future where innovation serves humanity and the planet. Finally, I yearn to understand the very essence of creativity and its power to inspire, challenge, and transform. From the evocative brushstrokes of a painter to the soaring melodiesof a composer, creativity speaks a universal language that transcends cultural boundaries. What are the cognitive processes that underpin artistic expression? How does creativity foster innovation and problem-solving across disciplines? How can we nurture and cultivate our own creative potential to contribute to the world in meaningful ways? Understanding the nature of creativity is key to unlockingour own potential and enriching the human experience. In conclusion, the pursuit of knowledge is a lifelong journey, an insatiable thirst for understanding that fuels my curiosity and motivates my exploration. From the inner workings of the human mind to the vast expanses of the cosmos, from the intricate web of life on Earth to the enduring legacies of human history, from the frontiers of technology to the power of creative expression - these are the areas I yearn to understand with greater depth and clarity. This quest for knowledge is not merely an academic pursuit but a fundamental aspect of what makes us human - the desire to learn, grow, and contribute to the betterment of ourselves and the world around us.。