4-2_中心极限定理
- 格式:ppt
- 大小:2.05 MB
- 文档页数:46
中心极限定理公式
摘要:
1.中心极限定理的概念
2.中心极限定理的公式
3.中心极限定理的应用
4.总结
正文:
1.中心极限定理的概念
中心极限定理是概率论中的一个重要定理,它描述了在一定条件下,独立随机变量之和的分布趋近于正态分布。
中心极限定理为数理统计学提供了一个理论依据,使我们能够在实际问题中应用正态分布来近似描述大量相互独立的随机变量的和的分布。
2.中心极限定理的公式
中心极限定理的公式如下:
设随机变量X1,X2,...,Xn 是相互独立的,且均值为μ,方差为σ^2。
则随机变量S_n = X1 + X2 +...+ Xn 的分布随着n 的增大趋近于一个均值为μ,方差为σ^2 的正态分布。
数学表达式如下:
lim(n→∞) [P(S_n - μσ≤x ≤S_n + μσ)] = N(x; μ, σ^2)
其中,N(x; μ, σ^2) 表示均值为μ,方差为σ^2 的正态分布。
3.中心极限定理的应用
中心极限定理在实际应用中有广泛的应用,例如在统计学中的假设检验、
回归分析等领域。
在假设检验中,我们通常使用正态分布来近似描述样本均值的分布,从而进行参数估计和假设检验。
在回归分析中,中心极限定理为回归系数的估计提供了理论依据。
4.总结
中心极限定理是概率论中的一个重要定理,它描述了在一定条件下,独立随机变量之和的分布趋近于正态分布。
概率统计中的大数定律与中心极限定理-教案一、引言1.1概率统计的基本概念1.1.1随机事件与概率1.1.2随机变量与分布函数1.1.3数学期望与方差1.1.4大数定律与中心极限定理的关系1.2大数定律与中心极限定理的应用领域1.2.1自然科学领域1.2.2社会科学领域1.2.3工程技术领域1.2.4经济学领域1.3教学目标与教学方法1.3.1理解大数定律与中心极限定理的基本原理1.3.2学会运用大数定律与中心极限定理解决实际问题1.3.3培养学生的数据分析能力与逻辑思维能力1.3.4采用案例教学、讨论式教学等方法提高教学效果二、知识点讲解2.1大数定律2.1.1大数定律的定义2.1.2大数定律的证明2.1.3大数定律的应用2.1.4大数定律与频率稳定性2.2中心极限定理2.2.1中心极限定理的定义2.2.2中心极限定理的证明2.2.3中心极限定理的应用2.2.4中心极限定理与正态分布2.3大数定律与中心极限定理的关系2.3.1大数定律是中心极限定理的基础2.3.2中心极限定理是大数定律的推广2.3.3大数定律与中心极限定理在实际应用中的联系2.3.4大数定律与中心极限定理在理论分析中的联系三、教学内容3.1大数定律的教学内容3.1.1大数定律的基本概念与性质3.1.2大数定律的证明方法3.1.3大数定律在实际问题中的应用3.1.4大数定律与频率稳定性在教学中的实例分析3.2中心极限定理的教学内容3.2.1中心极限定理的基本概念与性质3.2.2中心极限定理的证明方法3.2.3中心极限定理在实际问题中的应用3.2.4中心极限定理与正态分布在教学中的实例分析3.3大数定律与中心极限定理的关系教学内容3.3.1大数定律与中心极限定理的联系与区别3.3.2大数定律与中心极限定理在实际应用中的相互依赖3.3.3大数定律与中心极限定理在理论分析中的相互补充3.3.4大数定律与中心极限定理在教学中的综合运用实例分析四、教学目标4.1知识与技能目标4.1.1掌握大数定律和中心极限定理的基本概念4.1.2理解大数定律和中心极限定理的数学表达和证明方法4.1.3能够应用大数定律和中心极限定理解决实际问题4.1.4培养学生的数据分析能力和逻辑推理能力4.2过程与方法目标4.2.1通过实例引入,让学生体会从具体到抽象的学习过程4.2.2采用小组讨论,培养学生合作学习和交流表达能力4.2.3利用数学软件进行模拟实验,增强学生的实践操作能力4.2.4通过问题解决,训练学生的批判性思维和创造性思维4.3情感、态度与价值观目标4.3.1培养学生对概率统计学科的兴趣和热情4.3.2强调数学知识在实际生活中的应用价值4.3.3增强学生的科学精神和求真态度4.3.4培养学生的团队合作精神和责任感五、教学难点与重点5.1教学难点5.1.1大数定律和中心极限定理的数学证明5.1.2大数定律和中心极限定理在实际问题中的应用5.1.