一元一次不等式与一次函数的关系(一)
- 格式:doc
- 大小:66.00 KB
- 文档页数:3
一次函数与一元一次不等式的关系●教学目标(一)教学知识点1.一元一次不等式与一次函数的关系.2.会根据题意列出函数关系式,画出函数图象,并利用不等关系进行比较.(二)能力训练要求1.通过一元一次不等式与一次函数的图象之间的结合,培养学生的数形结合意识.2.训练大家能利用数学知识去解决实际问题的能力.(三)情感与价值观要求体验数、图形是有效地描述现实世界的重要手段,认识到数学是解决问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用.●教学重点了解一元一次不等式与一次函数之间的关系.●教学难点自己根据题意列函数关系式,并能把函数关系式与一元一次不等式联系起来作答.●教学方法研讨法即主要由学生自主交流合作来解决问题,老师只起引导作用.●教具准备投影片两张第一张:(记作§1.5.1 A)第二张:(记作§1.5.1 B)●教学过程Ⅰ.创设问题情境,引入新课[师]上节课我们学习了一元一次不等式的解法,那么,是不是不等式的知识是孤立的呢?本节课我们来研究不等式的有关应用.Ⅱ.新课讲授1.一元一次不等式与一次函数之间的关系.[师]大家还记得一次函数吗?请举例给出它的一般形式.[生]如y=2x-5为一次函数.[师]在一次函数y=2x-5中,当y=0时,有方程2x-5=0;当y>0时,有不等式2x-5>0;当y<0时,有不等式2x-5<0.由此可见,一次函数与一元一次方程、一元一次不等式之间有密切关系,当函数值等于0时即为方程,当函数值大于或小于0时即为不等式.下面我们来探讨一下一元一次不等式与一次函数的图象之间的关系.2.做一做图1-21请大家讨论后回答:[生](1)当y =0时,2x -5=0,∴x =25, ∴当x =25时,2x -5=0. (2)要找2x -5>0的x 的值,也就是函数值y 大于0时所对应的x 的值,从图象上可知,y >0时,图象在x 轴上方,图象上任一点所对应的x 值都满足条件,当y =0时,则有2x -5=0,解得x =25.当x >25时,由y =2x -5可知 y >0.因此当x >25时,2x -5>0; (3)同理可知,当x <25时,有2x -5<0; (4)要使2x -5>3,也就是y =2x -5中的y 大于3,那么过纵坐标为3的点作一条直线平行于x 轴,这条直线与y =2x -5相交于一点B (4,3),则当x >4时,有2x -5>3.3.试一试如果y =-2x -5,那么当x 取何值时,y >0?[师]由刚才的讨论,大家应该很轻松地完成任务了吧.请大家试一试.[生]首先要画出函数y =-2x -5的图象,如图1-22:图1-22从图象上可知,图象在x 轴上方时,图象上每一点所对应的y 的值都大于0,而每一个y 的值所对应的x 的值都在A 点的左侧,即为小于-2.5的数,由-2x -5=0,得x =-2.5,所以当x 取小于-2.5的值时,y >0.4.议一议兄弟俩赛跑,哥哥先让弟弟跑9 m ,然后自己才开始跑,已知弟弟每秒跑 3 m ,哥哥每秒跑4 m ,列出函数关系式,画出函数图象,观察图象回答下列问题:(1)何时弟弟跑在哥哥前面?(2)何时哥哥跑在弟弟前面?(3)谁先跑过20 m ?谁先跑过100 m ?(4)你是怎样求解的?与同伴交流.[生][解]设兄弟俩赛跑的时间为x 秒.哥哥跑过的路程为y 1,弟弟跑过的路程为y 2,根据题意,得y 1=4xy 2=3x +9函数图象如图1-23:图1-23 从图象上来看:(1)当0<x <9时,弟弟跑在哥哥前面;(2)当x >9时,哥哥跑在弟弟前面;(3)弟弟先跑过20 m ,哥哥先跑过100 m;(4)从图象上直接可以观察出(1)、(2)小题,在回答第(3)题时,过y 轴上20这一点作x 轴的平行线,它与y 1=4x ,y 2=3x +9分别有两个交点,每一交点都对应一个x 值,哪个x 的值小,说明用的时间就短.同理可知谁先跑过100 m.Ⅲ.课堂练习1.已知y 1=-x +3,y 2=3x -4,当x 取何值时,y 1>y 2?你是怎样做的?与同伴交流.解:如图1-24所示:图1-24当x 取小于47的值时,有y 1>y 2. Ⅳ.课时小结本节课讨论了一元一次不等式与一次函数的关系,并且能根据一次函数的图象求解不等式.Ⅴ.课后作业习题1.6Ⅵ.活动与探究作出函数y 1=2x -4与y 2=-2x +8的图象,并观察图象回答下列问题:(1)x 取何值时,2x -4>0?(2)x 取何值时,-2x +8>0?(3)x 取何值时,2x -4>0与-2x +8>0同时成立?(4)你能求出函数y 1=2x -4,y 2=-2x +8的图象与x 轴所围成的三角形的面积吗?并写出过程.解:图象如下:图1-25分析:要使2x -4>0成立,就是y 1=2x -4的图象在x 轴上方的所有点的横坐标的集合,同理使-2x +8>0成立的x ,即为函数y 2=-2x +8的图象在x 轴上方的所有点的横坐标的集合,要使它们同时成立,即求这两个集合中公共的x ,根据函数图象与x 轴交点的坐标可求出三角形的底边长,由两函数的交点坐标可求出底边上的高,从而求出三角形的面积.