空间曲线的切线与弧长
- 格式:pptx
- 大小:196.63 KB
- 文档页数:7
双曲函数的应用实例双曲函数是一类熟知的函数,它由双曲正弦函数与双曲余弦函数构成,通常表示为sinh(x)与cosh(x)。
在数学中,双曲函数的应用非常广泛,尤其是在物理、工程和金融等领域中,它有着重要的作用。
下面将分别介绍几个双曲函数的应用实例。
一、弧长与曲线长度在平面直角坐标系中,曲线的弧长和曲线长度是非常重要的概念,可以通过双曲函数来计算。
具体来说,我们设曲线的方程为y=f(x),其中,x的取值范围为[a,b],则曲线的弧长可以表示为:L = ∫[a,b] √(1+f'(x)^2) dx其中,f'(x)是曲线在x点的切线斜率。
通过双曲函数sinh(x)可以简化上式,因为它的导数是cosh(x),即sinh'(x) = cosh(x),因此曲线的弧长可以写成:L = ∫[a,b] √(1+sinh'(x)^2) dx= ∫[a,b] √(1+cosh^2(x)) dx= ∫[a,b] sinh(x) dx另外,我们还可以用指数函数来表示曲线的长度,它与弧长的差别在于多乘一个系数2π,即曲线长度可以表示为:L = 2π ∫[a,b] √(1+f'(x)^2) dx同样地,通过sinh(x)函数,曲线长度可以简化为:L = 2π ∫[a,b] sinh(x) dx二、椭球面积在空间几何中,椭球是一类广泛存在的曲面形式,其面积可以用双曲函数表示。
对于一个椭球,如果它的长半轴和短半轴分别是a和b,那么它的面积可以表示为:S = 4πab ∫[0,π/2] (1 - e^2sin^2(θ))1/2 dθ其中,e是椭圆的离心率,可以表示为:e = √(1 - b^2/a^2)而θ是极角,取值范围为[0,π/2]。
通过变换,我们可以把上面的积分转化为双曲函数的形式,即:S = 4πab ∫[0,∞) (1 + (b/a)^2sinh^2(τ))^1/2 dτ通过换元法,我们可以把上式转化为:S = 4πab ∫[0,1] (1 - x^2)^-1/2(1 - (1-e^2)x^2)^1/2 dx这个式子实际上就是一个椭圆的面积公式,其中,x = sinh(τ) / sinh(x_max),以及x_max = arcsinh(b/a)。
《微分几何》复习题与参考答案一、填空题1.极限232lim[(31)i j k]t t t →+-+=r r r 138i j k -+rr r .2.设f ()(sin )i j t t t =+r r r ,2g()(1)i j t t t e =++r r ,求0lim(()())t f t g t →⋅=r r 0 .3.已知{}42r()d =1,2,3t t -⎰r , {}64r()d =2,1,2t t -⎰r ,{}2,1,1a =r,{}1,1,0b =-r ,则4622()()a r t dt+b a r t dt=⨯⋅⋅⎰⎰r r rr r {}3,9,5-.4.已知()r t a '=r r (a r 为常向量),则()r t =r ta c +r r. 5.已知()r t ta '=r r ,(a r 为常向量),则()r t =r 212t a c +r r .6. 最“贴近”空间曲线的直线和平面分别是该曲线的___ 切线___和 密切平面____.7. 曲率恒等于零的曲线是_____ 直线____________ .8. 挠率恒等于零的曲线是_____ 平面曲线________ .9. 切线(副法线)和固定方向成固定角的曲线称为 一般螺线 .10. 曲线()r r t =r r 在t = 2处有3αβ=v v &,则曲线在t = 2处的曲率k = 3 .11. 若在点00(,)u v 处v 0u r r ⨯≠rr r ,则00(,)u v 为曲面的_ 正常______点.12. 已知()(2)(ln )f t t j t k =++r r r ,()(sin )(cos )g t t i t j =-r r r ,0t >,则40()d f g dt dt ⋅=⎰r r4cos 62-.13.曲线{}3()2,,t r t t t e =r在任意点的切向量为{}22,3,t t e .14.曲线{}()cosh ,sinh ,r t a t a t at =r在0t =点的切向量为{}0,,a a .15.曲线{}()cos ,sin ,r t a t a t bt =r在0t =点的切向量为{}0,,a b .16.设曲线2:,,t t C x e y e z t -===,当1t =时的切线方程为2111-=--=-z ee y e e x . 17.设曲线t t t e z t e y t e x ===,sin ,cos ,当0t =时的切线方程为11-==-z y x . 18. 曲面的曲纹坐标网是曲率线网的充要条件是____F =M =0_ ______________. 19. u -曲线(v -曲线)的正交轨线的微分方程是 _____ E d u +F d v =0(F d u +G d v =0)__. 20. 在欧拉公式2212cos sin n k k k θθ=+中,θ是 方向(d) 与u -曲线 的夹角. 21. 曲面的三个基本形式,,I II III 、高斯曲率K 、平均曲率H 之间的关系是20H K III -II +I = .22.已知{}r(,),,u v u v u v uv =+-r ,其中2,sin u t v t ==,则dr d t=r{}2cos ,2cos ,2cos t t t t vt u t +-+.23.已知{}r(,)cos cos ,cos sin ,sin a a a ϕθϕθϕθϕ=r,其中t =ϕ,2t =θ,则dr(,)d tϕθ=r{}sin cos 2cos sin ,sin sin 2cos cos ,cos a at a at a ϕθϕθϕθϕθϕ---+. 24.设(,)r r u v =r r 为曲面的参数表示,如果0u v r r ⨯≠r r r ,则称参数曲面是正则的;如果:()r G r G →r r是 一一对应的 ,则称曲面是简单曲面.25.如果u -曲线族和v -曲线族处处不相切,则称相应的坐标网为 正规坐标网 .26.平面{}r(,),,0u v u v =r的第一基本形式为22d d u v +,面积微元为d d u v .27.悬链面{}r(,)cosh cos ,cosh sin ,u v u v u v u =r第一基本量是22cosh 0,cosh E u F G u ===,. 28.曲面z axy =上坐标曲线0x x =,0y y =229.正螺面{}(,)cos ,sin ,r u v u v u v bv =r的第一基本形式是2222d ()d u u b v ++.30.