2018届人教版九年级数学下册(河北专版)检测卷:第二十八章检测卷
- 格式:doc
- 大小:1.35 MB
- 文档页数:9
期中检测卷时间:120分钟 满分:120分一、选择题(本大题有16个小题,共42分.1~10小题各3分;11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在下列函数中,y 是x 的反比例函数的是( )A .y =x -1B .y =8x 2C .y =-2x -1 D.y x=22.若△ABC ∽△DEF ,相似比为3∶2,则对应高的比为( )A .3∶2B .3∶5C .9∶4D .4∶93.如图,点A 是反比例函数y =kx (x >0)图象上一点,AB 垂直于x 轴,垂足为点B ,AC垂直于y 轴,垂足为点C .若矩形ABOC 的面积为5,则k 的值为( )A .5B .2.5 C. 5 D .10第3题图 第5题图 第7题图4.反比例函数y =-3x 的图象上有P 1(x 1,-2),P 2(x 2,-3)两点,则x 1与x 2的大小关系是( )A .x 1>x 2B .x 1=x 2C .x 1<x 2D .不确定5.如图,在△ABC 中,DE ∥BC ,AD DB =12,DE =4,则BC 的长是( )A .8B .10C .11D .126.在某一时刻,测得一根高为1.2m 的木棍的影长为2m ,同时测得一根旗杆的影长为25m ,那么这根旗杆的高度为( )A .15m B.1253m C .60m D .24m7.如图,E 是▱ABCD 的边BC 的延长线上一点,连接AE 交CD 于F ,则图中共有相似三角形( )A .4对B .3对C .2对D .1对8.“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为( )A .1.25尺B .57.5尺C .6.25尺D .56.5尺第8题图 第9题图 第12题图9.如图,双曲线y =k x 与直线y =-12x 交于A ,B 两点,且A (-2,m ),则点B 的坐标是( )A .(2,-1)B .(1,-2) C.⎝⎛⎭⎫12,-1 D.⎝⎛⎭⎫-1,12 10.如图所示的四个图形为两个圆或相似的正多边形,其中是位似图形的个数为( )A .1个B .2个C .3个D .4个11.函数y =ax与y =-ax 2+a (a ≠0)在同一直角坐标系中的大致图象可能是( )12.如图,△AOB 是直角三角形,∠AOB =90°,OB =2OA ,点A 在反比例函数y =1x 的图象上.若点B 在反比例函数y =kx的图象上,则k 的值为( )A .-4B .4C .-2D .213.如图,在△ABC 中,点E ,F 分别在边AB ,AC 上,EF ∥BC ,AF FC =12,△CEF 的面积为2,则△EBC 的面积为( )A .4B .6C .8D .12第13题图 第14题图 第16题图14.如图,已知函数y =k x 和函数y =12x +1的图象交于A ,B 两点,点A 的坐标为(2,2),以下结论:①反比例函数的图象一定过点(-1,-4);②当x >2时,12x +1>kx;③点B的坐标是(-4,-1);④S △OCD =1,其中正确结论的个数是( )A .1个B .2个C .3个D .4个 15.如图,在四边形ABCD 中,∠B =90°,AC =4,AB ∥CD ,DH 垂直平分AC ,点H 为垂足.设AB =x ,AD =y ,则y 关于x 的函数关系用图象大致可以表示为( )16.如图,将边长为10的正三角形OAB 放置于平面直角坐标系xOy 中,C 是AB 边上的动点(不与端点A ,B 重合),作CD ⊥OB 于点D .若点C ,D 都在双曲线y =kx (k >0,x >0)上,则k 的值为( )A .25 3B .18 3C .9 3D .9二、填空题(本大题有3个小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.反比例函数y =k -1x的图象经过点(2,3),则k =________.18.如图,甲、乙两盏路灯底部间的距离是30米,一天晚上,当小华走到距路灯乙底部5米处时,发现自己的身影顶部正好接触到路灯乙的底部.已知小华的身高为1.5米,那么路灯甲的高为________米.第18题图 第19题图19.如图,在△ABC 中,点A 1,B 1,C 1分别是BC ,AC ,AB 的中点,A 2,B 2,C 2分别是B 1C 1,A 1C 1,A 1B 1的中点……依此类推,若△ABC 的面积为1,则△A 3B 3C 3的面积为________,△A n B n C n 的面积为________.三、解答题(本大题有7个小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.(8分)如图,直线l 经过点A (0,-1),且与双曲线y =mx 交于点B (2,1).(1)求双曲线及直线l 的解析式;(2)已知P (a -1,a )在双曲线上,求P 点的坐标.21.(9分)如图,在6×8的网格图中,每个小正方形的边长均为1,点O和△ABC的顶点均为小正方形的顶点.(1)以O为位似中心,在网格图中作△A′B′C′,使△A′B′C′和△ABC位似,且相似比为1∶2;(2)连接(1)中的AA′,求四边形AA′C′C的周长(结果保留根号).22.(9分)如图,在四边形ABCD中,AD∥BC,∠ABC=90°,E是AB上一点,且DE⊥CE.(1)求证:△ADE∽△BEC;(2)若AD=1,DE=3,BC=2,求AB的长.23.(9分)嘉琪同学家的饮水机中原有水的温度为20℃,通电开机后,饮水机自动开始加热[此过程中水温y(℃)与开机时间x(分)满足一次函数关系],当加热到100℃时自动停止加热,随后水温开始下降[此过程中水温y(℃)与开机时间x(分)成反比例关系],当水温降至20℃时,饮水机又自动开始加热……重复上述程序(如图所示).根据图中提供的信息,解答下列问题:(1)写出饮水机水温的下降过程中y与x的函数关系式;(2)求图中t的值;(3)若嘉淇同学上午八点将饮水机通电开机后即外出散步,预计九点回到家中,回到家时,他能喝到不低于50℃的水吗?24.(10分)如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.动点M从点B出发,在BA 边上以3cm/s 的速度向定点A 运动,同时动点N 从点C 出发,在CB 边上以2cm/s 的速度向点B 运动,运动时间为t s(0<t <103),连接MN .(1)若△BMN 与△ABC 相似,求t 的值; (2)连接AN ,CM ,若AN ⊥CM ,求t 的值.25.(11分)如图,已知直线y =ax +b 与双曲线y =kx (x >0)交于A (x 1,y 1),B (x 2,y 2)两点(A 与B 不重合),直线AB 与x 轴交于P (x 0,0),与y 轴交于点C .(1)若A ,B 两点的坐标分别为(1,3),(3,y 2),求点P 的坐标;(2)若b =y 1+1,点P 的坐标为(6,0),且AB =BP ,求A ,B 两点的坐标.26.(12分)在四边形ABCD 中,点E 为AB 边上的一点,点F 为对角线BD 上的一点,且EF⊥A B.(1)若四边形ABCD为正方形.①如图①,请直接写出AE与DF的数量关系______________;②将△EBF绕点B逆时针旋转到图②所示的位置,连接AE,DF,猜想AE与DF的数量关系并说明理由;(2)如图③,若四边形ABCD为矩形,BC=mAB,其他条件都不变,将△EBF绕点B逆时针旋转α(0°<α<90°)得到△E′BF′,连接AE′,DF′,请在图③中画出草图,并求出AE′与DF′的数量关系.参考答案与解析1.C 2.A 3.A 4.A 5.D 6.A7.B8.B 9.A 10.C 11.D 12.A 13.B 14.D 15.D 解析:∵DH 垂直平分AC ,AC =4,∴DC =DA =y ,CH =2.∵CD ∥AB ,∴∠DCA =∠BAC .又∵∠DHC =∠B =90°,∴△DCH ∽△CAB ,∴CD AC =CH AB ,∴y 4=2x ,∴y =8x.∵AB <AC ,∴x <4,∴图象是D.16.C 解析:过点A 作AE ⊥OB 于点E .∵△OAB 是边长为10的正三角形,∴点A 的坐标为(10,0),点B 的坐标为(5,53),点E 的坐标为⎝⎛⎭⎫52,532.∵CD ⊥OB ,AE ⊥OB ,∴CD ∥AE ,∴BD BE =BC BA .设BD BE =BC BA =n (0<n <1),∴点D 的坐标为⎝ ⎛⎭⎪⎫10-5n 2,103-53n 2,点C 的坐标为(5+5n ,53-53n ).∵点C ,D 均在反比例函数y =kx 图象上,∴⎩⎪⎨⎪⎧k =10-5n 2×103-53n 2,k =(5+5n )×(53-53n ),解得⎩⎪⎨⎪⎧n =45,k =9 3.17.7 18.919.164 14n 解析:∵点A 1,B 1,C 1分别是△ABC 的边BC ,AC ,AB 的中点,∴A 1B 1,A 1C 1,B 1C 1是△ABC 的中位线,∴△A 1B 1C 1∽△ABC ,且相似比为12.同理可知△A 2B 2C 2∽△A 1B 1C 1,且相似比为12,∴△A 2B 2C 2∽△ABC ,且相似比为14.