[解](1)当x >2时,2x -4>0;(2)当x <4时,-2x +8>0;(3)当2<x <4时,2x -4>0与-2x +8>0同时成立.(4)由2x -4=0,得x =2;由-2x +8=0,得x =4所以AB =4-2=2由⎩⎨⎧+-=-=8242x y x y 得交点C (3,2) 所以三角形ABC 中AB 边上的高为2. 所以S =21×2×2=2. §1.5.1 一元一次不等式与一次函数(一)一、1.一元一次不等式与一次函数之间的关系;2.做一做(根据函数图象求不等式);3.试一试(当x 取何值时,y >0);4.议一议二、课堂练习三、课时小结四、课后作业参考练习1.某商场计划投入一笔资金采购一批紧俏商品,经过市场调查发现:如果月初出售,可获利15%,并可用本和利再投资其他商品,到月末又可获利10%;如果月末出售可获利30%,但要付出仓储费用700元.请问根据商场的资金状况,如何购销获利较多?解:设商场计划投入资金为x 元,在月初出售,到月末共获利y 1元;在月末一次性出售获利y 2元,根据题意,得y 1=15%x +(x +15%x )·10%=0.265x ,y 2=30%x -700=0.3x -700.(1)当y 1>y 2,即0.265x >0.3x -700时,x <20000;(2)当y 1=y 2,即0.265x =0.3x -700时,x =20000;(3)当y 1<y 2,即0.265x <0.3x -700时,x >20000.所以,当投入资金不超过20000元时,第一种销售方式获利较多;当投入资金超过20000元时,第二种销售方式获利较多.2.某医院研究发现了一种新药,在试验药效时发现,如果成人按规定剂量服用,那么服药后2小时时血液中含药量最高,达每毫升6微克(1微克=10-3毫克),接着逐步衰减,10小时时血液中含药量为每毫升3毫克,每毫升血液中含药量y (微克),随着时间x (小时)的变化如图所示(成人按规定服药后).(1)分别求出x ≤2和x ≥2时,y 与x 之间的函数关系式;(2)根据图象观察,如果每毫升血液中含药量为4微克或4微克以上,在治疗疾病时是有效的,那么这个有效时间是多少?图1-26解:(1)当x ≤2时,图象过(0,0),(2,6)点,设y 1=k 1x ,把(2,6)代入得,k 1=3∴y 1=3x .当x ≥2时,图象过(2,6),(10,3)点.设y 2=k 2x +b ,则有⎩⎨⎧=+=+3106222b k b k 得k 2=-83,b =427 ∴y 2=-83x +427 (2)过y 轴上的4点作平行于x 轴的一条直线,于y 1,y 2的图象交于两点,过这两点向x 轴作垂线,对应x 轴上的34和322,即在322-34=6小时间是有效的.。
《一元一次不等式与一次函数(1)》教案一、教学内容分析本节内容是在学生已有对一元一次方程、一元一次不等式和二元一次方程组等的认识之后,从变化和对应关系的角度,对一元一次不等式的运算进行更深入的讨论,是站在更高起点上的动态分析。
通过讨论一次函数与方程(组)及不等式的关系,用函数的观点加深对这些已经学习过的内容的认识,加强知识间的横向和纵向联系,发挥函数的统领作用,构建和发展相互联系的知识体系。
二、教学目的1、知识与技能目标:(1)通过观察函数图象、求方程的解和不等式的解集,体会一元一次方程、一元一次不等式与一次函数的联系;(2)会用图象法解一元一次不等式。
2、数学思考目标:通过对一次函数与一元一次不等式关系的探究及相关实际问题的解决,体会数形结合的思想。
3、问题解决目标:能利用一次函数与一元一次不等式的内在关系,解决实际问题。
4、情感态度目标:培养学生的探究精神,体会事物之间的相互联系,进一步感受数学的价值。
三、教学重点重点:通过观察函数图象解一元一次不等式。
四、教学难点难点:一元一次方程、一元一次不等式与一次函数的内在联系。
五、教学准备学情分析:学生学习了一次函数、一元一次方程和二元一次方程组,已能初步理解函数与方程的联系,同时也具备了一定的数形结合的意识和能力,积累了利用一元一次不等式解决简单实际问题的经验。
教法分析:基于本节课的内容特点和初二年级学生的年龄特征,遵循“让学生主动积极参与学习,发挥其学习的主体性”的教学理念,我决定采用“启发引导、自主学习、合作探究”的教学模式,充分发挥教师的主导作用和学生的主体作用。
六、教学流程框图七、教学过程设计预计时间(分)教学内容教师活动学生活动教学评价5分钟1、创设情境、引入新知深圳市宝安中学在全市率先开展了“学会生存”的必修课,目前“中学生生存教育的理论与实践研究”已成为学校独立承担的全国教育科学“十一五”规划教育部重点资助课题。
在周一的“防止踩踏”疏散课上,初一(4)班的同学在警报响起3秒后疏散距离y(米)与时间x(秒)满足关系式是y=2x-5。
一、一次函数与一元一次方程的关系直线y b k 0kx =+≠()与x 轴交点的横坐标,就是一元一次方程b 0(0)kx k +=≠的解。
求直线y bkx =+与x 轴交点时,可令0y =,得到方程b 0kx +=,解方程得x b k =-,直线y b kx =+交x 轴于(,0)b k -,bk-就是直线y b kx =+与x 轴交点的横坐标。
