新型晶闸管触发电路的设计
- 格式:pdf
- 大小:432.51 KB
- 文档页数:2
晶闸管对触发电路的要求触发脉冲的作用各种电力电子器件的门极或控制极的控制电路都应提供符合一定要求的触发脉冲。
对于晶闸管的触发脉冲来说,其主要作用是决定晶闸管的导通时刻,同时还应提供相应的门极触发电压和门极触发电流。
触发脉冲除了包括脉冲的电压和电流参数外,还应有脉冲的陡度和后沿波形,脉冲的相序和相角以及与主电路的同步关系,同时还须考虑门控电路与主电路的绝缘隔离问题和抗干扰、防止误触发问题.由于晶闸管是半控型器件,管子导通后即失去控制作用,为了减少门极损耗,故门极输出不用直流而用单脉冲或双脉冲,有时还采用由许多单脉冲组成的脉冲列,以代替宽脉冲。
触发脉冲参数要求触发脉冲的主要参数有触发电流、脉冲宽度等,具体要求如下: (1)触发电流-—晶闸管是电流控制型器件,只有在门极里注入一定幅值的触发电流时才能触发导通。
由于晶闸管伏安特性的分散性,以及触发电压和触发电流随温度变化的特性,所以触发电路所提供的触发电压和触发电流应大于产品目录所提供的可触发电压和可触发电流,从而保证晶闸管的可靠触发,但不得超过规定的门极最大允许触发电压和最大允许触发电流。
实际触发电流可整定为3~5倍的额定触发电流。
(2)触发脉冲宽度--触发脉冲的宽度应能保证使晶闸管的阳极电流上升到大于擎住电流。
由于晶闸管的开通过程只有几微秒,但并不意味着几微秒后它已能维持导通。
若在触发脉冲消失时,阳极电流仍小于擎住电流,晶闸管将不能维持导通而关断。
因此对脉冲宽度有一定要求,它和变流装置的负载性质及主电路的形式有关。
(3)强触发脉冲-—触发脉冲前沿越陡,越有利于并联或串联晶闸管的同时触发导通。
因此在有并联或串联晶闸管时,要求触发脉冲前沿陡度大于或等于10V/uS,通常采取强触发脉冲的形式。
另外,强触发脉冲还可以提高晶闸管承受di/dt的能力。
(4)触发功率——触发脉冲要有足够的输出功率,并能方便地获得多个输出脉冲,每相中多个脉冲的前沿陡度不要相差太大。
晶闸管触发电路原理
晶闸管触发电路是一种用来控制晶闸管导通或关断的电路。
晶闸管是一种双电极四层结构的半导体器件,当控制电压达到一定值时,晶闸管将导通,形成低电压通道,允许大电流通过。
而当控制电压低于一定值时,晶闸管会关断,形成高电压阻断状态。
晶闸管的触发电路一般由两部分组成:触发脉冲发生器和触发脉冲放大器。
触发脉冲发生器负责产生控制信号,而触发脉冲放大器则负责放大触发信号,使之能够控制晶闸管的导通或关断。
触发脉冲发生器通常是利用电容和电感等元件来形成一个振荡电路,产生临时性的高幅度脉冲信号。
这个脉冲信号可以通过电压调节器进行调节,以确保触发脉冲的幅度和宽度符合晶闸管的要求。
触发脉冲放大器接收触发脉冲发生器产生的脉冲信号,并将其放大到足以触发晶闸管的电压级别。
这个放大过程中通常会使用放大电路,如放大器或变压器等。
当触发脉冲传递到晶闸管上时,它会改变晶闸管的电特性,从而实现导通或关断。
触发脉冲的幅度、宽度和频率等参数决定了晶闸管的导通和关断速度以及电流大小。
总而言之,晶闸管触发电路是利用触发脉冲发生器和触发脉冲
放大器,通过产生和放大脉冲信号来控制晶闸管的导通或关断,实现对电流的控制。
晶闸管TSC的触发电路1. 介绍晶闸管投切电容器的原理和快速过零触发要求晶闸管投切电容器组的关键技术是必须做到电流无冲击。
晶闸管投切电容器组的机理如图一所示,信息请登陆:输配电设备网当电路的谐振次数n为2、3时,其值很大。
式(2)的第三项给出当触发角偏离最佳点时的振荡电流的幅值;式(2)中的第二项给出当偏离最佳予充电值时振荡电流的幅值。
若使电容器电流ic=C*du/dt=0,则du/dt=0,即晶闸管必须在电源电压的正或负峰值触发导通投切电容器组,电容器预充电到峰值电压。
触发电路的功能是:电流无冲击触发;快速投切,20ms的动作。
这个20ms不是得到投切命令到产生动作的时间,而是从停止到再投入动作的时间为20ms。
快速反应时,在平衡补偿电路,不能出现不平衡动作,即有的相有电流,有的没有。
1. 两类晶闸管的触发电路的特点和存在的问题从同步信号的采集上,有两类晶闸管触发电路。
一类为从电网电压取得同步信号,一类为从晶闸管两端取得同步信号。
从电网电压取得同步信号的电路框图如图二:电路中包括同步变压器、同步信号处理电路和功率驱动电路、脉冲变压器隔离电路等。
当得到触发命令后,在投切点产生触发脉冲列,经过脉冲变压器的隔离,推动晶闸管。
同步信号处理电路有滤波处理功能,可以是CMOS等的电子电路组成,也可以是单片机、GAL电路等。
电路中包括相序错判断功能。