3学生对概率统计概念的理解和运用5.1.4学生数据分析能力的培养5.2教学重点5.2.1大数定律和中心极限定理的基本概念和性质5.2.2大数定律和中心极限定理的数学表达和直观理解5.2.3大数定律和中心极限定理在生活中的实际应用5.2.4学生数据分析技能的提升六、教具与学具准备6.1教具准备6.1.1多媒体教学设备(投影仪、电脑等)6.1.2数学软件(如MATLAB、R等)用于模拟实验6.1.3实物模型或教具(如骰子、硬币等)用于演示6.1.4教学课件和讲义6.2学具准备6.2.1笔记本电脑或平板电脑(用于数学软件操作)6.2.2笔和纸(用于笔记和练习)6.2.3预习资料和阅读材料6.2.4小组讨论记录表七、教学过程7.1导入新课7.1.1通过生活实例引入大数定律的概念7.1.2提问学生对概率统计的基本理解7.1.3介绍大数定律和中心极限定理的历史背景7.1.4阐述本节课的学习目标和重要性7.2主体教学7.2.1详细讲解大数定律的定义和数学表达7.2.2通过数学软件演示大数定律的实验验证7.2.3讲解中心极限定理的原理和数学证明7.2.4分析中心极限定理在实际问题中的应用案例7.3练习与讨论7.3.1分组进行数学软件模拟实验7.3.2小组讨论实验结果和理论联系7.3.3解答学生在实验和讨论中的疑问7.4.1回顾本节课的主要内容和重点难点7.4.2强调大数定律和中心极限定理的实际应用7.4.3布置相关的练习题和思考题7.4.4预告下一次课的内容和学习要求八、板书设计8.1大数定律与中心极限定理基本概念8.1.1大数定律的定义8.1.2中心极限定理的定义8.1.3大数定律与中心极限定理的关系8.1.4实际应用案例8.2大数定律与中心极限定理的数学表达8.2.1大数定律的数学表达8.2.2中心极限定理的数学表达8.2.3数学证明的关键步骤8.2.4数学表达在实际问题中的应用8.3大数定律与中心极限定理的教学实例8.3.1大数定律的教学实例8.3.2中心极限定理的教学实例8.3.3教学实例中的关键点分析九、作业设计9.1基础练习题9.1.1大数定律的基本概念题9.1.2中心极限定理的基本概念题9.1.3大数定律与中心极限定理的关系题9.1.4实际应用案例分析题9.2数学软件模拟实验9.2.1大数定律的数学软件模拟实验9.2.2中心极限定理的数学软件模拟实验9.2.4实验中的关键点和难点解析9.3拓展阅读与思考9.3.1相关历史背景和数学家的研究9.3.2大数定律与中心极限定理在其他领域的应用9.3.3对概率统计学科未来发展的思考9.3.4学生自主研究项目提案十、课后反思及拓展延伸10.1教学效果评估10.1.1学生对大数定律与中心极限定理的理解程度10.1.2学生在实际问题中的应用能力10.1.3教学方法和教学内容的适应性10.1.4教学目标达成情况的评估10.2教学改进措施10.2.1针对学生的反馈调整教学内容和方法10.2.2增加更多的实际应用案例和讨论环节10.2.3引入更多的数学软件和工具进行辅助教学10.2.4鼓励学生进行自主研究和项目实践10.3拓展延伸方向10.3.1大数定律与中心极限定理在其他学科的应用10.3.2概率统计领域的前沿研究和最新发展10.3.3学生自主研究和项目实践的方向指导10.3.4与其他数学分支的联系和交叉研究重点关注环节补充和说明:1.教学内容的适应性:根据学生的反馈和理解程度,适时调整教学内容和难度,确保学生能够充分理解大数定律与中心极限定理的基本概念和原理。
概率论与数理统计(第二版.刘建亚)习题解答——第四章4-1 解:()10.2520.430.240.150.05 2.3E X4-2 解: 由22()()[()]D X E X E X 得∵ D(X 1)<D(X2),用甲法测定的精度高。
4-3 解:E(X)=0.3003,E(X 2)=0.4086,D(X)=0.3184,[D(X)]1/2=0.5643。