依此类推△A n B n C n ∽△ABC ,且相似比为12n .∵△ABC 的面积为1,∴△A 3B 3C 3的面积为⎝⎛⎭⎫1232=164,△A n B n C n 的面积为⎝⎛⎭⎫12n 2=14n .20.解:(1)将点B (2,1)的坐标代入双曲线解析式得m =2,则双曲线的解析式为y =2x.(2分)设直线l 的解析式为y =kx +b ,将点A 与点B 的坐标代入得⎩⎪⎨⎪⎧b =-1,2k +b =1,解得⎩⎪⎨⎪⎧k =1,b =-1.则直线l 的解析式为y =x -1.(4分)(2)将P (a -1,a )代入双曲线解析式得a (a -1)=2,整理得a 2-a -2=0,解得a =2或a =-1,(7分)则P 点的坐标为(1,2)或(-2,-1).(8分)21.解:(1)如图所示.(4分)(2)AA ′=CC ′=2.在Rt △OA ′C ′中,OA ′=OC ′=2,∴A ′C ′=22;同理可得AC =4 2.(7分)∴四边形AA ′C ′C 的周长为2+2+22+42=4+6 2.(9分)22.(1)证明:∵AD ∥BC ,∠ABC =90°,∴∠A =90°.∵DE ⊥CE ,∴∠DEC =90°,∴∠AED +∠BEC =90°.(3分)∵∠AED +∠ADE =90°,∴∠ADE =∠BEC ,∴△ADE ∽△BEC .(5分)(2)解:在Rt △ADE 中,AE =DE 2-AD 2= 2.(6分)∵△ADE ∽△BEC ,∴AD BE =AEBC ,即1BE =22,∴BE =2,∴AB =AE +BE =2 2.(9分) 23.解:(1)在水温下降过程中,设水温y (℃)与开机时间x (分)的函数关系式为y =mx ,依据题意,得100=m 8,即m =800,故y =800x.(3分)(2)当y =20时,20=800t,解得t =40.(6分)(3)∵60-40=20≥8,∴当x =20时,y =80020=40.∵40<50,∴他不能喝到不低于50℃的水.(9分)24.解:(1)由题意知BM =3t cm ,CN =2t cm ,∴BN =(8-2t )cm.在Rt △ABC 中,BA =AC 2+BC 2=62+82=10(cm).当△BMN ∽△BAC 时,BM BA =BN BC ,∴3t 10=8-2t 8,解得t =2011;(3分)当△BMN ∽△BCA 时,BM BC =BN BA ,∴3t 8=8-2t 10,解得t =3223.∴当△BMN 与△ABC 相似时,t 的值为2011或3223.(5分)(2)过点M 作MD ⊥CB 于点D ,则MD ∥AC ,∴△BMD ∽△BAC ,∴DM CA =BD BC =BMBA ,即DM 6=BD 8=BM 10.∵BM =3t cm ,∴DM =95t cm ,BD =125t cm ,∴CD =⎝⎛⎭⎫8-125t cm.(7分)∵AN ⊥CM ,∠ACB =90°,∴∠CAN +∠ACM =90°,∠MCD +∠ACM =90°,∴∠CAN =∠MCD .∵MD ⊥CB ,∴∠MDC =∠ACB =90°,∴△CAN ∽△DCM ,∴AC CD =CN DM,∴68-125t=2t 95t ,解得t =1312.(10分) 25.解:(1)∵直线y =ax +b 与双曲线y =kx (x >0)交于A (1,3),∴k =1×3=3,∴双曲线的解析式为y =3x .∵B (3,y 2)在反比例函数的图象上,∴y 2=33=1,∴点B 的坐标为(3,1).(2分)∵直线y =ax +b 经过A ,B 两点,∴⎩⎪⎨⎪⎧a +b =3,3a +b =1,解得⎩⎪⎨⎪⎧a =-1,b =4,∴直线的解析式为y =-x +4.令y =0,则x =4,∴点P 的坐标为(4,0).(4分)(2)如图,过点A 作AD ⊥y 轴于点D ,AE ⊥x 轴于点E ,则AD ∥x 轴,∴CD OC =ADOP .由题意知DO =AE =y 1,AD =x 1,OP =6,OC =b =y 1+1,AB =BP ,∴CD =OC -OD =y 1+1-y 1=1,∴1y 1+1=x 16.∵AB =BP ,∴点B 的坐标为⎝⎛⎭⎫6+x 12,12y 1.(7分)∵A ,B 两点都是反比例函数图象上的点,∴x 1·y 1=6+x 12·12y 1,解得x 1=2,代入1y 1+1=x 16,解得y 1=2,∴点A 的坐标为(2,2),点B 的坐标为(4,1).(11分)26.解:(1)①DF =2AE (2分)②DF =2AE .(3分)理由如下:∵△EBF 绕点B 逆时针旋转到图②所示的位置,∴∠ABE =∠DBF .∵BF BE =2,BD AB =2,∴BF BE =BD AB ,∴△ABE ∽△DBF ,∴DF AE =BFBE =2,即DF =2AE .(6分)(2)草图如图所示,∵四边形ABCD 为矩形,∴AD =BC =mAB ,∴BD =AB 2+AD 2=1+m 2AB .∵EF ⊥AB ,∴EF ∥AD ,∴△BEF ∽△BAD ,∴BE BA =BF BD ,∴BF BE =BDBA =1+m 2.(9分)∵△EBF 绕点B 逆时针旋转α(0°<α<90°)得到△E ′BF ′,∴∠ABE ′=∠DBF ′,BE ′=BE ,BF ′=BF ,∴BF ′BE ′=BD BA =1+m 2,∴△ABE ′∽△DBF ′,∴DF ′AE ′=BDBA =1+m 2,即DF ′=1+m 2AE ′.(12分)。
第二十八章检测卷时间:120分钟 满分:120分一、选择题(本大题有16个小题,共42分.1~10小题各3分;11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.cos60°的值等于( )A.12 B.22 C.32 D.322.已知在Rt △ABC 中,∠C =90°,sin A =35,则tan B 的值为( )A.43B.45C.54D.343.如图,在地面上的点A 处测得树顶B 的仰角为α,AC =7,则树高BC 为(用含α的代数式表示)( )A .7sin αB .7cos αC .7tan α D.7tanα第3题图第7题图第8题图4.如果把一个锐角△ABC 的三边的长都扩大为原来的3倍,那么锐角A 的正弦值( ) A .扩大为原来的3倍 B .缩小为原来的13C .没有变化D .不能确定5.在等腰△ABC 中,AB =AC =10cm ,BC =12cm ,则cos A2的值是( )A.35 B.45 C.34 D.546.已知0°<α<90°,且2sin(α-10°)=3,则α等于( ) A .50° B .60° C .70° D .80°7.如图,CD 是Rt △ABC 斜边上的高,AC =4,BC =3,则cos ∠BCD 的值是( )A.35 B.34 C.43 D.458.如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,则tan ∠ABC 的值为() A.35 B.34 C.105 D .19.如图,一河坝的横断面为等腰梯形ABCD ,坝顶宽10米,坝高12米,斜坡AB 的坡度i =1∶1.5,则坝底AD 的长度为( )A .26米B .28米C .30米D .46米第9题图第10题图10.如图,在△ABC 中,∠C =90°,AB =12,tan B =33.以点A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 、N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D ,则△ACD 的周长为( )A .12B .12 3C .6+6 3D .6+9 311.某地下车库出口处安装了“两段式栏杆”,如图①所示,点A 是栏杆转动的支点,点E 是栏杆两段的联结点.当车辆经过时,栏杆AEF 最多只能升起到如图②所示的位置,其示意图如图③所示(栏杆宽度忽略不计),其中AB ⊥BC ,EF ∥BC ,∠AEF =143°,AB =AE =1.2m ,那么适合该地下车库的车辆限高标志牌为(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)( )12.如图,在两建筑物之间有一根高15米的旗杆,从A 点经过旗杆顶点恰好看到矮建筑物的墙角C 点,且俯角α为60°,又从A 点测得D 点的俯角β为30°.若旗杆底点G 为BC 的中点,则矮建筑物的高CD 为( )A .20米B .103米C .153米D .56米。