二、一次函数与一元一次不等式的关系任何一元一次不等式都可以转化为a b 0x +>或a b 0x +<(b a 、为常数,0a ≠)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围。
三、一次函数与二元一次方程(组)的关系一次函数的解析式y b k 0kx =+≠()本身就是一个二元一次方程,直线y b k 0kx =+≠()上有无数个点,每个点的横纵坐标都满足二元一次方程y b k 0kx =+≠(),因此二元一次方程的解也就有无数个。
一、一次函数与一元一次方程综合【例1】 若直线(2)6y m x =--与x 轴交于点()60,,则m 的值为( ) A.3 B.2 C.1 D.0【例2】 已知直线(32)2y m x =++和36y x =-+交于x 轴上同一点,m 的值为( )A .2-B .2C .1-D .0【巩固】已知一次函数y x a =-+与y x b =+的图象相交于点()8m ,,则a b +=______.例题精讲知识点睛一次函数与方程、不等式综合二、一次函数与一元一次不等式综合【例3】已知一次函数25y x=-+.(1)画出它的图象;(2)求出当32x=时,y的值;(3)求出当3y=-时,x的值;(4)观察图象,求出当x为何值时,0y>,0y=,0y<【例4】当自变量x满足什么条件时,函数23y x=-+的图象在:(1)x轴下方;(2)y轴左侧;(3)第一象限.【巩固】当自变量x满足什么条件时,函数41y x=-+的图象在:(1)x轴上方;(2)y轴左侧;(3)第一象限.【例5】 如图,直线y kx b =+与x 轴交于点()40-,,则0y >时,x 的取值范围是( ) A.4x >- B .0x > C.4x <- D .0x <【巩固】一次函数y kx b =+的图象如图所示,当0y <时,x 的取值范围是( )A .0x >B .0x <C .2x >D .2x <【例6】 已知一次函数经过点(1,-2)和点(-1,3),求这个一次函数的解析式,并求:(1)当2x =时,y 的值; (2)x 为何值时,0y <?(3)当21x -≤≤时,y 的值范围; (4)当21y -<<时,x 的值范围.【巩固】已知一次函数23y x =-+(1)当x 取何值时,函数y 的值在1-与2之间变化?(2)当x 从2-到3变化时,函数y 的最小值和最大值各是多少?【例7】 一次函数y kx b =+(k b ,是常数,0k ≠)的图象如图所示,则不等式0kx b +>的解集是( )A .2x >-B .0x >C .2x <-D .0x <【巩固】如图,一次函数y ax b =+的图象经过A 、B 两点,则关于x 的不等式0ax b +<的解集是________.【例8】 如图,直线y kx b =+经过()21A ,,()12B --,两点,则不等式122x kx b >+>-的解集为______.【巩固】直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式21k x k x b >+的解集为______.三、一次函数与二元一次方程(组)综合【例9】把一个二元一次方程组中的两个方程化为一次函数画图象,所得的两条直线平行,则此方程组()A.无解B.有唯一解C.有无数个解D.以上都有可能【例10】已知直线3y x=-与22y x=+的交点为(-5,-8),则方程组30220x yx y--=⎧⎨-+=⎩的解是________.【巩固】如图所示的是函数y kx b=+与y mx n=+的图象,求方程组kx b ymx n y+=⎧⎨+=⎩的解关于原点对称的点的坐标是________.【例11】已知方程组y ax cy kx b-=⎧⎨-=⎩(a b c k,,,为常数,0ak≠)的解为23xy=-⎧⎨=⎩,则直线y ax c=+和直线y kx b=+的交点坐标为________.【巩固】已知24xy=⎧⎨=⎩,是方程组73228x yx y-=⎧⎨+=⎩的解,那么一次函数y=________和y=________的交点是________.【例12】阅读:我们知道,在数轴上,1x=表示一个点,而在平面直角坐标系中,1x=表示一条直线;我们还知道,以二元一次方程210x y-+=的所有解为坐标的点组成的图形就是一次函数21y x=+的图象,它也是一条直线,如图①.观察图①可以得出:直线1x=与直线21y x=+的交点P的坐标(1,3)就是方程组1210xx y=⎧⎨-+=⎩的解,所以这个方程组的解为13xy=⎧⎨=⎩;在直角坐标系中,1x≤表示一个平面区域,即直线1x=以及它左侧的部分,如图②;21y x ≤+也表示一个平面区域,即直线21y x =+以及它下方的部分,如图③.(1)y=2x+1x=1x=1(2)(3)回答下列问题.⑴在下面的直角坐标系中,用作图象的方法求出方程组122x y x =-⎧⎨=-+⎩的解;2y 1=2x+1(4)⑵在上面的直角坐标系中,用阴影表示220y x y ⎪≤-+⎨⎪≥⎩所围成的区域.⑶如图⑷,表示阴影区域的不等式组为: .1. 已知一次函数y kx b =+的图象经过点()20,,()13,,则不求k b ,的值,可直接得到方程3kx b +=的解是x =______.2. 若解方程232x x +=-得2x =,则当x _________时直线2y x =+上的点在直线32y x =-上相应点的上方.3.