双曲抛物面{}r(,)(),(),2u v a u v b u v uv =+-r的第一基本形式是2222222222(4)d 2(4)d d (4)d a b v u a b uv u v a b u v +++-++++.31.正螺面{}(,)cos ,sin ,r u v u v u v bv =r的平均曲率为 0 .32.方向(d)d :d u v =是渐近方向的充要条件是22()020n k d Ldu Mdudv Ndv =++=或. 33. 方向(d)d :d u v =和(δ)δ:δu v =共轭的充要条件是(,)0()0dr δr Ldu δu M du δv dv δu Ndv δv =+++=II r r或.34.λ是主曲率的充要条件是0E LF MF MG Nλλλλ--=--.35.(d)d :d u v =是主方向的充要条件是22d d d d 00d d d d dv dudv du E u F v L u M vE F G F u G v M u N vL MN-++==++或. 36. 根据罗德里格斯定理,如果方向(d)(d :d )u v =是主方向,则n n dn k dr k =-r r,其中是沿方向(d)的法曲率. 37.旋转曲面中的极小曲面是平面 或悬链面.38.测地曲率的几何意义是曲面S 上的曲线在P 点的测地曲率的绝对值等于(C )在P 点的切平面∏上的正投影曲线(C*)的曲率. 39.,,g n k k k 之间的关系是222g n k k k =+.40.如果曲面上存在直线,则此直线的测地曲率为 0 . 41.正交网时测地线的方程为d ds du dsdv dsθθθ⎧⎪⎪⎪⎨⎪⎪⎪⎩. 42.曲线是曲面的测地线,曲线(C )上任一点在其切平面的正投影曲线是 直线 . 二、单项选择题1.已知{}(),,t t r t e t e -=r,则r (0)''r 为( A ).A. {}1,0,1;B. {}1,0,1-;C. {}0,1,1;D. {}1,0,1-.2.已知()()r t r t λ'=r r ,λ为常数,则()r t r为( C ).A. ta λr ;B. a λr; C. t e a λr ; D. e a λr .其中a r为常向量. 3. 曲线(C)是一般螺线,以下命题不正确的是( D ).A .切线与固定方向成固定角;B .副法线与固定方向成固定角;C .主法线与固定方向垂直;D .副法线与固定方向垂直.4. 曲面在每一点处的主方向( A )A .至少有两个;B .只有一个;C .只有两个;D .可能没有. 5.球面上的大圆不可能是球面上的( D )A .测地线;B .曲率线;C .法截线;D .渐近线..6. 已知{}r(,),,x y x y xy =r ,求(1,2)dr r为( D ).A. {}d ,d ,d 2d x y x y +;B. {}d d ,d d ,0x y x y +-;C. {}d -d ,d +d ,0x y x y ;D. {}d ,d ,2d d x y x y +.7.圆柱螺线{}cos ,sin ,r t t t =r的切线与z 轴( C ).A. 平行;B. 垂直;C. 有固定夹角4π; D. 有固定夹角3π. 8.设平面曲线:()C r r s =r r,s 为自然参数,αβr r ,是曲线的基本向量.叙述错误的是( C ).A. αr 为单位向量;B. αα⊥r r &;C. k αβ=-r r &;D. k βατγ=-+r r r &.9.直线的曲率为( B ).A. -1;B. 0;C. 1;D. 2.10.关于平面曲线的曲率:()C r r s =r r不正确的是( D ).A. ()()k s s α=r &;B. ()()k s s ϕ=&,ϕ为()s αr 的旋转角;C. ()k s αβ=-⋅r &;D. ()|()|k s rs =r &. 11.对于曲线,“曲率恒等于0”是“曲线是直线”的( D ).A. 充分不必要条件;B. 必要不充分条件;C. 既不充分也不必要条件;D. 充要条件.12.下列论述不正确的是( D ).A. ,αβγr r r ,均为单位向量;B. αβ⊥r r ;C. βγ⊥r r ;D. αβrr P . 13.对于空间曲线C ,“挠率为零”是“曲线是直线”的(B ).A. 充分不必要条件;B. 必要不充分条件;C. 既不充分也不必要条件;D. 充要条件. 14.2sin4),cos 1(),sin (t a z t a y t t a x =-=-=在点2π=t 的切线与z 轴关系为( D ). A. 垂直; B. 平行; C. 成3π的角; D. 成4π的角. 15.椭球面2222221x y z a b c++=的参数表示为( C ).A. {}{},,cos cos ,cos sin ,sin x y z ϕθϕθϕ=;B. {}{},,cos cos ,cos sin ,sin x y z a b ϕθϕθϕ=;C. {}{},,cos cos ,cos sin ,sin x y z a b c ϕθϕθϕ=;D. {}{},,cos cos ,sin cos ,sin 2x y z a b c ϕθϕθθ=. 16.曲面{}2233(,)2,,r u v u v u v u v =-+-r在点(3,5,7)M 的切平面方程为( B ).A. 2135200x y z +-+=;B. 1834410x y z +--=;C. 756180x y z +--=;D. 1853160x y z +-+=.17.球面{}(,)cos cos ,cos sin ,sin r u v R u v R u v R u =r的第一基本形式为( D ).A. 2222(d sin d )R u u v +;B. 2222(d cosh d )R u u v +;C. 2222(d sinh d )R u u v +;D. 2222(d cos d )R u u v +.18.正圆柱面{}(,)cos ,sin ,r u v R v R v u =r的第一基本形式为( C ).A. 22d d u v +;B. 22d d u v -; C 222d d u R v +; D. 222d d u R v -. 19.在第一基本形式为222(d ,d )d sinh d u v u u v =+I 的曲面上,方程为12()u v v v v =≤≤的曲线段的弧长为( B ).A . 21cosh cosh v v -;B . 21sinh sinh v v -;C . 12cosh cosh v v -;D . 12sinh sinh v v -.20.设M 为正则曲面,则M 的参数曲线网为正交曲线网的充要条件是( B ).A . 0E =;B . 