人教版九年级数学下册 第28章 达标检测卷(考试时间:120分钟 满分:120分)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.如图,在Rt △ABC 中,∠C =90°,AB =13,BC =12,则下列三角函数表示正确的是( )A .sin A =1213B .cos A =1213C .tan A =512D .tan B =1252.某段河堤的横断面如图所示,堤高BC =5 m ,迎水坡AB 的坡比为1∶3,则AC 的长是( ) A .5 3 m B .10 m C .15 m D .10 3 m3.已知,在△ABC 中,∠C =90°.设sin B =n ,当∠B 是最小的内角时,n 的取值范围是( )A .0<n <22B .0<n <12C .0<n <33D .0<n <324.将一张矩形纸片ABCD 按如图所示的方式折起,使顶点C 落在点C ′处,测量得AB =4,DE =8,则sin ∠C ′ED 的值是( )A .2 B.12 C.22 D.325.如图,已知“人字梯”的5个踩档把梯子等分成6份,从上往下的第二踩档与第三踩档的正中间处有一条60 cm 长的绑绳EF ,tan α=52,则“人字梯”的顶端离地面的高度AD 是( )A .144 cmB .180 cmC .240 cmD .360 cm6.如图,在Rt △AOB 中,两直角边OA ,OB 分别在x 轴的负半轴和y 轴的正半轴上,将△AOB 绕点B 逆时针旋转90°后得到△A ′O ′B .若反比例函数y =k x的图象恰好经过斜边A ′B 的中点C ,S △ABO =4,tan ∠BAO =2,则k 的值为( )A. 3B. 4C. 6D. 8 二、填空题(本大题共6小题,每小题3分,共18分)7.在Rt △ABC 中,∠C =90°,cos A =32,则cos B = .8.若 3tan (x +10°)=1,则锐角x 的度数为 .9.如图,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,这时测得大树在地面上的影长为10 m ,则大树的长约为 m .(结果精确到1,参考数据:2≈1.41,3≈1.73)10.如图是矗立在高速公路边水平地面上的交通警示牌,经测量得到如下数据:AM =4米,AB =8米,∠MAD =45°,∠MBC =30°,则警示牌的高CD 为 米.(结果精确到0.1米,参考数据:2≈1.41,3≈1.73)11.如图,O 为原点,点A 的坐标为(3,0),点B 的坐标为(0,4),⊙D 过A ,B ,O 三点,C 为ABO ︵上一点(不与O ,A 两点重合),则cos C 的值是 .12.规定:sin(-x )=-sin x ,cos(-x )=cos x ,sin(x +y )=sin x ·cos y +cos x ·sin y .据此判断下列等式成立的是 (写出所有正确的序号).①cos(-60°)=-12;②sin 75°=6+24;③sin 2x =2sin x ·cos x ;④sin(x -y )=sin x ·cos y -cosx ·sin y .三、(本大题共5小题,每小题6分,共30分) 13.计算:(1)sin 2 60°+tan 45°-32cos 30°-tan 260°;(2)sin 30°-cos 2 45°+34tan 2 30°+sin 260°.14.如图,在△ABC 中,∠C =90°,sin A =25,D 为AC 上一点,∠BDC =45°,DC =6,求AB 的长.15.如图,在△ABC 中,AD 是边BC 上的高,AC =BD ,已知sin C =1213,BC =12,求AD 的长.16.有一个三角形的钢架ABC ,∠A =30°,∠C =45°,AC =2(3+1) m ,请计算说明,工人师傅搬运此钢架能否通过一个直径为2.1 m 的圆形门?17.数学拓展课程《玩转学具》课堂中,小陆同学发现:一副三角板中,含45°的三角板的斜边与含30°的三角板的长直角边相等,于是,小陆同学提出一个问题:如图,将一副三角板直角顶点重合拼放在一起,点B ,C ,E 在同一直线上,若BC =2,求AF 的长.请你运用所学的数学知识解决这个问题.四、(本大题共3小题,每小题8分,共24分)18.(2019益阳中考)如图,在▱ABCD 中,对角线AC 与BD 相交于点O ,∠CAB =∠ACB ,过点B 作BE ⊥AB 交AC 的延长线于点E.(1)求证:AC ⊥BD ;(2)若AB =14,cos ∠CAB =78,求线段OE 的长.19.如图,在Rt △ABC 中,∠ACB =90°,D 是AB 的中点,BE ⊥CD ,垂足为点E .已知AC =15,cos A =35.(1)求线段CD 的长; (2)求sin ∠DBE 的值.20.汽车超速行驶是交通安全的重大隐患,为了有效降低交通事故的发生,许多道路在事故易发路段设置了区间测速,如图,学校附近有一条笔直马路l ,其间设有区间测速,所有车辆限速40千米/小时.一数学实践活动小组设计了如下活动:在l 上确定A ,B 两点,并在AB 路段进行区间测速.在l 外取一点P ,作PC ⊥l ,垂足为点C ,测得PC =30米,∠APC =71°,∠BPC =35°,上午9时测得一汽车从点A 到点B 用时6秒,请你用所学的数学知识说明该车是否超速(参考数据:sin 35°≈0.57,cos 35°≈0.82,tan 35°≈0.70,sin 71°≈0.95,cos 71°≈0.33,tan 71°≈2.90).五、(本大题共2小题,每小题9分,共18分)21.如图,已知Rt △ABC 中,∠ACB =90°,CD 是斜边AB 上的中线,过点A 作AE ⊥CD ,AE 分别与CD ,CB 相交于点H ,E ,AH =2CH .(1)求sin B 的值;(2)如果CD =5,求BE 的值.22.如图为某区域部分交通线路图,其中直线l1∥l2∥l3,直线l与直线l1,l2,l3都垂直,垂足分别为点A,点B和点C,l2上的点M位于点A的北偏东30°方向上,且BM= 3 km,l3上的点N位于点M的北偏东α方向上,且cosα=1313,MN=213 km,点A和点N是城际铁路线L上的两个相邻的站点.(1)求l2和l3之间的距离;(2)若城际火车平均时速为150 km/h,求市民小强乘坐城际火车从站点A到站点N需要多少小时(结果用分数表示).六、(本大题共12分)23.(2019年遂宁中考第24题 )如图,△ABC内接于⊙O,直径AD交BC于点E,延长AD至点F,使DF=2OD,连接FC并延长交过点A的切线于点G,且满足AG∥BC,连接OC,若cos∠BAC=,BC=6.(1)求证:∠COD=∠BAC;(2)求⊙O的半径OC;(3)求证:CF是⊙O的切线.参考答案一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.如图,在Rt △ABC 中,∠C =90°,AB =13,BC =12,则下列三角函数表示正确的是( A )A .sin A =1213B .cos A =1213C .tan A =512D .tan B =1252.某段河堤的横断面如图所示,堤高BC =5 m ,迎水坡AB 的坡比为1∶3,则AC 的长是( A ) A .5 3 m B .10 m C .15 m D .10 3 m3.已知,在△ABC 中,∠C =90°.设sin B =n ,当∠B 是最小的内角时,n 的取值范围是( A )A .0<n <22B .0<n <12C .0<n <33D .0<n <324.将一张矩形纸片ABCD 按如图所示的方式折起,使顶点C 落在点C ′处,测量得AB =4,DE =8,则sin ∠C ′ED 的值是( B )A .2 B.12 C.22 D.325.如图,已知“人字梯”的5个踩档把梯子等分成6份,从上往下的第二踩档与第三踩档的正中间处有一条60 cm 长的绑绳EF ,tan α=52,则“人字梯”的顶端离地面的高度AD 是( B )A .144 cmB .180 cmC .240 cmD .360 cm6.如图,在Rt △AOB 中,两直角边OA ,OB 分别在x 轴的负半轴和y 轴的正半轴上,将△AOB 绕点B 逆时针旋转90°后得到△A ′O ′B .若反比例函数y =k x的图象恰好经过斜边A ′B 的中点C ,S △ABO =4,tan ∠BAO =2,则k 的值为( C )A. 3B. 4C. 6D. 8 二、填空题(本大题共6小题,每小题3分,共18分)7.在Rt △ABC 中,∠C =90°,cos A =32,则cos B = 12.8.若 3tan (x +10°)=1,则锐角x 的度数为__20°__.9.如图,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,这时测得大树在地面上的影长为10 m ,则大树的长约为 17 m .(结果精确到1,参考数据:2≈1.41,3≈1.73)10.如图是矗立在高速公路边水平地面上的交通警示牌,经测量得到如下数据:AM =4米,AB =8米,∠MAD =45°,∠MBC =30°,则警示牌的高CD 为 2.9 米.(结果精确到0.1米,参考数据:2≈1.41,3≈1.73)11.如图,O 为原点,点A 的坐标为(3,0),点B 的坐标为(0,4),⊙D 过A ,B ,O 三点,C 为ABO ︵上一点(不与O ,A 两点重合),则cos C 的值是 45.12.规定:sin(-x )=-sin x ,cos(-x )=cos x ,sin(x +y )=sin x ·cos y +cos x ·sin y .据此判断下列等式成立的是 ②③④ (写出所有正确的序号).①cos(-60°)=-12;②sin 75°=6+24;③sin 2x =2sin x ·cos x ;④sin(x -y )=sin x ·cos y -cosx ·sin y .三、(本大题共5小题,每小题6分,共30分) 13.