空间曲线的切线与法平面
- 格式:ppt
- 大小:605.50 KB
- 文档页数:18
第六节空间曲线的切线与空间曲面的切平面一、空间曲线的切线与法平面设空间的曲线C 由参数方程的形式给出:⎪⎩⎪⎨⎧===)()()(t z z t y y t x x ,),(βα∈t .设),(,10βα∈t t ,)(),(),((000t z t y t x A 、))(),(),((111t z t y t x B 为曲线上两点,B A ,的连线AB 称为曲线C 的割线,当A B →时,若AB 趋于一条直线,则此直线称为曲线C 在点A 的切线.如果)()()(t z z t y y t x x ===,,对于t 的导数都连续且不全为零(即空间的曲线C 为光滑曲线),则曲线在点A 切线是存在的.因为割线的方程为)()()()()()()()()(010010010t z t z t z z t y t y t y y t x t x t x x --=--=--也可以写为010********)()()()()()()()()(t t t z t z t z z t t t y t y t y y t t t x t x t x x ---=---=---当A B →时,0t t →,割线的方向向量的极限为{})(),(),(000t z t y t x ''',此即为切线的方向向量,所以切线方程为)()()()()()(000000t z t z z t y t y y t x t x x '-='-='-.过点)(),(),((000t z t y t x A 且与切线垂直的平面称为空间的曲线C 在点)(),(),((000t z t y t x A 的法平面,法平面方程为0))(())(())((00'00'00'=-+-+-z z t z y y t y x x t x如果空间的曲线C 由方程为)(),(x z z x y y ==且)(),(0'0'x z x y 存在,则曲线在点)(),(,(000x z x y x A 的切线是)()()()(100000x z x z z x y x y y x x '-='-=-法平面方程为0))()(())()(()(00'00'0=-+-+-x z z x z x y y x y x x如果空间的曲线C 表示为空间两曲面的交,由方程组⎩⎨⎧==0),,(0),,(:z y x G z y x F c ,确定时,假设在),,(000z y x A 有0),(),(≠∂∂=Az y G F J ,在),,(000z y x A 某邻域内满足隐函数组存在定理条件,则由方程组⎩⎨⎧==0),,(0),,(z y x G z y x F ,在点),,(000z y x A 附近能确定隐函数)(),(x z z x y y ==有)(),(0000x z z x y y ==,),(),(1,),(),(1x y G F J dx dz z x G F J dx dy ∂∂-=∂∂-=。
§14-6 空间曲线的切线与空间曲面的切平面一、空间曲线的切线和法平面概念:曲线在某点切线及法平面. 光滑曲线.推导:已知:曲线Γ(光滑):⎪⎩⎪⎨⎧===)()()(t z z t y y t x x βα≤≤t),,(000z y x P 0t t = 取),,(000z z y y x x Q ∆+∆+∆+则割线 zz z y y y x x x ∆-=∆-=∆-000 切线: )()()(0'00'00'0t z z z t y y y t x x x -=-=- 曲线Γ在P 处的切线向量:{}ρ)(),(),('''t z t y t x T =→法平面: 0))(())(())((00'00'0'=-+-+-z z t z y y t y x x t x例1:求曲线 t x 2=, 23-=t y , 22t t z -=在点(1)1=t (2))0,6,4(M 处的切线及法平面方程.(1) )1,1,2(1-↔=P t {}{}0,3,222,3,212=-==→t P t t T切线: 013122-=+=-z y x 即⎪⎩⎪⎨⎧=-+=-013122z y x (严格表示) (2) 2)0,6,4(=↔t M {}{}{}1,6,122,12,222,3,222-=-=-==→t m t t T 切线:16614-=-=-z y x 法平面:0)6(6)4(=--+-z y x 即0406=--+z y x例2:求曲线Γ⎩⎨⎧=++=++06222z y x z y x 在点)1,2,1(-M 处切线及法平面方程.