0F =;C . 0G =;D . 0M =. 21.高斯曲率为零的的曲面称为( A ).A .极小曲面;B .球面;C .常高斯曲率曲面;D .平面. 22.曲面上直线(如果存在)的测地曲率等于( A ).A . 0;B . 1;C .2;D . 3.23.当参数曲线构成正交网时,参数曲线u-曲线的测地曲率为( B ). A .B .C .D . 24.如果测地线同时为渐近线,则它必为( A ).A . 直线;B . 平面曲线;C . 抛物线;D . 圆柱螺线. 三、判断题(正确打√,错误打×)1. 向量函数()r r t =r r 具有固定长度,则()()r t r t '⊥r r. √2. 向量函数()r r t =r r 具有固定方向,则()()r t r t 'r rP . √3. 向量函数()r t r关于t 的旋转速度等于其微商的模()r t 'r . ×4. 曲线Γ的曲率、挠率都为常数,则曲线Γ是圆柱螺线. ×5. 若曲线Γ的曲率、挠率都为非零常数,则曲线Γ是圆柱螺线. √6. 圆柱面{cos ,sin ,},r R R z θθ=rz -线是渐近线. √ 7. 两个曲面间的变换等距的充要条件是它们的第一基本形式成比例. × 8. 两个曲面间的变换等角的充要条件是它们的第一基本形式成比例. √ 9. 等距变换一定是保角变换. √10. 保角变换一定是等距变换. × 11. 空间曲线的位置和形状由曲率与挠率唯一确定. × 12. 在光滑曲线的正常点处,切线存在但不唯一. × 13. 若曲线的所有切线都经过定点,则该曲线一定是直线.√ 14. 在曲面的非脐点处,有且仅有两个主方向. √ 15. 高斯曲率与第二基本形式有关,不是内蕴量. × 16. 曲面上的直线一定是测地线.√ 17. 微分方程A(,)B(,)0u v du u v dv +=表示曲面上曲线族. ×18. 二阶微分方程22(,)2(,)(,)0A u v du B u v dudv C u v dv ++=总表示曲面上两族曲线. × 19. 坐标曲线网是正交网的充要条件是0F =,这里F 是第一基本量. √ 20. 高斯曲率恒为零的曲面必是可展曲面. √ 21. 连接曲面上两点的所有曲线段中,测地线一定是最短的. × 22. 球面上的圆一定是测地线. × 23. 球面上经线一定是测地线. √24. 测地曲率是曲面的内蕴量. √ 四、计算题1.求旋轮线)cos 1(),sin (t a y t t a x -=-=的π20≤≤t 一段的弧长.解 旋轮线{}()(sin ),(1cos )r t a t t a t =--r 的切向量为{}()cos ,sin r t a a t a t '=-r,则在π20≤≤t 一段的弧长为:220()d 8s r t t t a ππ'===⎰⎰r.2.求曲线t te z t t y t t x ===,cos ,sin 在原点的切向量、主法向量、副法向量.解 由题意知 {}()sin cos ,cos sin ,t t r t t t t t t t e te '=+-+r,{}()2cos sin ,2sin cos ,2t t r t t t t t t t e te ''=---+r,在原点,有 (0)(0,1,1),(0)(2,0,2)r r '''==r r,又 ()(), r r r r r r r r r r r αβ'''''''''⋅-⋅=='''''⋅⨯r r r r r r r r r r r r r,r r r r γ'''⨯='''⨯r r r r r ,所以有αβγ===r r r . 3.圆柱螺线为{}()cos ,sin ,r t a t a t bt =r,①求基本向量,,αβγr r r; ②求曲率k 和挠率τ.解 ①{}()sin ,cos ,r t a t a t b '=-r ,{}()cos ,sin ,0r t a t a t ''=--r,又由公式()(), ,r r r r r r r r r r r r r r r αβγ''''''''''''⋅-⋅⨯===''''''''⋅⨯⨯r r r r r r r r r r r r r r r rr r}{}}sin ,cos ,,cos ,sin ,0,sin ,cos ,a t a t b t t b t b t a αβγ∴=-=--=-rr r②由一般参数的曲率公式3()r r k t r '''⨯='r r r 及挠率公式2(,,)()r r r t r r τ''''''='''⨯r r有22a k a b =+,22b a b +=τ. 4.求正螺面{}(,)cos ,sin ,r u v u v u v bv =r的切平面和法线方程.解 {}cos ,sin ,0u r v v =r ,{}sin ,cos ,v r u v u v b =-r,切平面方程为cos sin cos sin 00sin cos x u v y u v z bv v v u vu vb---=-,sin cos 0,b v x b u y uz buv ⇒⋅-⋅+-=法线方程为cos sin sin cos x u v y u v z bvb v b v u---==-. 5.求球面{}(,)cos cos ,cos sin ,sin r a a a ϕθϕθϕθϕ=r上任一点处的切平面与法线方程.解 {}sin cos ,sin sin ,cos r a a a ϕϕθϕθϕ=--r, {}cos sin ,cos cos ,0r a a θϕθϕθ=-r ,312sin cos sin sin cos cos sin cos cos 0e e e r r a a a a a ϕθϕθϕθϕϕθϕθ⨯=---r r r r r{}2cos cos cos ,cos sin ,sin a ϕϕθϕθϕ=---∴ 球面上任意点的切平面方程为{}{}2cos cos ,cos sin ,sin cos cos cos ,cos sin ,sin 0,x a y a z a a ϕθϕθϕϕϕθϕθϕ---⋅---=即cos cos cos sin sin 0x y z a θϕϕθϕ⋅+⋅+⋅-=, 法线方程为2(cos cos ,cos sin ,sin )cos (cos cos ,cos sin ,sin ),x a y a z a a ϕθϕθϕλϕϕθϕθϕ---=⋅---即cos cos cos sin sin cos cos cos sin sin x a y a z a ϕθϕθϕϕθϕθϕ---==.6.求圆柱螺线cos ,sin ,x a t y a t z t ===在点(,0,0)a 处的密切平面. 