计算:(1)sin 2 60°+tan 45°-32cos 30°-tan 260°;解:原式=(32)2+1-32×32-(3)2 =34+1-34-3 =-2.(2)sin 30°-cos 2 45°+34tan 2 30°+sin 260°.解:原式=12-(22)2+34×(33)2+(32)2=12-12+34×13+34 =1.15.如图,在△ABC 中,∠C =90°,sin A =25,D 为AC 上一点,∠BDC =45°,DC =6,求AB 的长.解:∵∠C =90°,∠BDC =45°, ∴∠DBC =45°,∴DC =BC =6.又∵sin A =25,∴BC AB =25,∴AB =15.15.如图,在△ABC 中,AD 是边BC 上的高,AC =BD ,已知sin C =1213,BC =12,求AD 的长.解:∵AD ⊥BC ,∴△ADC 为直角三角形,故sin C =AD AC =1213,设AD =12k ,则AC =13k ,∵AC =BD ,∴DC =BC -BD =12-13k ;由勾股定理得(13k)2=(12k)2+(12-13k)2,整理得6k 2-13k +6=0,解得k =23或32;∴AD =8或AD =18(不合题意,舍去). 故AD =8.16.如图,有一个三角形的钢架ABC ,∠A =30°,∠C =45°,AC =2(3+1) m ,请计算说明,工人师傅搬运此钢架能否通过一个直径为2.1 m 的圆形门?解:如图,过点B 作BD ⊥AC ,垂足为点D. 在Rt △ABD 中,∠A =30°,则AD =3BD. 在Rt △BCD 中,∠C =45°,则CD =BD.∵AC =AD +CD =3BD +BD =(3+1)BD =2(3+1), ∴BD =2,2<2.1.故工人师傅搬运此钢架能通过这个直径为2.1 m 的圆形门.17.数学拓展课程《玩转学具》课堂中,小陆同学发现:一副三角板中,含45°的三角板的斜边与含30°的三角板的长直角边相等,于是,小陆同学提出一个问题:如图,将一副三角板直角顶点重合拼放在一起,点B ,C ,E 在同一直线上,若BC =2,求AF 的长.请你运用所学的数学知识解决这个问题.解:在Rt △ABC 中,∵BC =2,∠A =30°,∴AC =BCtan A=23,则EF =AC =23,∵∠E =45°,∴FC =EF ·sin E =6, ∴AF =AC -FC =23- 6.四、(本大题共3小题,每小题8分,共24分)18.(10分)(益阳中考)如图,在▱ABCD 中,对角线AC 与BD 相交于点O ,∠CAB =∠ACB ,过点B 作BE ⊥AB 交AC 的延长线于点E.(1)求证:AC ⊥BD ;(2)若AB =14,cos ∠CAB =78,求线段OE 的长.(1)证明:∵∠CAB =∠ACB ,∴AB =CB , ∴▱ABCD 是菱形,∴AC ⊥BD.(2)解:在Rt △AOB 中,cos ∠CAB =AO AB =78,AB =14,∴AO =14× 78=494, 在Rt △ABE 中,cos ∠EAB =AB AE =78,AB =14,∴AE =87AB =16,∴OE =AE -AO =16-494=154.19.如图,在Rt △ABC 中,∠ACB =90°,D 是AB 的中点,BE ⊥CD ,垂足为点E .已知AC =15,cos A =35.(1)求线段CD 的长; (2)求sin ∠DBE 的值.解:(1)在Rt △ABC 中,∵∠ACB =90°,AC =15,cos A =35,∴AB =15cos A =25.又∵D 是AB 的中点,∴CD =12AB =252.(2)在Rt △ABC 中,∠ACB =90°,D 是AB 的中点,∴DC =DB =252,∴∠DCB =∠DBC .又∵∠E =∠ACB =90°,∴△BEC ∽△ACB ,∴EC BC =BCAB.又BC =AB 2-AC 2=252-152=20,∴EC 20=2025,∴EC =16.∵CD =252,∴DE =16-252=72.∴在Rt △DEB 中,sin ∠DBE =72×225=725.20.汽车超速行驶是交通安全的重大隐患,为了有效降低交通事故的发生,许多道路在事故易发路段设置了区间测速,如图,学校附近有一条笔直马路l ,其间设有区间测速,所有车辆限速40千米/小时.一数学实践活动小组设计了如下活动:在l 上确定A ,B 两点,并在AB 路段进行区间测速.在l 外取一点P ,作PC ⊥l ,垂足为点C ,测得PC =30米,∠APC =71°,∠BPC =35°,上午9时测得一汽车从点A 到点B 用时6秒,请你用所学的数学知识说明该车是否超速(参考数据:sin 35°≈0.57,cos 35°≈0.82,tan 35°≈0.70,sin 71°≈0.95,cos 71°≈0.33,tan 71°≈2.90).解:在Rt △APC 中,AC =PC · tan ∠APC ≈30×2.90=87(米). 同理求得BC ≈21米.∴AB =AC -BC =87-21=66(米).∴汽车的速度为666=11(米/秒)=39.6(千米/时).∵39.6<40,∴该车没有超速.五、(本大题共2小题,每小题9分,共18分)21.如图,已知Rt △ABC 中,∠ACB =90°,CD 是斜边AB 上的中线,过点A 作AE ⊥CD ,AE 分别与CD ,CB 相交于点H ,E ,AH =2CH .(1)求sin B 的值;(2)如果CD =5,求BE 的值.解:(1)∵∠ACB =90°, CD 是斜边AB 上的中线, ∴CD =BD ,∴∠B =∠BCD.∵AE ⊥CD ,∴∠CAH +∠ACH =90°.又∵∠ACB =90°,∴∠BCD +∠ACH =90°, ∴∠B =∠BCD =∠CAH.∵AH =2CH ,∴由勾股定理得AC =5CH ,∴sin B =sin ∠CAH =CH AC =55;(2)∵sin B =55,∴AC ∶AB =1∶ 5.又∵CD =5,∴AB =25,∴AC =2. 设CE =x(x>0),则AE =5x ,则在Rt △ACE 中,有x 2+22=(5x)2,∴x =1,即CE =1.在Rt △ABC 中,AC 2+BC 2=AB 2, ∴BC =4,∴BE =BC -CE =3.22.如图为某区域部分交通线路图,其中直线l 1∥l 2∥l 3,直线l 与直线l 1,l 2,l 3都垂直,垂足分别为点A ,点B 和点C ,l 2上的点M 位于点A 的北偏东30°方向上,且BM = 3 km ,l 3上的点N 位于点M 的北偏东α方向上,且cos α=1313,MN =213 km ,点A 和点N 是城际铁路线L 上的两个相邻的站点.(1)求l 2和l 3之间的距离; (2)若城际火车平均时速为150 km /h ,求市民小强乘坐城际火车从站点A 到站点N 需要多少小时(结果用分数表示).解:(1)过点M 作MD ⊥NC 于点D.∵cos α=1313,MN =213, ∴cos α=DM MN =DM 213=1313,解得DM =2 km .答:l 2和l 3之间的距离为2 km .(2)∵点M 位于点A 的北偏东30°方向上,且BM =3,∴tan 30°=BM AB =3AB =33,解得AB =3,可得,AC =3+2=5.∵MN =213,DM =2,∴DN =(213)2-22=43,则NC =DN +CD =DN +BM =53,∴AN =CN 2+AC 2=(53)2+52=10(km ).∵城际火车平均时速为150 km /h ,∴10150=115.答:市民小强乘坐城际火车从站点A 到站点N 需要115 h .六、(本大题共12分)23.(2019年遂宁中考第24题 )如图,△ABC内接于⊙O,直径AD交BC于点E,延长AD至点F,使DF=2OD,连接FC并延长交过点A的切线于点G,且满足AG∥BC,连接OC,若cos∠BAC=,BC=6.(1)求证:∠COD=∠BAC;(2)求⊙O的半径OC;(3)求证:CF是⊙O的切线.解:(1)∵AG是⊙O的切线,AD是⊙O的直径,∴∠GAF=90°,∵AG∥BC,∴AE⊥BC,∴CE=BE,∴∠BAC=2∠EAC,∵∠COE=2∠CAE,∴∠COD=∠BAC;(2)∵∠COD=∠BAC,∴cos∠BAC=cos∠COE==,∴设OE=x,OC=3x,∵BC=6,∴CE=3,∵CE⊥AD,∴OE2+CE2=OC2,∴x2+32=9x2,∴x=(负值舍去),∴OC=3x=,∴⊙O的半径OC为;(3)∵DF=2OD,∴OF=3OD=3OC,∴,∵∠COE=∠FOC,∴△COE∽△FOE,∴∠OCF=∠DEC=90°,∴CF是⊙O的切线.。