信息来自:输配电设备网从电网电压取得同步信号的优点为在主回路没有送电时,给触发命令,可以测量晶闸管的触发脉冲幅度和相位,在主回路得电后,给触发命令,可以放心, TSC为正确的投入工作。
对于TSC电路中的两只晶闸管+一只二极管的“2+1”电路、两只晶闸管+两只二极管的“2+2”电路、三只晶闸管+三只二极管的“3+3”电路,电容器有二极管预充电, 电容器上一直存在直流电压,晶闸管的交直流电压不变,电网电压取得同步信号触发适合。
缺点为电路复杂,对于400V小容量的TSC电路造价高。
晶闸管触发电路1. 引言晶闸管(Thyristor)是一种重要的电子元件,在电力控制和功率电子领域具有广泛的应用。
晶闸管的触发电路是控制晶闸管导通或截止的关键部分。
本文将介绍晶闸管触发电路的工作原理、分类以及常见的电路设计。
2. 工作原理晶闸管触发电路的核心原理是通过控制一定的触发电压或电流,使晶闸管从关断状态转变为导通状态。
在正常工作状态下,晶闸管是一个双向控制的开关,其阻断能力较强。
晶闸管触发电路一般由触发电源、触发信号处理电路和触发脉冲发生电路组成。
触发电源提供所需的触发信号电压或电流;触发信号处理电路对来自触发电源的信号进行滤波、放大等处理;触发脉冲发生电路根据控制要求产生一定的触发脉冲。
3. 分类根据晶闸管触发电路的工作原理和触发方式的不同,晶闸管触发电路可以分为以下几类:3.1 瞬态触发电路瞬态触发电路是指在很短的时间内产生一个高幅值的触发脉冲,以确保晶闸管能够迅速地达到导通状态。
常见的瞬态触发电路包括单脉冲触发电路和多脉冲触发电路。
3.2 交流触发电路交流触发电路主要用于控制交流电源下的晶闸管。
交流触发电路可以根据触发方式的不同分为电流触发电路和电压触发电路。
3.3 直流触发电路直流触发电路主要用于控制直流电源下的晶闸管。
直流触发电路可以根据触发方式的不同分为电流触发电路和电压触发电路。
4. 常见电路设计4.1 单脉冲触发电路设计单脉冲触发电路设计是一种常见的瞬态触发电路设计。
下面是一个基于电流触发方式的单脉冲触发电路设计示意图:4.2 电流触发电路设计电流触发电路设计主要用于控制直流电源下的晶闸管。
下面是一个基于电流触发方式的电流触发电路设计示意图:4.3 电压触发电路设计电压触发电路设计主要用于控制交流电源下的晶闸管。
下面是一个基于电压触发方式的电压触发电路设计示意图:5. 总结晶闸管触发电路是控制晶闸管导通或截止的关键部分。
晶闸管的门极触发电路
图3 锯齿波同步触发电路共包括五个环节,分别为:锯齿波形成环节、脉冲移相环节、脉冲形成及放大环节、强触发脉冲形成环节、双脉冲形成环节。
锯齿波形成环节是通过一个恒流源电路对电容进行恒流充电,从而形成锯齿波同步信号的上升沿,其下降沿是电容通过一小电阻放电而形成的。
锯齿波的宽度由电路参数打算,其频率则与电源电压频率相同。
脉冲移相环节是将锯齿波同步电压、偏移电压及掌握电压进行叠加,其过零点打算触发脉冲的起始时刻。
若偏移电压不变时,转变直流掌握电压可以使脉冲移相。
在这里加入偏移电压的目的,是使掌握电压为零时主电路的整流输出电压为零。
脉冲形成与放大环节的作用与正弦波触发电路基本相同。
强触发脉冲形成环节是通过一个单独的沟通电源整流后,得到50V的直流电压,在触发脉冲的起始时刻该电压通过脉冲变压器加到晶闸管的门极上,从而形成强触发脉冲。
触发电路各点电压波形如图4所示。
图4 双脉冲产生环节是依据三相全控桥式整流电路的特别要求,触发电路输出两个间隔为60°的双脉冲。
产生双脉冲的方法有两种,一种是外双脉冲方法,另一种是内双脉冲方法。
在此触发电路中采纳的是内双脉冲的方法,即每个触发单元一个周期内产生两个间隔为60°的双脉冲,只供应一个桥臂的晶闸管,这种电路虽然比较简单,但输
出功率可以削减。
晶闸管过零触发电路1、闸管过零触发电路结构及原理分析1.1触发电路和过零触发电路的比较在交流调压领域,尤其是应用于交、直流电机的电力拖动系统的交、直流调压电路,多采用移相触发电路,即使触发脉冲相对同步脉冲来说,产生一个相对延迟角,延迟量越大,晶闸管的导通角越小,输出电压越低。
电路的实质是调整或控制触发脉冲出现的时刻,若使移相触发脉冲在电网周波的“峰顶位置”出现,晶闸管在电网电压过零点后的T2、T4时刻开通,电网电压的正弦波被“削掉一半”,输出电压的有效值为电源电压的一半。
移相触发的结果,使完整的正弦波被 “部分砍掉”,形成“缺口波”,此种波形中谐波分量最大,富含奇、偶次(多种频率值的)谐波,易使电网中产生浪涌电压(电流)分量,造成对电网的污染、易对周过电气设备造成干扰。
我们可称为这种控制方式为“削波控制”,输出电压频率仍为50Hz ,电压(电流)的连续性,还算不错。