解: Γ的常数方程⎪⎩⎪⎨⎧===)()(x z z x y y x x {})(),(,1''x z x y T =→将⎩⎨⎧=++=++06222z y x z y x 两边对x 求导⎪⎩⎪⎨⎧=++=++010222dx dz dx dy dx dz z dx dy y x 即⎪⎩⎪⎨⎧-=+-=+1dxdz dx dy x dx dz z dx dy y 代入法成代数法z y x z dx dy --= z y y x dx dz --= {}1,0,1,,1)1,2,1(-=⎭⎬⎫⎩⎨⎧=-→dx dz dx dy T M 切线: 110211--=+=-z z x <说明> 法平面: 0)1()1(=---z x 即 0=-z x解二:见例3后二、空间曲面的切平面与法线概念:曲面在P 处的切平面及法线推导:(思路) 具连续偏导曲面∑ 0),,(=z y x F点P ),,(000z y x P 0t t =↔∑上过P 任一曲线Γ:)(t x x = )(t y y = )(t z z = 0t t P =↔Γ⇒过P 的切线向量{})(),(),(0'0'0't z t y t x T =→“-”另Γ代入∑ []0)(),(),(≡t z t y t x F对t 求导,0t t = 0)(),,()(),,()(),,(0'000'0'000'0'000'=++t z z y x F t y z y x F t x z y x F z y t于是,若记{}),,(),,,(),,,(000'000'000'z y x F z y x F z y x F n z y x =→存在且不全为0 →n 与→T 垂直2,Γ的任意性;→n 与Γ无关 仅与∑及P 有关故,→n 与∑上过P 的任意曲线的切线垂直⇒→n 是切平面法向量切平面:0))(,,())(,,())(,,(0000'0000'0000'=-+-+-z z z y x F y y z y x F x x z y x F z y x (曲面法向量: →n )法线: ),,(),,(),,(000'0000'0000'0z y x F z z z y x F y y z y x F x x z y x -=-=- 例3:求旋转抛物面122-+=y x z 在点P (2,1,4)的切平面,法线方程,关键法向量.设z y x z y x F --+=1),,(22 (隐←显){}{}{}1,2,41,2,2,,)4,1,2()4,1,2('''-=-==→y x F F F n z y x切平面: 0)4()1(2)2(4=---+-z y x 即0624=--+z y x 法线: 142142--=-=-z y x 说明: 例2的解法二 思路 ~65P 例4作业: 79P 44 45(1) 46 47(注:本资料素材和资料部分来自网络,仅供参考。
空间曲线的切线与法平面空间曲线是指在三维空间中具有一定形状的曲线。
研究空间曲线的性质和特点,尤其是切线和法平面的关系,对于数学、物理等学科具有重要意义。
本文将探讨空间曲线的切线与法平面的相关概念与定理,以及它们在实际问题中的应用。
一、切线的定义与性质在平面曲线研究中,我们已经熟悉了切线的概念和性质。
在空间曲线的研究中,切线的定义与平面曲线类似。
设有空间曲线C,过曲线上一点P,可以做出唯一的切线l。
与平面曲线不同的是,在空间中,切线除了具有方向性和位置性外,还具有一个关键的性质:与曲线C相切的平面即为切线平面。
根据切线的定义和性质,我们可以得出切线的一些重要结论。
首先,切线过曲线上一点与该点的切线向量相同。
其次,切线上的所有点都在切线平面上。
最后,两个相交曲线的切线平面是同一个平面。
这些结论为我们研究空间曲线的切线与法平面提供了基础。
二、曲线的切线方程与法平面定义对于给定的空间曲线C,经过曲线上任意一点P的切线方程是研究曲线性质和计算切线的重要工具。
在二维平面中,我们使用斜率来表示切线的方程。
在三维空间中,切线的方程由曲线上的一点和切线的方向向量确定。
设曲线C的参数方程为:x = x(t),y = y(t),z = z(t),其中t为参数。
过曲线上参数为t的点P,切线的方向向量为V,则切线的参数方程为:x = x(t) + V1t,y = y(t) + V2t,z = z(t) + V3t。
法平面与曲线的切线密切相关。
在平面几何中,我们已经熟悉了平面的法线向量与法线方程。
对于空间中的曲线C,过切点P的法线向量与切线V垂直,并与曲线C相切于切点P。
法平面的法线向量即为曲线C在切点P处的切线向量V。
三、切线与法平面的求解如何求解空间曲线的切线与法平面呢?一般情况下,我们先求出曲线C的参数方程,然后根据切线的特性,求出切线的参数方程。
接下来,找到切线上的一点,并求出该点的切线向量。
这样,我们就得到了切线的方程与切线的方向向量。
求空间曲线在一点处的切线方程和法平面方程
空间曲线在一点处的切线方程可以通过以下步骤求得:
1. 求出曲线在该点处的切向量,假设曲线的参数方程为
$r(t)=(x(t), y(t), z(t))$,则曲线在该点处的切向量为
$r'(t_0)=(x'(t_0), y'(t_0), z'(t_0))$,其中 $t_0$ 是曲线参数在该点处的取值。
2. 将切向量除以它的长度 $|r'(t_0)|$,得到单位切向量
$T=\frac{r'(t_0)}{|r'(t_0)|}$。
3. 曲线在该点处的切线方程为 $r(t_0)+sT$,其中 $s$ 是实数。
空间曲线在一点处的法平面方程可以通过以下步骤求得:
1. 求出曲线在该点处的切向量,根据上面的求法,可以得到单位切向量 $T=\frac{r'(t_0)}{|r'(t_0)|}$。
2. 求出曲线在该点处的法向量,假设曲线的参数方程为
$r(t)=(x(t),y(t),z(t))$,则法向量为
$N=\frac{d^2r}{dt^2}|_{t=t_0}\times T$,其中 $\times$ 表示向量的叉积运算符。
3. 法平面方程为 $N\cdot(x,y,z)=(x_0,y_0,z_0)$,其中
$(x_0,y_0,z_0)$ 是曲线在该点处的一个点。