第二十八章综合能力检测题时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.(2015·大庆)sin 60°等于( D )A.12B.22 C .1 D.322.在Rt △ABC 中,∠C =90°,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,则下列等式中正确的是( D )A .cos A =a cB .sin B =c bC .tan B =a bD .以上都不正确 3.(2015·南通)如图,在平面直角坐标系中,直线OA 过点(2,1),则tan α的值是( C ) A.55 B. 5 C.12D .2第3题图第6题图第7题图4.下列等式成立的是( C )A .sin45°+cos45°=1B .2tan30°=tan60°C .2sin30°=tan45°D .sin45°cos45°=tan45° 5.在Rt △ABC 中,∠C =90°,∠A =45°,a +b =46,则c 等于( A )A .4 3B .4C .2 6D .4 26.如图,一河坝的横断面为等腰梯形ABCD ,坝顶宽10米,坝高12米,斜坡AB 的坡度i =1∶1.5,则坝底AD 的长度为( D )A .26米B .28米C .30米D .46米7.如图所示,在Rt △ABC 中,∠C =90°,D 为BC 边上一点,∠DAC =30°,BD =2,AB =23,则AC 的长是( A ) A. 3 B .2 2 C .3 D.3228.如图是以△ABC 的边AB 为直径的半圆O ,点C 恰好在半圆上,过C 作CD ⊥AB交AB 于点D.已知cos ∠ACD =35,BC =4,则AC 的长为( D ) A .1 B.203 C .3 D.163第8题图第9题图第10题图9.如图,在Rt △ABC 中,∠C =90°,∠A =30°,E 为AB 边上一点,且AE ∶EB =4∶1,EF ⊥AC 于点F ,连接FB ,则tan ∠CFB 的值等于( C )A.33B.233C.533 D .5 3 10.如图,学校大门出口处有一自动感应栏杆,点A 是栏杆转动的支点,当车辆经过时,栏杆AE 会自动升起,某天早上,栏杆发生故障,在某个位置突然卡住,这时测得栏杆升起的角度∠BAE =127°,已知AB ⊥BC ,支架AB 高1.2米,大门BC 打开的宽度为2米,以下哪辆车可以通过?( C )(栏杆宽度,汽车反光交镜忽略不计)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,车辆尺寸:长×宽×高)A .宝马Z4(4200 mm×1800 mm×1360 mm)B .奇瑞QQ(4000 mm×1600 mm×1520 mm)C .大众朗逸(4600 mm×1700 mm×1400 mm)D .奥迪A4(4700 mm×1800 mm×1400 mm)二、填空题(每小题3分,共24分)11.在△ABC 中,∠B =45°,cos A =12,则∠C 的度数是__75°__. 12.将一副三角尺按如图所示叠放在一起,若AB =14 cm ,则阴影部分的面积是__492__cm 2.第12题图第14题图第15题图13.已知在Rt △ABC 中,∠C =90°,sin A =513,则tan B 的值为__125__. 14.如图,直线MN 与⊙O 相切于点M ,ME =EF 且EF ∥MN ,则cos E =__12__. 15.如图,等边三角形ABC 中,D ,E 分别为AB ,BC 边上的点,AD =BE ,AE 与CD 交于点F ,AG ⊥CD 于点G ,则sin ∠AFG 的值2. 16.(2015·德州)如图,某建筑物BC 上有一旗杆AB ,从与BC 相距38 m 的D 处观测旗杆顶部A 的仰角为50°,观测旗杆底部B 的仰角为45°,则旗杆的高度均为__7.2__m .(结果精确到0.1 m ,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)第16题图第17题图17.一渔船在海岛A 南偏东20°方向的B 处遇险,测得海岛A 与B 的距离为20(3+1)海里,渔船将险情报告给位于A 处的救援船后,沿北偏西65°方向向海岛C 靠近,同时,从A 处出发的救援船沿南偏西10°方向匀速航行,20分钟后,救援船在海岛C 处恰好追上渔船,那么救援船航行的速度为__2__海里/分.18.已知:在△ABC 中,AC =1,AB 与BC 所在直线所成的角中锐角为45°角,AC与BC 所在直线形成的夹角的余弦值为255(即cos C =255),则BC 边的长是5或5__. 解:点拨:分两种情况:作AD ⊥BC ,垂足为点D.①在△ABC 的内部,∠ABD =45°;②在△ABC 外∠ABD =45°.这两种情况,解直角△ACD 与直角△ABD ,得到BC 的长.三、解答题(共66分)19.(6分)已知α是锐角,且sin (α+15°)=32,计算8-4cos α-(π-3.14)0+tan α+⎝⎛⎭⎫13-1的值.解:∵sin (α+15°)=32,∴α=45°,∴原式=22-4×22-1+1+3=3. 20.(8分)在△ABC 中,∠C =90°.(1)已知:c =83,∠A =60°,求∠B 及a ,b 的值;(2)已知:a =36,c =63,求∠A ,∠B 及b 的值.解:(1)∠B =30°,a =12,b =43;(2)∠A =∠B =45°,b =3 6.21.(9分)(2015·长春)如图,海面上B ,C 两岛分别位于A 岛的正东和正北方向.一艘船从A 岛出发,以18海里/时的速度向正北方向航行2小时到达C 岛,此时测得B 岛在C 岛的南偏东43°.求A ,B 两岛之间的距离.(结果精确到0.1海里)(参考数据:sin 43°=0.68,cos 43°=0.73,tan 43°=0.93)解:由题意,得AC =18×2=36(海里),∠ACB =43°.在Rt △ABC 中,∵∠A =90°,∴AB =AC•tan ∠ACB =36×0.93≈33.5(海里).故A ,B 两岛之间的距离约为33.5海里.22.(9分)(2014·重庆)如图,在△ABC 中,CD ⊥AB ,垂足为点D.若AB =12,CD =6,tan A =32,求sin B +cos B 的值.解:在Rt △ACD 中,∵∠ADC =90°,∴tanA =CD AD =6AD =32,∴AD =4,∴BD =AB -AD =12-4=8.在Rt △BCD 中,∵∠BDC =90°,BD =8,CD =6,∴BC =BD 2+CD 2=10,∴sinB =CD BC =35,cosB =BD BC =45,∴sinB +cosB =35+45=75. 23.(10分)一副三角板如图放置,点C 在FD 的延长线上,AB ∥CF ,∠F =∠ACB =90°,∠E =30°,∠A =45°,AC =122,试求CD 的长.解:过点B 作BM ⊥DF 于点M.∵∠BCA =90°,∠A =45°,∴∠ABC =45°,∴BC =AC =12 2.∵AB ∥CF ,∴∠BCM =45°.在Rt △BCM 中,BM =BC·sin45°=12.在Rt △BCM 中,∵∠BCM =45°,∴∠MBC =45°,∴CM =BM =12.在Rt △BMD 中,∠BDM =60°,∴DM =BM tan60°=43,∴CD =CM -DM =12-4 3. 24.(11分)(2015·上海)如图,MN 表示一段笔直的高架道路,线段AB 表示高架道路旁的一排居民楼,已知点A 到MN 的距离为15米,BA 的延长线与MN 相交于点D ,且∠BDN =30°,假设汽车在高速道路上行驶时,周围39米以内会受到噪音(XRS )的影响.(1)过点A 作MN 的垂线,垂足为点H ,如果汽车沿着从M 到N 的方向在MN 上行驶,当汽车到达点P 处时,噪音开始影响这一排的居民楼,那么此时汽车与点H 的距离为多少米?(2)降低噪音的一种方法是在高架道路旁安装隔音板,当汽车行驶到点Q 时,它与这一排居民楼的距离QC 为39米,那么对于这一排居民楼,高架道路旁安装的隔音板至少需要多少米长?(精确到1米)(参考数据:3≈1.7)解:(1)连接PA.由题意知,AP =39 m .在Rt △APH 中,PH =AP 2-AH 2=392-152=36(米);(2)由题意知,隔音板的长度是PQ 的长度.在Rt △ADH 中,DH =AH tan30°=153(米).在Rt △CDQ 中,DQ =CQ sin30°=3912=78(米).则PQ =PH +HQ =PH +DQ -DH =36+78-153≈114-15×1.7=88.5≈89(米).故高架道路旁安装的隔音板至少需要89米.25.(13分)如图,某小学门口有一直线马路,交警在门口设有一条宽度为4米的斑马线,为安全起见,规定车头距斑马线后端的水平距离不得低于2米,现有一旅游车在路口遇红灯刹车停下,汽车里司机与斑马线前后两端的视角分别为∠FAE =15°和∠FAD =30°,司机距车头的水平距离为0.8米,试问该旅游车停车是否符合上述安全标准?(E ,D ,C ,B 四点在平行于斑马线的同一直线上)(参考数据:tan 15°=2-3,3≈1.732,2≈1.414)解:∵∠FAE =15°,∠FAD =30°,∴∠EAD =15°.∵AF ∥BE ,∴∠AED =∠FAE=15°,∠ADB =∠FAD =30°.设AB =x ,则在Rt △AEB 中,EB =AB tan15°=x tan15°.∵ED =4,ED +BD =EB ,∴BD =x tan15°-4.在Rt △ADB 中,BD =AB tan30°=x tan30°,∴x tan15°-4=x tan30°,即(12-3-133)x =4,解得x =2,∴BD =2tan30°=2 3.∵BD =CD +BC =CD +0.8,∴CD =23-0.8≈2×1.732-0.8≈2.7>2,故符合标准.故该旅游车停车符合规定的安全标准.。