电网电压同步脉冲a、移相触发电路过零点信号移相触发脉冲移相输出电压电网电压同步脉冲b、过零触发电路(触发脉冲)门限控制信号过零输出电压T1T2T1T2T3T4图1移相触发与过零触发的波形比较即能实现调压,又能保持输出正弦波波形的完整,这是过零触发电路的最初思路。
实现方法:1)触发脉冲总是在电网过零点附近送出,使晶闸管在电网过零后即行输出,在整个电网周波内“完全开通”,电路输出为完整的正弦波形;2)用门限控制信号来控制晶闸管的导通时间,即控制流过晶闸管周波数的多少,当使控制信号高、低电平时间比T1:T2=1:1时,晶闸管一半时间处于关断,一半时间处于开通,电源中的完整周波有一半为晶闸管所输出,输出电压的有效值也为电源电压的一半。
3)过零电路的触发脉冲,是由同步脉冲,不经移相,即直接触发晶闸管的,但取得的同步脉冲往往较“窄”,需要展宽处理,才能可靠触发晶闸管。
过零触发电路,晶闸管输出波形为完整的正弦波,晶闸管从过零点开始导通,然后在过零点自生关断,晶闸管承受的电流、电压冲击较小,输出电压的谐波分量少,不污染电网和造成干扰,这是其优点。
摘要电力电子技术诞生自今已有50多年的历史,尽管可供电力电子行业技术人员选用的电力电子器件有40多种,但直到今天晶闸管仍占据着单容量的霸主地位。
因其触发性能的好坏,对晶闸管控制系统的可靠性、快速性、稳定性,以及调节范围和精度都有很大影响。
其触发电路的设计也从原先的分立式触发器(主要有阻容移相桥、单结晶体管、正弦波同步、锯齿波同步、三角波同步)发展到模拟集成触发器,再到数字集成式触发器,直至现在着力研究的数字化、模块化、智能化晶闸管触发器。
本文着重阐述了同步信号为锯齿波的触发电路的工作原理及其双窄脉冲的形成过程设计,继而推出智能型触发器的设计。
关键词:晶闸管;锯齿波;双脉冲;触发;移相;数字触发器AbstractPower electronic technology has a history of more than 50 years, Although the power electronous devichas chosen power electronics has a variety of about 40, nowadays thyristor still occupies the dominance of the single capacity. Triggering performance has adeep effect on thyristor controlled system reliability, quickness, stability, and the adjusting range and accuracy. Its triggercircuitdesign also:develops from the original are mainly flip-flops (phase shifting reluctance to let bridge, and single junction transistor, sine wave synchronization, sawtooth wave synchronization, triangle wave synchronous) to analog integrated flip-flop to digital integrated type flip-flop then to now focusing on research digitization, modular,intelligent thyristor trigger. Now the paper elaborates improve the design synchronous signal is a sawtooth wave DE trigger circuit principle of work the form of wave double pulse , and their indelible roles in development.Keywords:thyristor; sawtooth wave; double pulse triggering; phase shifting; Digital trigger目录摘要 (I)Abstract (II)1 绪论 (1)1.1引言 (1)1.2 晶闸管触发器的发展状况 (1)1.2.1分立式晶闸管触发器 (1)1.2.2 模拟集成式晶闸管触发器........................................... - 2 -1.2.3 数字集成式晶闸管触发器 (2)1.3 晶闸管触发器的发展趋势及论文的主要内容 (3)2 晶闸管................................................................. - 4 -2.1 晶闸管及其控制方式 .................................................. - 4 -2.2 晶闸管的伏安特性 .................................................... - 5 -3 触发电路............................................................... - 6 -3.1 变流器对触发电路的要求 .............................................. - 6 -3.2触发电路的类型 (6)3.3晶闸管对触发电路的要求 (7)3.3.1 触发脉冲的作用................................................... - 7 -3.3.2触发脉冲参数要求............................................... - 8 -3.3.3触发脉冲形式要求 (8)3.4单结晶体管的触发电路分析 (9)3.4.1常见的触发脉冲电压波形 (9)3.4.2要求 (9)3.4.3 具有同步环节的单结晶体管触发电路 (10)3.5同步信号为锯齿波的触发电路的研究 (11)3.5.1 脉冲的形成与放大电路 (11)3.5.2 锯齿波的形成脉冲移相 (13)3.5.3同步环节电路 (15)3.5.4三相桥式全控整流电路 (16)3.5.5双窄脉冲的形成环节电路的设计 (17)3.5.6 强触发电路环节 (18)3.6 防止误触发的措施的研究 (18)4 智能型双窄脉冲触发电路的设计 (20)4.1 硬件原理图设计 (20)4.1.1 RC移相及同步电路的实现 (20)4.1.2主控芯片的选用 (22)4.1.3 A/D转换器 (22)4.1.4闭环调节器 (22)4.1.5脉冲放大与输出电路 (23)4.1.6过压、过流、欠压和过热等外部故障保护电路 (24)4.1.7电源设计 (25)4.1.8 软件部分 (25)4.2双窄脉冲的形成 (29)5 总结与展望 (31)参考文献 (32)致谢 (33)附录: (34)1 绪论1.1引言自第一只晶闸管诞生以来,电力电子技术已发展了50多年,由于晶闸管所能承受的电压和电流容量仍然是目前电力电子器件中最高的,所以晶闸管仍是人类可以使用的单管容量(电压乘以电流)最大的电力电子器件。
可关断晶闸管(gto)触发驱动和保护电路的研究摘要:可关断晶闸管(GTO)是一种重要的功率半导体器件,被广泛应用于电力电子领域。
然而,GTO的触发驱动和保护电路的设计与实现是一个非常复杂的问题。
本文旨在研究可关断晶闸管的触发驱动和保护电路,提出一些新的解决方案,以改善GTO的性能和可靠性。
正文:一、GTO的触发驱动电路在GTO的工作过程中,触发驱动电路起着关键的作用。
一个好的驱动电路可以保证GTO可靠地开关,并且在关闭时可以控制漏电流。
因此,我们需要设计一种高效、精确、可靠的GTO触发驱动电路。
以下是一些常见的GTO触发驱动电路:1.电压控制触发驱动电路电压控制触发驱动电路是一种常用的GTO触发驱动电路。
它的原理是通过一个信号发生器来产生一个控制信号,然后将这个信号输入到GTO的控制端,以控制GTO的导通和断开。
电压控制触发驱动电路的优点是简单,易于实现,但是它的精度和稳定性不如其他触发驱动电路。
2.电流控制触发驱动电路电流控制触发驱动电路是一种比较精确和可靠的GTO触发驱动电路。
它的原理是将一个电流信号送入GTO的控制端,以控制GTO的导通和断开。
电流控制触发驱动电路的优点是精确、可靠,但是它的实现复杂,需要使用高精度的电流源和电流传感器。
3.光耦隔离触发驱动电路光耦隔离触发驱动电路是一种可靠、安全且精确的GTO触发驱动电路。
它的原理是使用一个光耦隔离器将控制信号隔离开,并将隔离后的信号送入GTO的控制端,以控制GTO的导通和断开。
光耦隔离触发驱动电路的优点是精确、可靠、安全,但是它的成本较高。
二、GTO的保护电路GTO在工作过程中,常常会受到各种各样的干扰和故障,如过电压、过电流、电磁干扰等。
因此,我们需要设计一种可靠的保护电路来保护GTO的正常工作。
以下是一些常见的GTO保护电路:1.过电压保护电路过电压保护电路是一种常见的GTO保护电路。
它的原理是使用一个电压传感器来检测GTO的电压,一旦电压超过设定值,就会触发一个保护电路,将GTO断开以保护它的安全。