已知一次函数y kx b =+的图象如图所示,当1x <时,y 的取值范围是( ) A .20y -<< B .40y -<< C .2y <- D .4y <-课后作业4.已知15y x =-,221y x =+.当12y y >时,x 的取值范围是( )A .5x >B .12x < C .6x <- D .6x >-5.一次函数1y kx b =+与2y x a =+的图象如图,则下列结论①0k <;②0a >;③当3x <时,12y y <中,正确的个数是( ) A .0 B .1 C .2 D .36. b 取什么整数值时,直线32y x b =++与直线2y x b =-+的交点在第二象限?7.已知一次函数6y kx b =++与一次函数2y kx b =-++的图象的交点坐标为A (2,0),求这两个一次函数的解析式及两直线与y 轴围成的三角形的面积.。
一次函数与一元一次不等式的关系一次函数和一元一次不等式是初中数学中比较基础的知识点,两者之间也有着密切的联系。
本文将从定义、性质、图像等方面探讨一次函数和一元一次不等式之间的关系。
一、一次函数的定义一次函数是指形如 $y=kx+b$ 的函数,其中 $k$ 和 $b$ 都是常数,$x$ 和 $y$ 是变量。
其中,$k$ 称为斜率,表示函数图像的倾斜程度;$b$ 称为截距,表示函数图像与 $y$ 轴的交点。
二、一元一次不等式的定义一元一次不等式是指形如 $ax+b>0$ 或 $ax+b<0$ 的不等式,其中 $a$ 和 $b$ 都是实数,$x$ 是变量。
其中,$a$ 表示不等式左侧的系数,$b$ 表示不等式右侧的常数。
三、一次函数的性质1. 斜率为正,则函数是单调递增的;斜率为负,则函数是单调递减的。
2. 截距表示函数与 $y$ 轴的交点,当 $x=0$ 时,$y=b$。
3. 一次函数的图像是一条直线,可以通过两个点来确定。
四、一元一次不等式的性质1. 当 $a>0$ 时,不等式的解集为 $x>-b/a$;当 $a<0$ 时,不等式的解集为 $x<-b/a$。
2. 如果不等式中的 $<$ 变成了 $leq$ 或 $geq$,则解集不变。
3. 如果不等式中的 $>$ 和 $<$ 交换,不等式的解集也随之交换。
五、一次函数和一元一次不等式的关系1. 一次函数的图像可以用来表示一元一次不等式的解集。
例如,不等式 $2x+3>0$ 的解集可以表示成一次函数 $y=2x+3$ 在$y>0$ 区域的图像。
2. 一元一次不等式的解集也可以用来表示一次函数的定义域或值域。
例如,不等式 $3x-1<5$ 的解集为 $x<2$,则一次函数$y=3x-1$ 的定义域为 $(-infty, 2)$。
3. 一次函数的斜率和截距也可以用来确定一元一次不等式的形式。
一元一次不等式与一次函数【基础知识精讲】1.一元一次不等式与一次函数的关系。
两个一次函数有时根据需要,要比较其函数值的大小,这时问题就转化为一元一次不等式的问题。
另一方面,利用解不等式的方法也可以求出两个一次函数的值的大小。
事实上,不等式与函数和方程是紧密联系的一个整体。
2.一次函数的图象与一元一次不等式的关系。
一次函数y=kx+b(k≠0)的图像是一条直线,当kx+b>0时,表示图像在x轴上方的部分;当kx+b=0时,表示直线与x轴的交点;当kx+b<0时,表示图像在x轴下方的部分。
【考点聚焦】本章一元一次不等式与一次函数是中考热点,随着素质教育的逐步发展,突出了对创新意识的考查,加大了对“三个一次”(即一元一次方程,一次函数,一元一次不等式)综合应用考查及解决实际问题的考查。
题型有选择题、填空题及解决实际问题(多为压轴题)。
【典例精析】例1作出函数y=x-3的图象如图所示,并观察图象回答下列问题:(1)x取哪些值时,y>0;(2)x取哪些值时,y<0;(3)x取哪些值时,y>3。
思路点拨:首先要认清一次函数的图象是一条直线,两点确定一条直线,所以需要知图象上两点的坐标,可取(3,0)和(0,-3)。
解:由图象可知:(1)当x>3时,y>0;(2)当x<3时,y<0;(3)当x>6时,y>3。
评注:(1)两点确定一条直线。
(2)大于往右看,小于往左看。
【试解相关题】兄弟俩赛跑,哥哥先让弟弟跑9米,然后自己才开始跑。
已知弟弟每秒跑3米,哥哥每秒跑4米,列出函数关系式,画出函数图象,观察图象回答下列问题:(1)何时弟弟跑在哥哥前面?(2)何时哥哥跑在弟弟前面?思路点拨:此题两问均牵扯到不等式问题,但需先列函数关系式。
解:设当时间为x秒时,跑过的路为y米,则y哥哥=4x,y弟弟=3x+9如图所示,由图象知9秒前弟弟跑在哥哥前面;9秒后,哥哥跑在弟弟前面。
评注:通过以上两例,体会:刻画运动变化的规律需要用函数模型;刻画运动变化过程中的某一瞬间需要用方程模型。
一次函数与一元一次不等式知识库1、一次函数与一元一次不等式的关系解一元一次不等式ax+b>0(或<0)可以归结为以下两种认识:(1)从函数值的角度看,就是寻求使一次函数y=ax+b的值大于0(或小于0)的自变量x的取值范围;(2)从函数图象的角度看,就是确定直线y=kx+b在x轴上方(或下方)部分所有的点的横坐标所构成的集合。
2、用画函数图象的方法解不等式ax+b>0(或<0)的一般步骤(1)画y=ax+b的图象;(2)观察图象与x轴的交点坐标。