【河北版】2018届九年级下数学期中检测试卷含答案分 题号 一 二 三 总分 得分一、选择题(11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在下列函数中,y 是x 的反比例函数的是( )A .y =x -1B .y =8x 2C .y =-2x -1 D.y x=22.若△ABC ∽△DEF ,相似比为3∶2,则对应高的比为( )A .3∶2B .3∶5C .9∶4D .4∶93.如图,点A 是反比例函数y =kx (x >0)图象上一点,AB 垂直于x 轴,垂足为点B ,AC垂直于y 轴,垂足为点C .若矩形ABOC 的面积为5,则k 的值为( )A .5B .2.5 C. 5 D .10第3题图 第5题图 第7题图4.反比例函数y =-3x 的图象上有P 1(x 1,-2),P 2(x 2,-3)两点,则x 1与x 2的大小关系是( )A .x 1>x 2B .x 1=x 2C .x 1<x 2D .不确定5.如图,在△ABC 中,DE ∥BC ,AD DB =12,DE =4,则BC 的长是( )A .8B .10C .11D .126.在某一时刻,测得一根高为1.2m 的木棍的影长为2m ,同时测得一根旗杆的影长为25m ,那么这根旗杆的高度为( )A .15m B.1253m C .60m D .24m7.如图,E 是▱ABCD 的边BC 的延长线上一点,连接AE 交CD 于F ,则图中共有相似三角形( )A .4对B .3对C .2对D .1对8.“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为( )A .1.25尺B .57.5尺C .6.25尺D .56.5尺第8题图 第9题图 第12题图9.如图,双曲线y =k x 与直线y =-12x 交于A ,B 两点,且A (-2,m ),则点B 的坐标是( )A .(2,-1)B .(1,-2) C.⎝⎛⎭⎫12,-1 D.⎝⎛⎭⎫-1,12 10.如图所示的四个图形为两个圆或相似的正多边形,其中是位似图形的个数为( )A .1个B .2个C .3个D .4个11.函数y =ax与y =-ax 2+a (a ≠0)在同一直角坐标系中的大致图象可能是( )12.如图,△AOB 是直角三角形,∠AOB =90°,OB =2OA ,点A 在反比例函数y =1x 的图象上.若点B 在反比例函数y =kx的图象上,则k 的值为( )A .-4B .4C .-2D .213.如图,在△ABC 中,点E ,F 分别在边AB ,AC 上,EF ∥BC ,AF FC =12,△CEF 的面积为2,则△EBC 的面积为( )A .4B .6C .8D .12第13题图 第14题图 第16题图14.如图,已知函数y =k x 和函数y =12x +1的图象交于A ,B 两点,点A 的坐标为(2,2),以下结论:①反比例函数的图象一定过点(-1,-4);②当x >2时,12x +1>kx ;③点B的坐标是(-4,-1);④S △OCD =1,其中正确结论的个数是( )A .1个B .2个C .3个D .4个15.如图,在四边形ABCD 中,∠B =90°,AC =4,AB ∥CD ,DH 垂直平分AC ,点H 为垂足.设AB =x ,AD =y ,则y 关于x 的函数关系用图象大致可以表示为( )16.如图,将边长为10的正三角形OAB 放置于平面直角坐标系xOy 中,C 是AB 边上的动点(不与端点A ,B 重合),作CD ⊥OB 于点D .若点C ,D 都在双曲线y =kx (k >0,x >0)上,则k 的值为( )A .25 3B .18 3C .9 3D .9二、填空题(本大题有3个小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.反比例函数y =k -1x的图象经过点(2,3),则k =________.18.如图,甲、乙两盏路灯底部间的距离是30米,一天晚上,当小华走到距路灯乙底部5米处时,发现自己的身影顶部正好接触到路灯乙的底部.已知小华的身高为1.5米,那么路灯甲的高为________米.第18题图 第19题图19.如图,在△ABC 中,点A 1,B 1,C 1分别是BC ,AC ,AB 的中点,A 2,B 2,C 2分别是B 1C 1,A 1C 1,A 1B 1的中点……依此类推,若△ABC 的面积为1,则△A 3B 3C 3的面积为________,△A n B n C n 的面积为________.三、解答题(本大题有7个小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.(8分)如图,直线l 经过点A (0,-1),且与双曲线y =mx 交于点B (2,1).(1)求双曲线及直线l 的解析式;(2)已知P (a -1,a )在双曲线上,求P 点的坐标.21.(9分)如图,在6×8的网格图中,每个小正方形的边长均为1,点O 和△ABC 的顶点均为小正方形的顶点.(1)以O为位似中心,在网格图中作△A′B′C′,使△A′B′C′和△ABC位似,且相似比为1∶2;(2)连接(1)中的AA′,求四边形AA′C′C的周长(结果保留根号).22.(9分)如图,在四边形ABCD中,AD∥BC,∠ABC=90°,E是AB上一点,且DE⊥CE.(1)求证:△ADE∽△BEC;(2)若AD=1,DE=3,BC=2,求AB的长.23.(9分)嘉琪同学家的饮水机中原有水的温度为20℃,通电开机后,饮水机自动开始加热[此过程中水温y(℃)与开机时间x(分)满足一次函数关系],当加热到100℃时自动停止加热,随后水温开始下降[此过程中水温y(℃)与开机时间x(分)成反比例关系],当水温降至20℃时,饮水机又自动开始加热……重复上述程序(如图所示).根据图中提供的信息,解答下列问题:(1)写出饮水机水温的下降过程中y与x的函数关系式;(2)求图中t的值;(3)若嘉淇同学上午八点将饮水机通电开机后即外出散步,预计九点回到家中,回到家时,他能喝到不低于50℃的水吗?24.(10分)如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.动点M从点B出发,在BA边上以3cm/s的速度向定点A运动,同时动点N从点C出发,在CB边上以2cm/s的速度向点B 运动,运动时间为t s(0<t <103),连接MN .(1)若△BMN 与△ABC 相似,求t 的值; (2)连接AN ,CM ,若AN ⊥CM ,求t 的值.25.(11分)如图,已知直线y =ax +b 与双曲线y =kx (x >0)交于A (x 1,y 1),B (x 2,y 2)两点(A 与B 不重合),直线AB 与x 轴交于P (x 0,0),与y 轴交于点C .(1)若A ,B 两点的坐标分别为(1,3),(3,y 2),求点P 的坐标;(2)若b =y 1+1,点P 的坐标为(6,0),且AB =BP ,求A ,B 两点的坐标.26.(12分)在四边形ABCD 中,点E 为AB 边上的一点,点F 为对角线BD 上的一点,且EF ⊥A B.(1)若四边形ABCD为正方形.①如图①,请直接写出AE与DF的数量关系______________;②将△EBF绕点B逆时针旋转到图②所示的位置,连接AE,DF,猜想AE与DF的数量关系并说明理由;(2)如图③,若四边形ABCD为矩形,BC=mAB,其他条件都不变,将△EBF绕点B逆时针旋转α(0°<α<90°)得到△E′BF′,连接AE′,DF′,请在图③中画出草图,并求出AE′与DF′的数量关系.参考答案与解析1.C 2.A 3.A 4.A 5.D 6.A7.B8.B9.A10.C11.D12.A13.B14.D15.D 解析:∵DH 垂直平分AC ,AC =4,∴DC =DA =y ,CH =2.∵CD ∥AB ,∴∠DCA =∠BAC .又∵∠DHC =∠B =90°,∴△DCH ∽△CAB ,∴CD AC =CH AB ,∴y 4=2x ,∴y =8x.∵AB <AC ,∴x <4,∴图象是D.16.C 解析:过点A 作AE ⊥OB 于点E .∵△OAB 是边长为10的正三角形,∴点A 的坐标为(10,0),点B 的坐标为(5,53),点E 的坐标为⎝⎛⎭⎫52,532.∵CD ⊥OB ,AE ⊥OB ,∴CD ∥AE ,∴BD BE =BC BA .设BD BE =BC BA =n (0<n <1),∴点D 的坐标为⎝ ⎛⎭⎪⎫10-5n 2,103-53n 2,点C 的坐标为(5+5n ,53-53n ).∵点C ,D 均在反比例函数y =kx 图象上,∴⎩⎪⎨⎪⎧k =10-5n 2×103-53n 2,k =(5+5n )×(53-53n ),解得⎩⎪⎨⎪⎧n =45,k =9 3.17.7 18.919.164 14n 解析:∵点A 1,B 1,C 1分别是△ABC 的边BC ,AC ,AB 的中点,∴A 1B 1,A 1C 1,B 1C 1是△ABC 的中位线,∴△A 1B 1C 1∽△ABC ,且相似比为12.同理可知△A 2B 2C 2∽△A 1B 1C 1,且相似比为12,∴△A 2B 2C 2∽△ABC ,且相似比为14.依此类推△A n B n C n ∽△ABC ,且相似比为12n .