解 (){sin ,cos ,1},r t a t a t '=-r (){cos ,sin ,0},r t a t a t ''=--r所以曲线在原点的密切平面的方程为00sin cos 10cos sin 0x a y z a t a t =a ta t------, 即sin )(cos )sin 0t x t y az a t -+-=(.7.求旋转抛物面22()z a x y =+的第一基本形式.解 参数表示为{}22(,),,()r x y x y a x y =+r ,{}1,0,2x r ax =r ,{}0,1,2y r ay =r,2214x x E r r a x =⋅=+r r,24x y F r r a xy =⋅=r r ,2214y y G r r a y =⋅=+r r ,2222222(d ,d )(14)d 8d d (14)d x y a x x a xy x y a y y ∴=++++I .8.求正螺面{}(,)cos ,sin ,r u v u v u v bv =r的第一基本形式.解 {}cos ,sin ,0u r v v =r ,{}sin ,cos ,v r u v u v b =-r,1u u E r r =⋅=r r ,0u v F r r =⋅=r r ,22v v G r r u b =⋅=+r r,2222(d ,d )d ()d u v u u b v ∴=++I .9.计算正螺面{}(,)cos ,sin ,r u v u v u v bv =r的第一、第二基本量.解 {}cos ,sin ,0u r v v =r ,{}sin ,cos ,v r u v u v b =-r,{}0,0,0uu r =r ,{}sin ,cos ,0uv r v v =-r ,{}cos ,sin ,0vv r u v u v =--r,{}cos sin 0sin ,cos ,sin cos u v i j kr r v v b v b v u u v u v b⨯==--r r rr r,sin ,cos ,u v u v b v b v u r r n r r -⨯==⨯r rr r r , 1u u E r r =⋅=r r ,0u v F r r =⋅=,22v v G r r u b =⋅=+r r, 0uu L r n =⋅=r r ,uv M r n =⋅=r r ,0vv N r n =⋅=r r.10.计算抛物面22z x y =+的高斯曲率和平均曲率.解 设抛物面的参数表示为{}22(,),,r x y x y x y =+r,则{}1,0,2x r x =r ,{}0,1,2y r y =r ,{}0,0,2xx r =r ,{}0,0,0xy yx r r ==r r ,{}002yy r =r,,,{}1022,2,1012x y i j kr r x x y y⨯==--r r r r r,2,2,1||x y x y r r x y n r r ⨯--==⨯r r rr r 214x x E r r x =⋅=+r r, 4x y F r r xy =⋅=r , 214y y G r r y =⋅=+r r, xx L r n =⋅=r r , 0xy M r n =⋅=r r, yy N r n =⋅=r r,222222222244441(14)(14)(4)(441)LN M x y K EG F x y xy x y --++===-++-++,2232222124422(441)GL FM EN x y H EG Fx y -+++=⋅=-++. 11. 计算正螺面{}(,)cos ,sin ,r u v u v u v av =r的高斯曲率. 解 直接计算知1E =,0F =,22G u a =+,0L=,M =,0N =,222222()LN M a K EG F u a -∴==--+. 12. 求曲面2z xy =的渐近线.解 2z xy =,则2z p y x∂==∂,2z q xy y ∂==∂,220z r x ∂==∂,22z s y x y ∂==∂∂, 222z t x y ∂==∂ 所以,L =0, M =N =20=,化简得(2)0dy ydx xdy +=, 020dy ydx xdy =+=或 渐近线为y=C 1,x 2y =C 213. 求螺旋面{}cos ,sin ,r u v u v bv =r上的曲率线. 解 u v r {cos ,sin v,0},r {u sin v,u cos v,b}v ==-r r2222u u v v E r 1,F r r 0,G r u b ,===⋅===+r r r r{}{}u vu v bsin v,bcos v,u bsin v,bcos v,u r r n r r bsin v,bcos v,u --⨯===⨯-r rr r r {}{}{}uu uv vv r =0,0,0,r =sin v,cos v,0,r ucos v,usin v,0-=--rr r,L 0,M N 0===曲率线的微分方程为:2222dv dudv du 10u b =00-+ 或du bu dv 221+±=积分得两族曲率线方程:12v ln(u c v u)c .=+=+和14. 求马鞍面22{,,}r u v u v =-r在原点处沿任意方向的法曲率.解 {1,0,2},{0,1,2}==-r ru v r u r v ,22214,4,14==+==-=+r r rg u u v E r u F r r uv G v2222(14)8(14)=+-++u du uvdudv v dv Ⅰu vu v 2u,2v,1r r n r r -⨯==⨯r rr r ruu L n r ==r r g uv M n r 0,==r rg vv N n r ==r rg22=Ⅱ,n k =ⅡⅠ. 15. 求抛物面22()z a x y =+在(0,0)点的主曲率.解 曲面方程即22{,,()},=+rr x y a x y{1,0,2},{0,1,2},==r rx y r ax r ay E(0,0)F(0,0)G(0,0)=1,=0,=1,{0,0,2},{0,0,0},{0,0,2}===r r rxx xy yy r a r r a ,L(0,0)a M(0,0)N(0,0)=2,=0,=2a,代入主曲率公式,NN2a k 0002a k -=-,所以两主曲率分别为 12k k 2a == .16. 求曲面22{,,}r u v u v =+r在点(1,1)的主方向.解 {}u r =,u r 1,02,{},v r ,v r=01,2 2214,4,14E u F uv G v =+==+(1,)5(1,)4(1,)5;E F G 1=,1=,1=0,L M N ===2(1,1)(1,1),(1,1)0,3L N M === 代入主方向方程,得()()0du dv du dv +-=,即在点(1,1)主方向:1:1;:1:1du dv u v δδ=-=.17. 