图象在x轴上方时对应的x的范围是不等式ax+b>0的解集,图象在x轴下方时对应的x的范围是不等式ax+b<0的解集。
3、 1.解一元一次不等式可以看作是:当一次函数值大于(或小于)0时,求自变量相应的取值范围.2.解关于x的不等式kx+b>mx+n可以转化为:(1)当自变量x取何值时,直线y=(k-m)x+b-n上的点在x轴的上方.或(2)求当x取何值时,直线y=kx+b上的点在直线y=mx+n上相应的点的上方.(不等号为“<”时是同样的道理)例:用画图象的方法解不等式2x+1>3x+4分析:(1)可将不等式化为-x-3>0,作出直线y=-x-3,然后观察:自变量x取何值时,图象上的点在x轴上方?或(2)画出直线y=2x+1与y=3x+4,然后观察:对于哪些x的值,直线y=2x+1上的点在直线y=3x+4上相应的点的上方?解:方法(1)原不等式为:-x-3>0,在直角坐标系中画出函数y=-x-3•的图象(图1).从图象可以看出,当x<-3时这条直线上的点在x轴上方,即这时y=-x-3>0,因此不等式的解集是x<-3.方法(2)把原不等式的两边看着是两个一次函数,•在同一坐标系中画出直线y=2x+1与y=3x+4(图2),从图象上可以看出它们的交点的横坐标是x=-3,因此当x<-3时,对于同一个x的值,直线y=2x+1上的点在直线y=3x+4•上相应点的上方,此时有2x+1>3x+4,因此不等式的解集是x<-3.(1) (2)一、选择题1.直线y=x-1上的点在x轴上方时对应的自变量的范围是()A.x>1 B.x≥1 C.x<1 D.x≤12.已知直线y=2x+k与x轴的交点为(-2,0),则关于x的不等式2x+k<0•的解集是() A.x>-2 B.x≥-2 C.x<-2 D.x≤-23.已知关于x的不等式ax+1>0(a≠0)的解集是x<1,则直线y=ax+1与x轴的交点是() A.(0,1) B.(-1,0) C.(0,-1) D.(1,0)二、填空题4.当自变量x的值满足____________时,直线y=-x+2上的点在x轴下方.5.已知直线y=x-2与y=-x+2相交于点(2,0),则不等式x-2≥-x+2•的解集是________.6.直线y=-3x-3与x轴的交点坐标是________,则不等式-3x+9>12•的解集是________.7.已知关于x的不等式kx-2>0(k≠0)的解集是x>-3,则直线y=-kx+2与x•轴的交点是__________.8.已知不等式-x+5>3x-3的解集是x<2,则直线y=-x+5与y=3x-3•的交点坐标是_________.三、解答题9.某单位需要用车,•准备和一个体车主或一国有出租公司其中的一家签订合同,设汽车每月行驶xkm,应付给个体车主的月租费是y元,付给出租车公司的月租费是y元,y,y 分别与x之间的函数关系图象是如图11-3-4所示的两条直线,•观察图象,回答下列问题:(1)每月行驶的路程在什么范围内时,租国有出租车公司的出租车合算?(2)每月行驶的路程等于多少时,租两家车的费用相同?(3)如果这个单位估计每月行驶的路程为2300km,•那么这个单位租哪家的车合算?10.在同一坐标系中画出一次函数y1=-x+1与y2=2x-2的图象,并根据图象回答下列问题:(1)写出直线y1=-x+1与y2=2x-2的交点P的坐标.(2)直接写出:当x取何值时y1>y2;y1<y212.已知函数y1=kx-2和y2=-3x+b相交于点A(2,-1)(1)求k、b的值,在同一坐标系中画出两个函数的图象.(2)利用图象求出:当x取何值时有:①y1<y2;②y1≥y2(3)利用图象求出:当x取何值时有:①y1<0且y2<0;②y1>0且y2<0。
一元一次不等式与一次函数
一元一次不等式和一次函数是初中数学中的两个重要概念,它们的关系如下:
一元一次不等式:指只有一个未知数(一元),且方程中未知数的最高次数为1(一次)的不等式,例如:2x+1>5 或者x-3<7。
一次函数:指只有一个未知数(一元),且方程中未知数的最高次数为1(一次)的函数,例如:y=2x+1 或者y=x-3。
这两个概念之间的关系在于,我们可以将一元一次不等式转化为一次函数的形式进行分析和解决。
具体来说,我们可以将不等式中的未知数视为函数的自变量x,将不等式的两边分别视为函数的因变量y,例如:2x+1>5 可以转化为y=2x+1 和y=5 两个函数,我们可以画出这两个函数的图像,通过比较函数图像来解决不等式的解集。
例如,将不等式x-3<7 转化为一次函数的形式,得到y=x-3 和y=7 两个函数,我们可以在坐标系中画出这两个函数的图像,发现两个函数的交点在x=10 处,因此不等式的解集为x<10。
总之,一元一次不等式和一次函数之间有着紧密的联系,将不等式转化为函数的形式可以帮助我们更好地分析和解决问题。
一元一次不等式与一次函数的关系
一元一次不等式与一次函数之间有着密切的联系,这一联系表现在以下几个方面:
一、当令一元一次不等式中等号左边的表达式为一次函数时,可以将其化简为一次函数形式:
1. 一元一次方程组:
a. 当一元一次方程组中等式左右两边分别为一次函数时,可以将其化简为一次函数形式。
b. 两个一次方程涉及到同一个未知数时,可以最终得出结果,即将一元一次不等式化简为一次函数的形式。