∵△ABC 的面积为1,∴△A 3B 3C 3的面积为⎝⎛⎭⎫1232=164,△A n B n C n 的面积为⎝⎛⎭⎫12n 2=14n .20.解:(1)将点B (2,1)的坐标代入双曲线解析式得m =2,则双曲线的解析式为y =2x.(2分)设直线l 的解析式为y =kx +b ,将点A 与点B 的坐标代入得⎩⎪⎨⎪⎧b =-1,2k +b =1,解得⎩⎪⎨⎪⎧k =1,b =-1.则直线l 的解析式为y =x -1.(4分)(2)将P (a -1,a )代入双曲线解析式得a (a -1)=2,整理得a 2-a -2=0,解得a =2或a =-1,(7分)则P 点的坐标为(1,2)或(-2,-1).(8分)21.解:(1)如图所示.(4分)(2)AA ′=CC ′=2.在Rt △OA ′C ′中,OA ′=OC ′=2,∴A ′C ′=22;同理可得AC =4 2.(7分)∴四边形AA ′C ′C 的周长为2+2+22+42=4+6 2.(9分)22.(1)证明:∵AD ∥BC ,∠ABC =90°,∴∠A =90°.∵DE ⊥CE ,∴∠DEC =90°,∴∠AED +∠BEC =90°.(3分)∵∠AED +∠ADE =90°,∴∠ADE =∠BEC ,∴△ADE ∽△BEC .(5分)(2)解:在Rt △ADE 中,AE =DE 2-AD 2= 2.(6分)∵△ADE ∽△BEC ,∴AD BE =AEBC ,即1BE =22,∴BE =2,∴AB =AE +BE =2 2.(9分) 23.解:(1)在水温下降过程中,设水温y (℃)与开机时间x (分)的函数关系式为y =mx ,依据题意,得100=m 8,即m =800,故y =800x.(3分)(2)当y =20时,20=800t,解得t =40.(6分)(3)∵60-40=20≥8,∴当x =20时,y =80020=40.∵40<50,∴他不能喝到不低于50℃的水.(9分)24.解:(1)由题意知BM =3t cm ,CN =2t cm ,∴BN =(8-2t )cm.在Rt △ABC 中,BA =AC 2+BC 2=62+82=10(cm).当△BMN ∽△BAC 时,BM BA =BN BC ,∴3t 10=8-2t 8,解得t =2011;(3分)当△BMN ∽△BCA 时,BM BC =BN BA ,∴3t 8=8-2t 10,解得t =3223.∴当△BMN 与△ABC 相似时,t 的值为2011或3223.(5分)(2)过点M 作MD ⊥CB 于点D ,则MD ∥AC ,∴△BMD ∽△BAC ,∴DM CA =BD BC =BMBA ,即DM 6=BD 8=BM 10.∵BM =3t cm ,∴DM =95t cm ,BD =125t cm ,∴CD =⎝⎛⎭⎫8-125t cm.(7分)∵AN ⊥CM ,∠ACB =90°,∴∠CAN +∠ACM =90°,∠MCD +∠ACM =90°,∴∠CAN =∠MCD .∵MD ⊥CB ,∴∠MDC =∠ACB =90°,∴△CAN ∽△DCM ,∴AC CD =CN DM,∴68-125t=2t 95t ,解得t =1312.(10分) 25.解:(1)∵直线y =ax +b 与双曲线y =kx (x >0)交于A (1,3),∴k =1×3=3,∴双曲线的解析式为y =3x .∵B (3,y 2)在反比例函数的图象上,∴y 2=33=1,∴点B 的坐标为(3,1).(2分)∵直线y =ax +b 经过A ,B 两点,∴⎩⎪⎨⎪⎧a +b =3,3a +b =1,解得⎩⎪⎨⎪⎧a =-1,b =4,∴直线的解析式为y =-x +4.令y =0,则x =4,∴点P 的坐标为(4,0).(4分)(2)如图,过点A 作AD ⊥y 轴于点D ,AE ⊥x 轴于点E ,则AD ∥x 轴,∴CD OC =ADOP .由题意知DO =AE =y 1,AD =x 1,OP =6,OC =b =y 1+1,AB =BP ,∴CD =OC -OD =y 1+1-y 1=1,∴1y 1+1=x 16.∵AB =BP ,∴点B 的坐标为⎝⎛⎭⎫6+x 12,12y 1.(7分)∵A ,B 两点都是反比例函数图象上的点,∴x 1·y 1=6+x 12·12y 1,解得x 1=2,代入1y 1+1=x 16,解得y 1=2,∴点A 的坐标为(2,2),点B 的坐标为(4,1).(11分)26.解:(1)①DF =2AE (2分)②DF =2AE .(3分)理由如下:∵△EBF 绕点B 逆时针旋转到图②所示的位置,∴∠ABE =∠DBF .∵BF BE =2,BD AB =2,∴BF BE =BD AB ,∴△ABE ∽△DBF ,∴DF AE =BFBE =2,即DF =2AE .(6分)(2)草图如图所示,∵四边形ABCD 为矩形,∴AD =BC =mAB ,∴BD =AB 2+AD 2=1+m 2AB .∵EF ⊥AB ,∴EF ∥AD ,∴△BEF ∽△BAD ,∴BE BA =BF BD ,∴BF BE =BDBA =1+m 2.(9分)∵△EBF 绕点B 逆时针旋转α(0°<α<90°)得到△E ′BF ′,∴∠ABE ′=∠DBF ′,BE ′=BE ,BF ′=BF ,∴BF ′BE ′=BD BA =1+m 2,∴△ABE ′∽△DBF ′,∴DF ′AE ′=BDBA =1+m 2,即DF ′=1+m 2AE ′.(12分)。
第二十八章检测卷分一、选择题(本大题有16个小题,共42分.1~10小题各3分;11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.cos60°的值等于( )A.12B.22C.32D.322.已知在Rt △ABC 中,∠C =90°,sin A =35,则tan B 的值为( )A.43B.45C.54D.343.如图,在地面上的点A 处测得树顶B 的仰角为α,AC =7,则树高BC 为(用含α的代数式表示)( )A .7sin αB .7cos αC .7tan α D.7tan α第3题图 第7题图 第8题图4.如果把一个锐角△ABC 的三边的长都扩大为原来的3倍,那么锐角A 的正弦值( ) A .扩大为原来的3倍 B .缩小为原来的13C .没有变化D .不能确定5.在等腰△ABC 中,AB =AC =10cm ,BC =12cm ,则cos A2的值是( )A.35B.45C.34D.546.已知0°<α<90°,且2sin(α-10°)=3,则α等于( ) A .50° B .60° C .70° D .80°7.如图,CD 是Rt △ABC 斜边上的高,AC =4,BC =3,则cos ∠BCD 的值是( ) A.35 B.34 C.43 D.458.如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,则tan ∠ABC 的值为( )A.35B.34C.105D .1 9.如图,一河坝的横断面为等腰梯形ABCD ,坝顶宽10米,坝高12米,斜坡AB 的坡度i =1∶1.5,则坝底AD 的长度为( )A .26米B .28米C .30米D .46米第9题图 第10题图10.如图,在△ABC 中,∠C =90°,AB =12,tan B =33.以点A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 、N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D ,则△ACD 的周长为( )A .12B .12 3C .6+6 3D .6+9 311.某地下车库出口处安装了“两段式栏杆”,如图①所示,点A 是栏杆转动的支点,点E 是栏杆两段的联结点.当车辆经过时,栏杆AEF 最多只能升起到如图②所示的位置,其示意图如图③所示(栏杆宽度忽略不计),其中AB ⊥BC ,EF ∥BC ,∠AEF =143°,AB =AE =1.2m ,那么适合该地下车库的车辆限高标志牌为(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)( )12.如图,在两建筑物之间有一根高15米的旗杆,从A 点经过旗杆顶点恰好看到矮建筑物的墙角C 点,且俯角α为60°,又从A 点测得D 点的俯角β为30°.若旗杆底点G 为BC 的中点,则矮建筑物的高CD 为( )A .20米B .103米C .153米D .56米第12题图 第13题图 第14题图13.如图,已知∠B 的一边在x 轴上,另一边经过点A (2,4),顶点的坐标为B (-1,0),则sin B 的值是( )A.25B.55C.35D.4514.如图,在距离铁轨200米的B 处,观察由南宁开往百色的“和谐号”动车,当动车车头在A 处时,恰好位于B 处的北偏东60°方向上;10秒钟后,动车车头到达C 处,恰好位于B 处的西北方向上,则动车从A 处行驶到C 处的平均速度是( )A .20(3+1)米/秒B .20(3-1)米/秒C .200米/秒D .300米/秒15.如图,在▱ABCD 中,AE ⊥BC ,垂足为E ,如果AB =5,BC =8,sin B =45,那么tan ∠CDE的值为( )A.12B.33C.22D.2-1第15题图 第16题图16.如图,在Rt △AOB 中,两直角边OA ,OB 分别在x 轴的负半轴和y 轴的正半轴上,将△AOB 绕点B 逆时针旋转90°后得到△A ′O ′B .