求曲面23(,){,,}r u v u v u v =+r上的椭圆点,双曲点和抛物点.解 由23{,,},r u v u v =+r 得{}u r =,u r 1,02,{}2,v r ,v r=01,3{}{}{}u u u v v v r =,r =,r =,v r r r0,02,0,00,0,06,0,L M N ===2241241vLN M .u +9v +-=①v >0时,是椭圆点;②v <0时,是双曲点;③v =0时,是抛物点.18. 求曲面32(,){,,}r u v v u u v =+r上的抛物点的轨迹方程.解 由32(,){,,},r u v v u u v =+r 得{}u r =u,r 0,21,{}2,v r v ,r=30,1{}{}{}u u u v v v r =,r =,r =v ,r r r0,20,0,00,6,00,20,L M N ===令320LN M .-=得u =0 或v =0所以抛物点的轨迹方程为 {}r=v ,,v r 30或{}0r=,u ,u r2.19.求圆柱螺线(){cos ,sin ,}r t a t a t bt =r自然参数表示.解 由(){cos ,sin ,},r t a t a t bt =r 得{sin ,cos ,}r a t a t b '=r-,()r t '=r弧长0(),t s t =⎰t =曲线的自然参数表示为(){sinr s a a =r20. 求挠曲线的主法线曲面的腰曲线.解 设挠曲线为a a s r r=(),则主法线曲面为:r=a s v s ,βr r r ()+()则,a =a=α'r r r &,b ==-k βατγ'+r r r r &a b =k,''-r r g 2,22b =k +τ'r所以腰曲线是222a b k r=a s s =a s s k b ββτ'''r r r r g r r r r ()-()()+()+ 21.求位于正螺面cos ,sin ,x u v y u v z av ===上的圆柱螺线00cos ,sin ,x u v y u v z av ===(0u =常数)的测地曲率.解 因为正螺面的第一基本形式为2222d ()d u u a v =++Ι,螺旋线是正螺面的v -曲线0u u =,由2πθ=得d 0d s θ=.由正交网的坐标曲线的测地曲率得0220g u k u a==+. 五、证明题1. 设曲线:(s),r r =r r 证明:2()k -;r ,r ,r =k .ταγτ=⋅r r r r r &&&&&&&&⑴⑵ 证明 ⑴由伏雷内公式,得=k =-,αβγτβr r r r &&, 两式作点积,得=-k =-k,αγτββτ⋅⋅r r r r && k =-.ταγ∴⋅r r &&⑵r=r==k ,ααβr r r r r &&&&, 2()r=k +k =k +k -k +=-k +k +k βββατγαβτγr r r r r r r r r &&&&&&&22()()()r ,r ,r =,k ,-k +k +k =,k ,k =k .αβαβτγαβτγτ∴r r r r r r r r r r r &&&&&&& 2. 设曲线:(s),r r =r r 证明:3()()r ,r ,r =k k -k .ττr r r &&&&&&&&&&& 证明 由伏雷内公式,得r==k αβr r r &&&, 2()r=k +k =k +k -k +=-k +k +k βββατγαβτγr r r r r r r r r &&&&&&&323()(2)r =-kk +-k +k-k +k +k ατβττγr r r r &&&&&&&&&232()(())(3()(2))r ,r ,r =k -k +k +k -kk +-k +k-k +k +k βαβτγατβττγ⨯r r r r r r r r r r &&&&&&&&&&&&&&&g3232()(3()(2))=k +k -kk +-k +k-k +k +k γταατβττγr r r r r &&&&&g33432=-k k +k k +k τττ&&&3()=k k -k ττ&& 3. 曲线Γ:()r r s =r r 是一般螺线,证明1:r R ds αβΓ=-⎰r r r也是一般螺线(R 是曲线Γ的曲率半径).证明 1r R ds αβ=-⎰r r r,两边关于s 微商,得11ds R R ds αααβ=+-r r r r &&1R R R αββ=+-r r r &R α=r &,1αα∴r r P ,由于Γ是一般螺线,所以Γ也是一般螺线.4. 证明曲线(){sin (),s (),}(r t a t dt a co t dt bt a,b ϕϕ=⎰⎰r是常数)是一般螺线.证明 (){sin (),cos (),},r t a t a t b ϕϕ'=r(){()cos (),()sin (),0},r t a t t a t t ϕϕϕϕ''''=-r2()(){cos (),sin (),0}(){sin ()cos ()0}r t a t t t a t t t ϕϕϕϕϕϕ''''''=-+-r,,(r r a t ϕ''''⨯=r r 32()()r r r a b t ϕ'''''''=-r r r ,,,322(),r r ak t a b r ϕ'''⨯'==+'r rr ()222(),r r r b t a b r r τϕ'''''''==-+'''⨯r r r r r ,, k abτ∴=- . 5.曲面S 上一条曲线(C), P 是曲线(C)上的正常点,n g k ,k ,k 分别是曲线(C)在点P 的曲率、法曲率与测地曲率,证明222n g k =k +k .证明 测地曲率()g k k k n βεβα=⋅=⋅⨯r r r r r (,,)k n k n αβγ==⋅r r r r rsin k .θ=± (θ是主法向量βr 与法向量n r的夹角)法曲率cos n k k n k βθ=⋅=r r,222n g k =k +k .∴6. 证明曲线{}cos ,sin ,0t t r e t e t =r的切向量与曲线的位置向量成定角.证明 对曲线上任意一点,曲线的位置向量为{}cos ,sin ,0t t r e t e t =r,该点切线的切向量为:{}(cos sin ),(sin cos ),0t t r e t t e t t '=-+r,则有:2cos 2t r r r r θ'⋅==='r r r r ,故夹角为4π. 由所取点的任意性可知,该曲线与曲线的切向量成定角.7.证明:若r 'r 和r ''r对一切t 线性相关,则曲线是直线.