4-4 解:*()[()][()()]0()()()E X E E X E X E X E X D X D X D X2*222211()()[()]()[()]()1()()()D X E X E X E X EE X E X D X D X D X D X4-5 解:121221122221220022()()01()()11sin 1112sin (1cos )21()()[()]2E X xf x dx dx x E X x f x dx dxdxxx xt tdxt dxD XE X E X4-6 解:2220201()()021()[()](0)22222x x x x x x x E X xf x dx xe dx D X E X E X x e dx x e dx x exe dxxee dx ; 4-7 解:令 1a p a,则 111p a,1p ap;11111()()(1)(1)11(1)()(1)(1)111(1)1(1)11kk kk k k k k kk k aE X kP X k k k p p p p kp a a dd d p p p p p p p p p dpdp dp p d d p p p p dp p dp p21(1)(1)1p p p ap p22210121112112122221()()(1)[(1)]11(1)(1)(1)()(1)kk k k k k k k kk k k k kk aE X k P X k kp p kk k p a a dp pk k p kpp p pp kp dpd p p p a dp 22222223(1)12(1)22(1)1d p a p p dp pp p p aaa a p p22222()()[()]2D X E X E X a aa a a4-8 证明:设X 为连续型随机变量,其概率密度函数为)(x f 。
第四节 大数定理与中心极限定理概率论与数理统计是研究随机现象统计规律性的学科. 而随机现象的规律性在相同的条件下进行大量重复试验时会呈现某种稳定性. 例如, 大量的抛掷硬币的随机试验中, 正面出现频率; 在大量文字资料中, 字母使用频率; 工厂大量生产某种产品过程中, 产品的废品率等. 一般地, 要从随机现象中去寻求事件内在的必然规律, 就要研究大量随机现象的问题.在生产实践中, 人们还认识到大量试验数据、测量数据的算术平均值也具有稳定性. 这种稳定性就是我们将要讨论的大数定律的客观背景. 在这一节中,我们将介绍有关随机变量序列的最基本的两类极限定理----大数定理和中心极限定理.教学目标:了解大数定理与中心极限定理。
教学重点:大数定理与中心定理。
教学难点:中心定理。
教学内容:一、依概率收敛与微积分学中的收敛性的概念类似, 在概率论中, 我们要考虑随机变量序列的收敛性.定义1 设 ,,,,21n X X X 是一个随机变量序列, a 为一个常数,若对于任意给定的正数ε,有 ,1}|{|lim =<-∞→εa X P n n 则称序列 ,,,,21n X X X 依概率收敛于a , 记为).(∞→−→−n a X Pn定理1 设,,b Y a X Pn P n −→−−→−又设函数),(y x g 在点),(b a 连续, 则),(),(b a g Y X g Pn n −→−.二、切比雪夫不等式定理2设随机变量X 有期望μ=)(X E 和方差2)(σ=X D ,则对于任给0>ε, 有22}|{|εσεμ≤≥-X P .上述不等式称切比雪夫不等式.注:(i) 由切比雪夫不等式可以看出,若2σ越小, 则事件}|)({|ε<-X E X的概率越大, 即, 随机变量X 集中在期望附近的可能性越大. 由此可见方差刻划了随机变量取值的离散程度.(ii) 当方差已知时,切比雪夫不等式给出了X 与它的期望的偏差不小于ε的概率的估计式.如取,3σε= 则有.111.09}3|)({|22≈≤≥-σσσX E X P故对任给的分布,只要期望和方差2σ存在, 则随机变量X 取值偏离)(X E 超过σ3的概率小于0.111.三、大数定理1.切比雪夫大数定律定理3 (切比雪夫大数定律)设 ,,,,21n X X X 是两两不相关的随机变量序列,它们数学期望和方差均存在, 且方差有共同的上界, 即,,2,1,)( =≤i K X D i 则对任意0>ε, 有1)(11lim 11=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<-∑∑==∞→εn i i n i i n X E n X n P 注: 定理表明: 当n 很大时,随机变量序列}{n X 的算术平均值∑=ni i X n 11依概率收敛于其数学期望∑=ni i X E n 1)(1.2.