2. 一元二次不等式:
a. 当一元二次不等式左边为一次函数时,也可以将其化简为一次函数形式。
b. 二次不等式的解也可以表现为一次函数的形式,即分段函数。
二、求解一元一次不等式可以利用一次函数的性质:
1. 关于一元一次方程:
a. 利用一次函数求函数图像实现一元一次方程的求解,从而得到不
等式的解。
b. 利用一次函数的性质验证不等式的正确性,从而得到不等式的解。
2. 关于一元二次方程:
a. 利用一次函数的对称性,判断不等式的大小,从而得到不等式的解。
b. 利用一次函数的单调性,得到不等式上下界,从而得到不等式的解。
综上所述,一元一次不等式与一次函数有着密切的联系,一元一次不
等式可以化简为一次函数形式,求解一元一次不等式也可以利用一次
函数的性质。
知识回顾:1、定义:不等式:一般地用不等号连接的式子叫做不等式。
2、不等式的基本性质:(1)不等式的两边都加上(或减去)同一个整式,不等号的方向不变。
(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
3、解不等式:把不等式变为x>。
或x<a的形式。
一、知识要点:1、一次函数的定义:若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,kHO)的形式,则称y是x的一次函数(x为自变量)。
当b=0时,y=kx,所以说正比例函数是一种特殊的一次函数.一次函数的解析式:y=kx+b(kH0)注:一次函数的解析式的形式是y=d+b,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.一次函数一般形式y=kx+b(k不为零)①k不为零②x指数为1③b取任意实数一次函数y=kx+b的图象是经过(0,b)和(-纟,0)两点的一条直线,我们称它为直线ky=kx+b,它可以看作由直线尸kx平移|b|个单位长度得到.(当b〉0时,向上平移;当b〈0时,向下平移)(1)解析式:(k、b是常数,kHO)(2)必过点:和(3)走向:k>0,b=0,图象经过第象限;k<0,b二0,图象经过象限O直线经过第象限O直线经过第象限Z?>0\b<0<O C>直线经过第象限P<0<=>直线经过第象限\b>Q[b<0(4)增减性:k>0,y随x的增而;k<0,y随x增大而(5)倾斜度:|k|越大,图象越接近于轴;|k|越小,图象越接近于轴.(6)图像的平移:上加下减;左加右减将函数y=kx+b图像向上平移3个单位变为,然后再向右平移3个单位变为;将函数y=kx+b图像向下平移3个单位变为然后再向左平移3个单位变为2、一次函数y=kx+b的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线, 所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点,.即横坐标或纵坐标为0的点.34、用待定系数法确定函数解析式的一般步骤:(设、列、解、答)(1)设:根据已知条件写出含有待定系数的函数关系式;(2)列:将x、y的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;(3)解:解方程得出未知系数的值;(4)答:将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.二、典型例题:1、若点(inji)在函数y=2x+l的图象上,则2m-n的值2、己知正比例函数y=kx伙工0),点⑵-3)在函数上,则y随x的增大而3、如果一次函数空+3的图象经过第一、二、四象限,则m的取值范围是4、地面气温是20°C,如果每升高100m,气温下降6°C,则气温t(°C)与高度h(m)的函数关系式是o5、己知一次函数尸kx+b的图象如图所示,则k,b的符号是()(A)k>0,b>0(B)k>0,b<0(C)k<0,b>0(D)k<0,b<06、已知一次函数尸kx+b的图象经过点(-1,-5),且与正比例函数尸**的图象相交于点(2,a),(1)求a的值,(2)k,b的值,(3)这两个函数图象与x轴所围成的三角形的面积。
17.5 实践与探索第1课时 一次函数与方程组和一元一次不等式的关系学习目标:1.认识一次函数与方程组、一元一次不等式之间的联系.2.会用函数观点解释方程和不等式及其解(解集)的意义.自主学习一、知识链接y =2x +1与x 轴的交点坐标为 .2.直线y =3x +1与直线y =3x +2的位置关系是________.2368x y x y ,,的解为 .二、新知预习1.认识一次函数与二元一次方程的关系把二元一次方程2x +y =3写成一次函数y =kx +b 的形式,结果是____________.如果该方程的一组解为⎩⎪⎨⎪⎧x =2,y = ,那么该一次函数的图象经过点(2,________);如果该一次函数的图象经过点(________,3),那么该方程的一组解是⎩⎪⎨⎪⎧x = ,y =3. 【要点归纳】在一次函数y =kx +b 中,给定了一个变量的值,求另一个变量的值,就是解关于另一个变量的一元一次方程.体现在函数图象上,就是知道了一次函数图象上一个点的横坐标或纵坐标,求另一个坐标.