从分数到分式
- 格式:ppt
- 大小:2.45 MB
- 文档页数:38
另一方面,本节课在处理分数与分式的不同时,老师板书到黑板上,引导学生再次发觉“类比”这一思想方法的的好用性,并通过找寻、表述共同点,进一步总结出“分式的意义”。
这样的设计技能培育学生的发散思维,也能训练学生的语言表达实力,更重要的是,学生从中驾驭了对比总结定义的方法。
)练习1:下列各式中哪些是分式?哪些是整式?它们的区分是什么?①1x142a-5xm-n,②,③,④,⑤,⑥,⑦ , 222x33b53x-ym nx22x1c4a2⑧2,⑨ ,⑩ 。
x-2x13(a-b)a分式有:;整式有:。
两类式子的区分是:在学整式时,给出其中字母一个确定值,能够求出整式的值,类比整式,给出其中字母一个确定值,我们也能够求出分式的值,咱们以1为例,请自选一个你喜爱得数,代入分式中x1求值。
由于我们选的数不同,代入到同一个分式中,得到的答案不同,看来分式比分数更具有一般性。
是不是全部的数都能带到分式中来?为什么?接下来咱们再次类比分数有意义的条件再探究分式有意义的条件。
(设计意图:老师在“分式的定义”与“分式有意义的条件”两个环节的过度上特别自然,在“分式比分数更具有一般性”“是不是全部的数都能带到分式中来?为什么?”问题及其学生思维的火花,让“分式有意义的条件”在无意识中总结出来,效果较好。
)二、再探分式有意义的条件,加深理解例1 下列分式中的字母满意什么条件时分式有意义? (1)x yx12.; (2);(3);(4)x yx153b3x学生解答后,小组展示,并总结分式有意义的条件。
老师最终强调分母B的整体性。
(板书:整体性)以上题目,假如不变更解题思路,你还可以怎么问?引出分式无意义的条件(板书:分母=0分式无意义。
)(设计意图:此环节接着以问题作为激活学生思维的刺激因素,激发学生产生合理的认知突变,激发起他们的学习爱好;“以上题目,假如不变更解题思路,你还可以怎么问?”用问题作为探究的前提,引导学生探究的爱好,在探究的基础上获得学问。
有关从分数到分式说课稿优秀15篇从分数到分式说课稿精选篇1各位评委:下午好!今天我说课的题目是《分式的乘除法(第1课时)》,选用是人教版的教材。
根据新课标的理念,对于这节课,我将以教什么,怎样教,为什么这样教为思路,从说教材、说学情、说教法学法、说教学过程、说板书等五个方面加以说明。
一、说教材(一)教材的地位和作用本节教材是八年级数学第十六章第二节第一课时的内容,是初中数学的重要内容之一。
一方面,这是在学习了分式基本性质、分式的约分和因式分解的基础上,进一步学习分式的乘除法;另一方面,又为学习分式加减法和分式方程等知识奠定了基础。
因此,这节课在整个的初中数学的学习中起着承上启下的过渡作用。
(二)教学目标分析根据新课标的要求和这节课内容特点,考虑到年级学生的知识水平,以及对教材的地位与作用的分析,我制定了如下三维教学目标:1.认知目标:理解并掌握分式的乘除法法则,能进行简单的分式乘除法运算,能解决一些与分式乘除有关的实际问题。
2.技能目标:经历从分数的乘除法运算到分式的乘除法运算的过程,培养学生类比的探究能力,加深对从特殊到一般数学的思想认识。
3.情感目标:教学中让学生在主动探究,合作交流中渗透类比转化的思想,使学生在学知识的同时感受探索的乐趣和成功的体验。
(三)教学重难点本着课程标准,在充分理解教材的基础上,我确立了以下的教学重点、难点:教学重点:运用分式的乘除法法则进行运算。
教学难点:分子、分母为多项式的分式乘除运算。
下面,为了讲清重点难点,使学生能达到这节课的教学目标,我再从教法和学法上谈谈:二、说学情1.学生已经学习分式基本性质、分式的约分和因式分解,通过与分数的乘除法类比,促进知识的正迁移。
2.八年级的学生接受能力、思维能力、自我控制能力都有很大变化和提高,自学能力较强,通过类比学习加快知识的学习。
三、说教法学法(一)说教法教学方式的改变是新课标改革的`目标,新课标要求把过去单纯的老师讲,学生接受的教学方式,变为师生互动式教学。
教学设计2024秋季八年级数学上册第十五章分式《分式:从分数到分式》一、教学目标(核心素养)1.知识与技能:学生能够理解分数与分式之间的联系与区别,掌握分式的概念及其基本形式,能够识别并构造简单的分式。
2.数学思维:通过分数到分式的过渡,培养学生的抽象概括能力、逻辑推理能力和代数表达能力。
3.问题解决:学会将实际问题中的数量关系抽象为分式模型,初步运用分式解决实际问题。
4.情感态度:激发学生对数学的兴趣,培养探索未知、勇于挑战的学习态度。
二、教学重点•分数与分式的联系与区别。
•分式的概念及其基本形式。
•识别并构造简单的分式。
三、教学难点•理解分数到分式的抽象过程,把握其本质特征。
•灵活运用分式的概念解决实际问题,特别是涉及多个变量的复杂情境。
四、教学资源•多媒体课件(包含分数与分式的对比图、分式实例展示)•教科书及配套习题集•黑板与粉笔•学生练习本五、教学方法•讲授法:介绍分数与分式的联系、分式的概念及基本形式。
•对比法:通过分数与分式的对比,帮助学生理解其异同点。
•实例分析法:通过具体实例展示分式的应用,增强学生的直观感受。
•讨论法:组织学生讨论分数到分式的过渡过程,分享学习心得。
•练习法:通过练习巩固学生对分式概念的理解和应用能力。
六、教学过程导入新课•情境导入:创设一个与分数相关的生活情境(如分配糖果、计算比例等),引导学生回顾分数的概念及其应用。
•问题引出:提出一个稍微复杂的问题,其中涉及到多个变量或需要更一般化的表示方法,从而引出分式的概念。
新课教学1.分数与分式的联系与区别•对比讲解:从形式、意义、应用范围等方面对比分数与分式的异同点。
•实例展示:给出几个分数与分式的例子,让学生尝试区分并说明理由。
2.分式的概念及其基本形式•定义阐述:明确分式是两个整式相除的商式,强调分子、分母及除法的意义。
•形式分析:分析分式的基本形式,指出其中的关键要素(如分母不能为0)。
3.识别与构造分式•例题演示:给出几个实际问题或数学表达式,引导学生识别其中的分式结构,并尝试构造新的分式。