证明 若r 'r 和r ''r对一切t 线性相关,则存在不同时为0的(),()f t g t 使()()()()0f t r t g t r t '''+=r r r,则,()()0, t r t r t '''∀⨯=r r r又3()r r k t r '''⨯='r r r ,故t ∀有()0k t =.于是该曲线是直线.8. 证明圆柱螺线bt z t a y t a x ===,sin ,cos 的主法线和z 轴垂直相交.证明 由题意有 {}{}()sin ,cos ,,()cos ,sin ,0r t a t a t b r t a t a t '''=-=--r r,由()()r r r r r r r r rβ''''''''⋅-⋅=''''⋅⨯r r r r r r r r r r知{}cos ,sin ,0t t β=--r . 另一方面z 轴的方向向量为{}0,0,1a =r ,而0a β⋅=r r ,故a β⊥r r,即主法线与z 轴垂直. 9.证明曲线t a z t t a y t a x cos ,cos sin ,sin 2===的所有法平面皆通过坐标原点.证明 由题意可得{}()sin 2,cos2,sin r t a t a t a t '=-r,则任意点的法平面为0)cos (sin )cos sin (2cos )sin (2sin 00000020=---+-t a z t a t t a y t a t a x t a 将点(0,0,0)代入上述方程有左边)cos 0(sin )cos sin 0(2cos )sin 0(2sin 00000020t a t a t t a t a t a t a ---+-===0右边, 故结论成立.10.证明曲线222132225,1x t+t ,y t t z t =+=-+=-为平面曲线,并求出它所在的平面方程.证明 {}222132225,1r t+t ,t t t =+-+-r,{}34210,2r +t,t t '=-+-r ,{}410,2r ,''=-r ,{}00,0r ,'''=r (,,)0r r r ,''''''=r r r0τ=,所以曲线是平面曲线. 它所在的平面就是密切平面{}(0)32,0r ,'=-r , {}(0)410,2r ,''=-r密切平面方程为12132004102x y z -=----, 化简得其所在的平面方程是2x +3y +19z –27=0.11. 证明如果曲线的所有切线都经过一个定点,那么它是直线.证明 设曲线方程()r r s =r r,定点的向径为0R v ,则0()()r s R s λα-=r r r两边求微商,得()()()()s s s s k αλαλαλαλβ=+=+r r r r r &&&(1())()0s s k λαλβ--=r r r & 由于,αβr r 线性无关,∴100k λλ⎧-⎨⎩&==∴ k =0曲线是直线.12. 证明如果曲线的所有密切平面都经过一个定点,那么它是平面曲线.证明 取定点为坐标原点,曲线的方程为 ()r r t =r r,则曲面在任一点的密切平面方程为 ((),(),())0r t r t r t ρ'''-=r r r r因任一点的密切平面过定点,所以((),(),())0o r t r t r t '''-=r r r r , 即 ((),(),())0r t r t r t '''=r r r所以 ()r r t =r r 平行于固定平面, 所以 ()r r t =r r是平面曲线.13. 若一条曲线的所有法平面包含非零常向量e ρ,证明曲线是直线或平面曲线.证明 根据已知条件,得0.............e α⋅=r r①,①两边求导,得 0e α⋅=r r &,由伏雷内公式得 0k e β⋅=r r ,ⅰ)0k =,则曲线是直线;ⅱ)0e β⋅=r r 又有①可知 γr ‖e r因e r是常向量,所以γr 是常向量,于是 ||||0,τγ==r&所以0τ= ,所以曲线为平面曲线. 14. 设在两条挠曲线,ΓΓ的点之间建立了一一对应关系,使它们在对应的点的副法线互相平行,证明它们在对应点的切线和主法线也分别平行.证明 γγ±rr12= , 21ds ds γγ±gg r r 12=由伏雷内公式得211ds ds τβτβ±v v 122=12ββ∴±r r = 进而12αα=±r r15. 证明挠曲线(0τ≠)的主法线曲面是不可展曲面.证明 设挠曲线为()r r s =r r,则挠率0τ≠,其主法线曲面的方程是:()()r s t s ρβ=+r r r 取(),()a r s b s β==r r r r,则(),()k a s b s αβατγ''===-g r r r r r r+所以, (,,)((),(),k )((),(),k )((),(),)0a b b s s s s s s αβατγαβααβτγτ''=-=-≠r rr r r r r r r r r r r ++=所以挠曲线的主法线曲面不是可展曲面.16. 证明挠曲线(0τ≠)的副法线曲面是不可展曲面.证明 设挠曲线为()r r s =r r,则挠率0τ≠,其副法线曲面的方程是:()()r s t s ργ=+r rr取(),()a r s b s γ==r r r r ,则(),()a s b s αγτβ''===-g r r r r r所以, (,,)((),(),)0a b b s s αγτβτ''=-=≠r rr r r r ,所以挠曲线的副法线曲面不是可展曲面. 17. 证明每一条曲线在它的主法线曲面上是渐近线.证明 设曲线r r(s),r r =则曲线的主法线曲面为r r s +v s βr r r=()() ,s r v k vk v αατγατγ++r r r r r r =+(-)=(1-) ()v r =s βrr ,s v s v r r n=r r ⨯⨯r r r rr r r (1-)- 沿曲线(v =0)n=γr r ,所以主法向量与曲面的法向量夹角,2πθ=n cos 0,k k θ==所以曲线是它的主法线曲面上的渐近线. 18. 证明二次锥面{cos ,sin ,}r au bu cu θθ=r沿每一条直母线只有一个切平面.证明 {cos ,sin ,}{cos ,sin ,}0()θθθθϕθ===+r r rr au bu cu u a b c u 为直纹面(0,(),()0ϕθϕθ'=r r r), 所以,曲面可展,即沿每一条直母线只有一个切平面.也可以用高斯曲率K =0证明.19. 给出曲面上一条曲率线Γ,设Γ上每一处的副法向量和曲面在该点处的法向量成定角,求证Γ是一平面曲线.