特别地,当y =0时,一元一次方程kx +b =0中x 的解,就是一次函数图象与x 轴交点的横坐标;当x =0时,y =b 就是一次函数图象与y 轴交点的纵坐标.2.认识用图象法解二元一次方程组(1)在平面直角坐标系中画出函数y =x +2及y =-x +4的图象,根据图象写出这两个函数图象交点的坐标是________,由此知方程组⎩⎪⎨⎪⎧y =x +2,y =-x +4的解是________; (2)方程组⎩⎪⎨⎪⎧y =2x +3,y =-x +6的解是________,由此知直线y =2x +3与直线y =-x +6的交点坐标是________.【要点归纳】根据一次函数与二元一次方程的关系,二元一次方程组⎩⎪⎨⎪⎧ y =k 1x +b 1,y =k 2x +b 2 (可以化成⎩⎪⎨⎪⎧a 1x +b 1y =c 1,a 2x +b 2y =c 2的形式)的解,就对应着两个一次函数y =k 1x +b 1,y =k 2x +b 2图象的交点坐标.所以求两条直线交点的坐标,就转化为解二元一次方程组的解.合作探究一、探究过程探究点1:一次函数与二元一次方程组的关系问题:学校有一批复印任务,原来由甲复印社承接,按每100页40元计费.现乙复印社表示,若学校先按月付给一定数额的承包费,则可按每100页15元收费.两复印社每月收费情况如下图所示.根据图象回答:(1)乙复印社的每月承包费是多少?(2)当每月复印多少页时,两复印社实际收费相同?(3)如果每月复印页数在1200页左右,那么应选择哪个复印社?问 :“乙复印社的每月承包费”在图象上怎样反映出来?答 :“乙复印社的每月承包费”指当x =0时,y 的值,从图中可以看出乙复印社的每月承包费是200元.问 :“收费相同”在图象上怎样反映出来?答 :“收费相同”是指当x 取相同的值时,y 相等,即两条射线的交点.我们看到,两个一次函数图象的交点处,自变量和对应的函数值同时满足两个函数的关系式.而两个一次函数的关系式就是方程组中的两个方程,所以交点的坐标就是方程组的解.据此,我们可以利用图象来求某些方程组的解.利用图象解方程组25, 1.yx y x【针对训练】小亮用作图象的方法解二元一次方程组时,在同一直角坐标系内作出了相应的两个一次函数的图象l 1,l 2,如图所示,他解的这个方程组是( ).A. ⎩⎪⎨⎪⎧ y =-2x +2,y =12x -1B. ⎩⎪⎨⎪⎧ y =-2x +2,y =-xC. ⎩⎪⎨⎪⎧ y =3x -8,y =12x -3D. ⎩⎪⎨⎪⎧y =-2x +2,y =-12x -1探究点2:一次函数与一元一次方程、不等式的关系画出函数323+=x y 的图象,观察图象回答下列问题: (1)x 取何值时,0323=+x ? (2)x 取哪些值时,0323>+x ? (3)x 取哪些值时,0323<+x (4)x 取哪些值时,3323>+x【方法总结】从函数值看:求kx +b >0(或<0)(k ≠0)的解集⇄y =kx +b 的函数值大于(或小于)0时,x 的取值范围;从函数图象看:求kx +b >0(或<0)(k ≠0)的解集⇄确定直线y =kx +b 在x 轴上方(或下方)的图象所对应的横坐标的范围.利用函数图象解不等式:(1)251x x ->-+;(2)251x x -<-+.【方法总结】一次函数与一元一次不等式的关系:以不等式左右两边的整式为函数作两条直线,以交点分为左右两部分,在同一区域同一自变量下观察图象:上大下小.【针对训练】画出函数22y x =-+的图象,观察图象并回答问题.(1)确定当20<<y 时,对应的自变量的取值范围;(2)确定当11x -≤<时,对应的函数值的取值范围.二、课堂小结当堂检测1.如图,已知函数y =ax ﹣3和y =kx 的图象交于点P (2,﹣1),则关于x ,y 的方程组3,y ax y kx =-⎧⎨=⎩的解是( )A .21x y =⎧⎨=-⎩B .12x y =-⎧⎨=⎩C .21x y =⎧⎨=⎩D .21x y =-⎧⎨=⎩第1题图 第2题图 2.如图,若一次函数y =﹣2x +b 的图象与两坐标轴分别交于A 、B 两点,点A 的坐标为(0,4),点B 的坐标为(2,0),则不等式﹣2x +b <0的解集为( )A .x >2B .x <2C .x <4D .x >4 3.若方程组21,31x yx y 的解为2,5x y ,则一次函数y =2x +1与y =3x -1的图象交点坐标为______.4.函数y =2x 和y =ax +4的图象相交于点A (m ,3),则方程组⎩⎪⎨⎪⎧y =2x ,y =ax +4的解为__________. y =kx +b 与y =mx +n 的图象如图所示.(1)写出关于x ,y 的方程组⎩⎪⎨⎪⎧y =kx +b ,y =mx +n 的解; (2)若0<kx +b <mx +n ,根据图象写出x 的取值范围.参考答案自主学习一、知识链接1. (-12,0) 2. 平行 3.6,2xy二、新知预习1. y=-2x+3 -1 -1 0 02.(1) (1,3)1,3xy(2)1,5xy(1,5)合作探究一、探究过程探究点1:一次函数与二元一次方程组的关系问题:解:(1)从图中可以看出乙复印社的每月承包费是200元.(2)由题意得0.4,2000.15,y xy x解得800,320.xy即当每月复印800页时,两复印社实际收费相同.