若反比例函数y =kx 的图象恰好经过斜边A ′B的中点C ,S △ABO =4,tan ∠BAO =2,则k 的值为( )A .3B .4C .6D .8二、填空题(本大题有3个小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.在△ABC 中,AB =10,AC =6,BC =8,则cos A 的值为________. 18.一艘轮船在小岛A 的北偏东60°方向距小岛80海里的B 处,沿正西方向航行3小时后到达小岛的北偏西45°的C 处,则该船行驶的速度为____________海里/时.第18题图 第19题图19.如图,△ABC 中,∠ACB =90°,∠B =30°,AC =1,过点C 作CD 1⊥AB 于D 1,过点D 1作D 1D 2⊥BC 于D 2,过点D 2作D 2D 3⊥AB 于D 3,则D 2D 3=________,这样继续作下去,线段D n D n +1=____________.三、解答题(本大题有7个小题,共68分.解答应写出文字说明、证明过程或演算步骤) 20.(8分)计算:(1)3tan30°+cos 245°-2sin60°; (2)sin60°-1tan60°-2tan45°-3cos30°+2sin45°.21.(9分)根据下列条件解直角三角形:(1)在Rt △ABC 中,∠C =90°,c =83,∠A =60°; (2)在Rt △ABC 中,∠C =90°,a =36,b =9 2.22.(9分)某国发生8.1级强烈地震,我国积极组织抢险队赴地震灾区参与抢险工作,如图,某探测队在地面A ,B 两处均探测出建筑物下方C 处有生命迹象,已知探测线与地面的夹角分别是25°和60°,且AB =4米,求该生命迹象所在位置C 的深度(结果精确到0.1米,参考数据:sin25°≈0.4,cos25°≈0,9,tan25°≈0.5,3≈1.7).23.(9分)已知△ABC 中的∠A 与∠B 满足(1-tan A )2+⎪⎪⎪⎪sin B -32=0. (1)试判断△ABC 的形状;(2)求(1+sin A )2-2cos B -(3+tan C )0的值.24.(10分)如图,△ABC 中,∠ACB =90°,sin A =45,BC =8,D 是AB 中点,过点B作直线CD的垂线,垂足为点E.(1)求线段CD的长;(2)求cos∠ABE的值.25.(11分)如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm,洗漱时下半身与地面成80°(∠FGK=80°),身体前倾成125°,脚与洗漱台距离GC=15cm(点D,C,G,K在同一直线上).(1)此时小强头部E点与地面DK相距多少?(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少(sin80°≈0.98,cos80°≈0.17,2≈1.41,结果精确到0.1cm)?26.(12分)如图,在南北方向的海岸线MN上,有A,B两艘巡逻船,现均收到故障船C的求救信号.已知A,B两船相距100(3+1)海里,船C在船A的北偏东60°方向上,船C在船B的东南方向上,MN上有一观测点D,测得船C正好在观测点D的南偏东75°方向上.(1)分别求出A与C,A与D之间的距离AC和AD(如果运算结果有根号,请保留根号);(2)已知距观测点D处100海里范围内有暗礁,若巡逻船A沿直线AC航行去营救船C,在去营救的途中有无触暗礁危险(参考数据:2≈1.41,3≈1.73)?参考答案与解析1.A 2.A 3.C 4.C 5.B 6.C 7.D 8.B 9.D 10.C 11.A 12.A 13.D 14.A15.A 解析:在△ABE 中,AE ⊥BC ,AB =5,sin B =45,∴AE =4,∴BE =AB 2-AE 2=3,∴EC =BC -BE =8-3=5.∵四边形ABCD 是平行四边形,∴CD =AB =5,∴△CED 为等腰三角形,∴∠CDE =∠CED .∵AD ∥BC ,∴∠EAD =∠AEB =90°,∠ADE =∠CED ,∴∠CDE =∠ADE .在Rt △ADE 中,∵AE =4,AD =BC =8,∴tan ∠CDE =tan ∠ADE =48=12.16.C 解析:设点C 的坐标为(x ,y ),作CD ⊥BO ′交边BO ′于点D .∵tan ∠BAO =2,∴BO AO =2.∵S △ABO =12·AO ·BO =4,∴AO =2,BO =4.由旋转得A ′O ′=AO =2,BO ′=BO =4.∵点C 为斜边A ′B 的中点,CD ⊥BO ′,∴CD =12A ′O ′=1,BD =12BO ′=2,∴y =BO -CD =4-1=3,x =BD =2,∴k =xy =2×3=6.17.35 18.40+403319.338 ⎝⎛⎭⎫32n +1 解析:在△ABC 中,∠ACB =90°,∠B =30°,则CD 1=32;进而在△CD 1D 2中,有D 1D 2=32CD 1=⎝⎛⎭⎫322,同理可得D 2D 3=⎝⎛⎭⎫323=338,…,则线段D n D n +1=⎝⎛⎭⎫32n +1. 20.解:(1)原式=3×33+⎝⎛⎭⎫222-2×32=12.(4分)(2)原式=32-13-2×1-3×32+2×22=0.(8分)21.解:(1)∠B =30°,a =12,b =4 3.(4分)(2)∠A =30°,∠B =60°,c =6 6.(9分)22.解:如图,作CD ⊥AB 交AB 的延长线于D .(1分)设CD =x 米.在Rt △ADC 中,∠DAC =25°,∴tan25°=CD AD ,∴AD =CD tan25°≈x0.5=2x 米.(4分)在Rt △BDC 中,∠DBC =60°,由tan60°=x 2x -4=3,解得x =4323-1≈2.8.(8分)答:生命迹象所在位置C 的深度约为2.8米.(9分)23.解:(1)∵(1-tan A )2+⎪⎪⎪⎪sin B -32=0,∴tan A =1,sin B =32,(2分)∴∠A =45°,∠B =60°,∴∠C =180°-45°-60°=75°,∴△ABC 是锐角三角形.(5分)(2)∵∠A =45°,∠B =60°,∠C =75°,∴原式=⎝⎛⎭⎫1+222-212-1=12.(9分) 24.解:(1)在△ABC 中,∵∠ACB =90°,sin A =BC AB =45,而BC =8,∴AB =10.(2分)∵D是AB 的中点,∴CD =12AB =5.(4分)(2)在Rt △ABC 中,∵AB =10,BC =8,∴AC =AB 2-BC 2=6.(5分)∵D 是AB 中点,∴BD =5,S △BDC =S △ADC ,∴S △BDC =12S △ABC ,即12CD ·BE =12·12AC ·BC ,∴BE =6×82×5=245.(8分)在Rt △BDE 中,cos ∠DBE =BE BD =2455=2425,即cos ∠ABE 的值为2425.(10分)25.解:(1)如图,过点F 作FN ⊥DK 于N ,过点E 作EM ⊥FN 于M .∵EF +FG =166cm ,FG =100cm ,∴EF =66cm.∵∠FGK =80°,∴∠GFN =10,FN =100·sin80°≈98(cm).(2分)∵∠EFG =125°,∴∠EFM =180°-125°-10°=45°,∴FM =66·cos45°=332≈46.53(cm),∴MN =FN +FM ≈144.5cm ,∴此时小强头部E 点与地面DK 相距约为144.5cm.(5分)(2)过点E 作EP ⊥AB 于点P ,延长OB 交MN 于H .∵AB =48cm ,O 为AB 的中点,∴AO =BO =24cm.∵EM =66·sin45°≈46.53(cm),∴PH ≈46.53cm.(7分)∵GN =100·cos80°≈17(cm),CG =15cm ,∴OH ≈24+15+17=56(cm),OP =OH -PH ≈56-46.53=9.47≈9.5(cm),∴他应向前9.5cm.(11分)26.解:(1)如图,作CE ⊥AB 于E .设AE =x 海里,在Rt △AEC 中,∠CAE =60°,∴CE =AE ·tan60°=3x 海里,AC =AEcos60°=2x 海里.(2分)在Rt △BCE 中,∠CBE =45°,∴BE =CE =3x 海里.∵AB =AE +BE =100(3+1)海里,∴x +3x =100(3+1),解得x =100.∴AC =200海里.(4分)在△ACD 中,∠DAC =60°,∠ADC =75°,则∠ACD =45°.过点D 作DF ⊥AC 于F .设AF =y 海里,则AD =2y 海里,DF =CF =3y 海里.(6分)∵AC =AF +CF =200海里,∴y +3y =200,解得y =100(3-1),∴AD =2y =200(3-1)海里.(8分)答:A 与C 之间的距离AC 为200海里,A 与D 之间的距离AD 为200(3-1)海里.(9分)(2)由(1)可知DF =3AF =3×100(3-1)≈127(海里).(11分)∵127海里>100海里,∴巡逻船A 沿直线AC 航行去营救船C ,在去营救的途中没有触暗礁危险.(12分)。