证明 设副法向量和曲面在该点处的法向量成定角θ0,则cos γθr rg 0n= 两边求微商,得 0γγg g r r r rg g n+n=由于曲线Γ是曲率线,所以αg r rP n,进而0γg r r gn=,由伏雷内公式得0τβr r g -n= ⑴0τ=时,Γ是一平面曲线⑵n 0βv v g =,即n β⊥vv ,n kcos =0k θ=,又因为Γ是曲率线,所以0n dn k dr =-=v v v 即n v是常向量,所以Γ是平面曲线. 20.求证正螺面上的坐标曲线(即u -曲线族v -曲线族)互相垂直.证明 设正螺面的参数表示是{}(,)cos ,sin ,r u v u v u v bv =r,则{}cos ,sin ,0u r v v =r ,{}sin ,cos ,v r u v u v b =-r, {}{}cos ,sin ,0sin ,cos ,0u v r r v v u v u v b ⇒⋅=⋅-=r r,故正螺面上的坐标曲线互相垂直.21. 证明在曲面上的给定点处,沿互相垂直的方向的法曲率之和为常数. 证明 由欧拉公式2212cos sin θθ=+n k k k*n 1in ππθθ=±-±-k k 222cos ()+k s ()221in cos k θθ=222s +k所以*n n 12k k k k +=+=常数.22. 如果曲面上非直线的测地线Γ均为平面曲线,则Γ必是曲率线.证明 因为曲线Γ是非直线的测地线,所以沿此曲线有,β=±r rn从而(),κατγ=±-+r r r &n又因为曲线是平面曲线,所以0,τ= 进一步n κα=±r r &.由罗德里格斯定理可知曲线的切线方向为主方向,故所给曲线为曲率线. 23. 证明在曲面()()z f x f y =+上曲线族x =常数,y =常数构成共轭网.证明 曲面的向量表示为 {}(,),,()(),r x y x y f x f y =+rx =常数,y =常数是两族坐标曲线.{1,0,}x r f '=r,{0,1,}y r g '=r . {0,0,},{0,0,0},{0,0,},xx xy yy r f r r g ''''===r r r因为0xy r r M r ⨯==r r r,所以坐标曲线构成共轭网,即曲线族 x =常数, y =常数构成共轭网.24.证明马鞍面z xy =上所有点都是双曲点.证明 参数表示为{}(,),,r x y x y xy =r,则{}1,0,x r y =r ,{}0,1,y r x =r ,{}0,0,0xx r =r ,{}0,0,1xy r =r ,{}0,0,0yy r =r,{},,1x y r r y x ⨯=--r r,,,1||x y x y r r y x n r r ⨯--==⨯r r r r r 0xx L r n =⋅=rr , xy M r n =⋅=r r,0yy N r n =⋅=r r,222221100011LN M x y x y ∴-=⨯-=-<++++,故马鞍面z xy =上所有点都是双曲点.25.如果曲面上某点的第一与第二基本形式成比例,即(d ,d )(d ,d )u v u v II I 与方向无关,则称该点是曲面的脐点;如果曲面上所有点都是脐点,则称曲面是全脐的.试证球面是全脐的. 证明 设球面的参数表示为 {}(,)cos cos ,cos sin ,sin r u v R v u R v u R v =r,则 {}cos sin ,cos cos ,0u r R v u R v u =-r ,{}sin cos ,sin sin ,cos v r R v u R v u R v =--r, {}cos cos ,cos sin ,0uu r R v u R v u =--r ,{}sin sin ,sin cos ,0uv vu r r R v u R v u ==-r r,{}cos cos ,cos sin ,sin vv r R v u R v u R v =---r,22cos u u E r r R v =⋅=r r ,0u v F r r =⋅=r r ,2v v G r r R =⋅=r r,2cos L R v ==-r r r,0M ==r r r,N R ==-r r r ,1(,,)(,,)L M N E F G R∴=-,故球面是全脐的. 26.证明平面是全脐的.证明 设平面的参数表示为{}(,),,0r x y x y =r,则 {}1,0,0x r =r ,{}0,1,0y r =r ,{}0,0,0xx r =r ,{}0,0,0xy r =r ,{}0,0,0yy r =r,1x x E r r =⋅=r r ,0x y F r r =⋅=r r ,1y y G r r =⋅=r r,0xx L r n =⋅=r r ,0xy M r n =⋅=r r ,0yy N r n =⋅=r r(,,)0(,,)L M N E F G ∴=,故平面是全脐的.27.证明曲面3x y z +=的所有点为抛物点.证明 曲面的参数表示为{}1/3(,),,()r x y x y x y =+r,则{}2/3131,0,()x r x y -=+r , {}2/3130,1,()y r x y -=+r , {}5/3230,0,()xx r x y -=-+r ,{}5/3290,0,()xy r x y -=-+r , {}5/3290,0,()yy r x y -=-+r , {}2/32/31133(),(),1x y r r x y x y --⨯=-+-+r r , ||x y x y r r n r r ⨯=⨯r r r r r , {}5/3290,0,()xx L r n x y n -=⋅=-+⋅r r r ,{}5/3290,0,()xy M r n x y n -=⋅=-+⋅r r r , {}5/3290,0,()yy N r n x y n -=⋅=-+⋅r r r 20LN M ⇒-=,∴曲面3x y z +=的所有点为抛物点.28.求证正螺面{}(,)cos ,sin ,r u v u v u v av =r是极小曲面.证明 {}cos ,sin ,0u r v v =r ,{}sin ,cos ,v r u v u v a =-r, {}0,0,0uu r =r ,{}sin ,cos ,0uv r v v =-r ,{}cos ,sin ,0vv r u v u v =--r,{}cos sin 0sin ,cos ,sin cos u v i j kr r v v a v a v u u v u v a ⨯==--r r rr r,sin ,cos ,||u v u v a v a v u r r n r r -⨯==⨯r rrr r , 1u u E r r =⋅=r r ,0u v F r r =⋅=,22v v G r r a u =⋅=+r r,0uu L r n =⋅=r r ,uv M r n =⋅=r r 0vv N r n =⋅=r r,21210,22EN FM GL H EG F -+∴=⋅==-故正螺面是极小曲面.29. 