(3)由图象可知,应该选择乙复印社.例1 解:在直角坐标系中画出两条直线,如下图所示.由图象观察可得:两条直线的交点坐标是(2,-1).两条直线的交点坐标是(2,-1),所以方程组的解为⎩⎨⎧-==.1,2y x 【针对训练】 D 探究点2:一次函数与一元一次方程、不等式的关系 例2 解:图象如图所示.(1)当x =-2时,0323=+x . (2)当x >-2时,0323>+x . (3)当x <-2时,0323<+x . (4)当x >0时,3323>+x .例3 解:(1)由图象可知,251x x ->-+的解集为x >2.(1)由图象可知,152+-<-x x 的解集为x <2.【针对训练】解:图象如图所示. (1)0<x<1.(2)0<y≤4.当堂检测1. A2. A3. (2,5)4.5. 解:(1)由图象可知,方程组的解为3,4. xy(2)由图象可知,3<x<5.3,23 xy。
《一元一次不等式与一次函数(1)》教学设计学校:太原市小店区三中学科:数学学段:初中八年级参赛人姓名:任君萍课题名称:一元一次不等式与一次函数(1)教学目标:(一)知识与技能:1、理解一元一次不等式与一次函数的关系.2、会根据一次函数图像解决一元一次不等式问题,能利用数学知识去解决实际问题。
(二)过程与方法:1、经历不等式与函数问题的探讨过程,学习用联系的观点看待数学问题的辨证思想。
2、通过一元一次不等式与一次函数的图象之间的结合,培养学生的数形结合意识,(三)情感态度价值观:体验数、形是有效地描述现实世界的重要手段,认识到数学是解决问题和进行交流的重要工具,增强学生学数学,用数学,探索数学奥妙的愿望,体验成功的感觉,从而更好的服务于社会。
教学重点:了解一元一次不等式与一次函数的内在联系。
教学难点:根据题意列函数关系式,将一次函数与一元一次不等式联系起来解决问题。
教学模式:研讨法即主要由学生自主交流合作来解决问题,教师引导作用.媒体使用说明:使用Microsoft office Powerpoint 2003软件,实物展台。
整合策略:使用PPT演示一元一次不等式与一次函数的联系,加深理解它们的内在联系,了解不等式与函数、方程是都是刻画现实世界中量与量之间变化规律的重要模型,是紧密联系的一个整体。
有助于激发学生的学习兴趣,更有助于学生发现普遍规律,形成探究结果。
这里意图是让学生通过直接观察函数图象得到结论。
从图象上来看:板书设计:相关链接:(请将课件、视频、MP3等媒体文件同时附上)1、课件(一元一次不等式与一次函数1)教学反思:。
一次函数与一次方程,一次不等式的关系知识点:一、一次函数与一元一次方程的关系直线y=kx+b (k ≠0)与x 轴交点的横坐标,就是一元一次方程kx+b=0(k ≠0)的解。
求直线y=kx+b 与x 轴交点时,可令y=0,得到方程kx+b=0,解方程得x=-b/k 。
直线y=kx+b 交x 轴于(-b/k ,0),-b/k 就是直线y=kx+b 与x 轴交点的横坐标。
二、一次函数与一元一次不等式的关系任何一元一次不等式都可以转化为ax=b>0或ax=b<0 (b a 、为常数,a ≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围。
三、一次函数与二元一次方程(组)的关系一次函数的解析式y=kx+b (k ≠0)本身就是一个二元一次方程,直线y=kx+b (k ≠0)上有无数个点,每个点的横纵坐标都满足二元一次方程y=kx+b (k ≠0),因此二元一次方程的解也就有无数个。
例题解析一、一次函数与一元一次方程综合已知直线y=(3m-2)x+2和y=-3x-2交于x 轴上同一点,m 的值为______已知一次函数y=-x+a 与y=x-b 的图象相交于点(m,8),则b-a=______.二、一次函数与一元一次不等式综合1.已知一次函数y=-2x+525y x =-+.(1)画出它的图象;(2)求出当x=3/2时,y 的值;(3)求出当y=-3时,x 的值;(4)观察图象,求出当x 为何值时,y>0,y<0,y=02.当自变量x 满足什么条件时,函数y=-4x+1的图象在:(1)x 轴上方; (2)y 轴左侧; (3)第一象限.3.已知直线A 为y=x+5,直线B 为y=-2x-6.当A>B 时,x 的取值范围是_____4.已知一次函数y=-2x+3(1)当x 取何值时,函数y 的值在-1与2之间变化?(2)当x 从-2到3变化时,函数y 的最小值和最大值各是多少?5.直线A:y=Mx+b 与直线B:y=Nx 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式Nx>Mx+b 的解集为______.6.当x_________时直线y=x+2上的点在直线y=3x-2上相应点的上方.7.如图,直线y=kx+b (k ≠0)经过A(5,1),B(-2,-3)两点,则不等式0.5x> kx+b>-3的解集为______.5题图 7题图8已知一次函数经过点(1,-2)和点(-1,3),求这个一次函数的解析式,并求:(1)当x=2时,y 的值;(2)x 为何值时,y<0?(3)当-2<x<1时,x 的值范围;(4)当-2<y<1时,y 的值范围.。