圆柱面{cos ,sin ,}r a u a u v =r上的纬线是测地线.证明 由{cos ,sin ,},r a u a u v =r{sin ,cos ,0}u r -a u a u =r ,{0,0,1}v r =r,2,0, 1.E a F G ===g d k ds θθθ=,纬线是u -线,此时0θπ=或, 0.g k ∴= 所以,纬线是测地线.30.证明极小曲面上的点都是双曲点或平点. 证明 1202k k H +==Q , 12k k ∴=-, 21220K k k k ∴=⋅=-≤ 当0K =时,120k k ==, ∴极小曲面的点都是平点; 当0K <时,极小曲面的点都是双曲点.31. 证明 (1)如果测地线同时是渐近线,则它是直线;(2)如果测地线同时是曲率线,则它一定是平面曲线.证明 (1) 因为曲线是测地线,所以0=g k , 曲线又是渐近线,所以,0=n k ,而222=+n g k k k ,所以k=0,故所给曲线是直线. (2) 证法1因曲线是测地线,所以沿此曲线有βr r P n ,所以βr r &P dn ,又曲线是曲率线,所以αrr r P P dn dr ,所以(k )ατγα-+r r rP ,所以0τ=,故所给曲线是平面曲线.证法2因所给曲线既是测地线又为曲率线,所以沿此曲线有,,n nβαv r r v &P P 而γαβ=⨯r r r ,所以,n γα=±⨯r r r 从而()(0)0n n k n γααβ=±⨯+⨯=±-⨯+=r r r r r r r r r &&&,又γτβ=-r r&,所以0τ=,故所给曲线是平面曲线.。
浙江师范大学《微分几何》考试模拟卷(A 卷)说明:考生应有将全部答案写在答题纸上,否则作无效处理一、判断题(正确打√,错误打×)(每小题2分,共10分)1、等距变换一定是保角变换 ( )2、空间曲线的形状由曲率与挠率唯一确定. ( )3、二阶微分方程22A(,)2B(,)B(,)0u v du u v dudv u v dv ++=总表示曲面上两族曲线.( )4、连接曲面上两点的所有曲线段中,测地线一定是最短的 ( )5、坐标曲线网是正交网的充要条件是0F =,这里F 是第一基本量( ). 1。
× 2。
√ 3。
× 4。
× 5. √二、填空题(每小题3分,共15分)1. 半径为R 的圆的曲率为_________。
2. 曲面的坐标曲线网正交的充要条件是_____________,3. 坐标曲线网成为曲率线网的充要条件是______________.4. 在脐点处曲面的第一, 第二类基本量满足____________________,5. 使法曲率达到最大值和最小值的方向是________________方向.1。
1R2。
F=0 3。
0F M == 4。
E F GL M N==, 5、 主方向三、计算题(第1小题各18分,,第2、3、4小题各10分,共48分)1. 已知空间正则参数曲线32(){cos ,sin ,cos 2}r t t t t =(1) 求基本向量,,αβγ。
(2) 求()r t 的曲率和挠率(0)2t π<<.解: ,22{3sin cos ,3sin cos ,2sin 2}r t t t t t =--,,2223,,,2332,,,,2{3cos 6sin cos ,6sin cos 3sin ,4cos 2}{21sin cos 6sin ,6cos 21sin cos ,8sin 2}5sin cos 3sin 2{cos ,sin ,}4r t t t t t t t r t t t t t t t r t tr r t t t =-+--=--=⨯=--,,,215sin 24r r t ⨯=所以,曲率k 和挠率τ为325sin cos k t t =425sin cos t tτ=sin cos {3cos ,3sin ,4}5sin cos t tt t t tα=--443{cos ,sin ,}555t t γ=-- sin cos {sin ,cos ,0}sin cos t tt t t tβγα=⨯=2、求抛物面22()z a x y =+在原点处的主曲率、高斯曲率和平均曲率,并判断原点是否为脐点。
高考数学中的曲率与曲率半径的计算方法在高考数学中,曲率与曲率半径是一个比较重要的概念,在平面几何和空间几何中都有应用。
曲率指的是曲线在某一点处的弯曲程度,而曲率半径则是曲率的倒数。
对于考生来说,了解曲率与曲率半径的计算方法,能够帮助他们更好地理解和解决相关考题。
一、曲率的定义和计算方法1. 弧长的导数曲线在某一点处的曲率定义为该点处切线与曲线上足够靠近该点的两个点的切线的极限夹角的大小,即:$$\lim_{\Delta s\to0}\frac{\Delta\alpha}{\Delta s}$$其中,$\Delta s$为曲线上两个足够靠近该点的点之间的弧长,$\Delta\alpha$为这段曲线在该点处切线的转角。
由于$\Delta\alpha$较难直接求解,我们可以通过对式子进行简化,得到:$$\lim_{\Delta s\to0}\frac{\Delta\alpha}{\Delta s}=\lim_{\Deltas\to0}\frac{\Delta(\tan\Delta\alpha)}{\Delta\alpha}\cdot\frac{\Delta\al pha}{\Deltas}=\lim_{\Delta\theta\to0}\frac{\tan\Delta\theta}{\Delta\theta}=\frac{d \alpha}{ds}$$其中,$\Delta\theta$为所求点处两条足够靠近该点的切线夹角,$d\alpha$为这段曲线在该点处切线的转角微分。
这里要注意的是,当弧长趋近于0时,我们通常会取$\Delta\alpha$为两条切线的夹角$\theta$,而不是切线的转角$d\alpha$。
2. 参数方程的第二类曲率对于参数方程$x=x(t)$,$y=y(t)$,曲线的切向量可以表示为:$$\vec{T}=\frac{dx}{dt}\vec{i}+\frac{dy}{dt}\vec{j}$$那么,曲线在某一点处的曲率可以表示为:$$k=\left\lvert\frac{d\vec{T}}{ds}\right\rvert=\sqrt{\left(\frac{d\ve c{T_x}}{ds}\right)^2+\left(\frac{d\vec{T_y}}{ds}\right)^2}$$其中,$\lvert\cdot\rvert$表示向量的模,$\vec{T_x}$和$\vec{T_y}$分别表示$\vec{T}$在$x$和$y$方向上的分量。