伯努利大数定理定理4 (伯努利大数定律)设A n 是n 重伯努利试验中事件A 发生的次数, p 是事件A 在每次试验中发生的概率, 则对任意的0>ε, 有1lim =⎭⎬⎫⎩⎨⎧<-→∞εp n n P A n 或 0l i m =⎭⎬⎫⎩⎨⎧≥-→∞εp n n P A n . 注:(i) 伯努利大数定律是定理1的推论的一种特例, 它表明: 当重复试验次数n 充分大时, 事件A 发生的频率nn A依概率收敛于事件A 发生的概率p .定理以严格的数学形式表达了频率的稳定性. 在实际应用中, 当试验次数很大时,便可以用事件发生的频率来近似代替事件的概率.(ii) 如果事件A 的概率很小,则由伯努利大数定律知事件A 发生的频率也是很小的,或者说事件A 很少发生. 即“概率很小的随机事件在个别试验中几乎不会发生”,这一原理称为小概率原理,它的实际应用很广泛. 但应注意到,小概率事件与不可能事件是有区别的. 在多次试验中,小概率事件也可能发生.3.辛钦大数定理 定理5 (辛钦大数定律) 设随机变量 ,,,,21n X X X 相互独立, 服从同一分布,且具有数学期望,,2,1,)( ==i X E i μ 则对任意0>ε, 有11lim 1=⎭⎬⎫⎩⎨⎧<-∑=∞→εμn i i n X n P . 注: (i) 定理不要求随机变量的方差存在;(ii) 伯努利大数定律是辛钦大数定律的特殊情况;(iii) 辛钦大数定律为寻找随机变量的期望值提供了一条实际可行的途径. 例如, 要估计某地区的平均亩产量, 可收割某些有代表性的地块, 如n 块,计算其平均亩产量, 则当n 较大时,可用它作为整个地区平均亩产量的一个估计. 此类做法在实际应用中具有重要意义.四、中心极限定理在实际问题中, 许多随机现象是由大量相互独立的随机因素综合影响所形成, 其中每一个因素在总的影响中所起的作用是微小的. 这类随机变量一般都服从或近似服从正态分布. 以一门大炮的射程为例, 影响大炮的射程的随机因素包括: 大炮炮身结构的制造导致的误差, 炮弹及炮弹内炸药在质量上的误差, 瞄准时的误差, 受风速、风向的干扰而造成的误差等. 其中每一种误差造成的影响在总的影响中所起的作用是微小的, 并且可以看成是相互独立的, 人们关心的是这众多误差因素对大炮射程所造成的总影响. 因此需要讨论大量独立随机变量和的问题.中心极限定理回答了大量独立随机变量和的近似分布问题, 其结论表明: 当一个量受许多随机因素(主导因素除外) 的共同影响而随机取值, 则它的分布就近似服从正态分布.1.林德伯格—勒维定理定理6 (林德伯格—勒维) 设 ,,,,21n X X X 是独立同分布的随机变量序列, 且,,,2,1,)(,)(2n i X D X E i i ===σμ则 ⎰∑∞--=∞→=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-x t n i i n dt e x n n X P 2/1221lim πσμ 注: 定理6表明: 当n 充分大时, n 个具有期望和方差的独立同分布的随机变量之和近似服从正态分布. 虽然在一般情况下, 我们很难求出n X X X +++ 21的分布的确切形式, 但当n 很大时, 可求出其近似分布. 由定理结论有.1),/,(~)1,0(~/1)1,0(~1211∑∑∑====⇒-⇒-n i i ni i ni i X n X n N X N nX n N n n X σμσμσμ近似近似故定理又可表述为: 均值为μ, 方差的02>σ的独立同分布的随机变量 ,,,,21n X X X 的算术平均值X , 当n 充分大时近似地服从均值为μ,方差为n /2σ的正态分布. 这一结果是数理统计中大样本统计推断的理论基础.2. 棣莫佛—拉普拉斯定理在第二章中,作为二项分布的正态近似,我们曾经介绍了棣莫佛—拉普拉斯定理,这里再次给出,并利用上述中心极限定理证明之.定理7(棣莫佛—拉普拉斯定理)设随机变量n Y 服从参数p n ,)10(<<p 的二项分布, 则对任意x , 有)(21)1(lim 22x dt e x p np np Y P x tn n Φ==⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤--⎰∞--∞→π注: 易见,棣莫佛—拉普拉斯定理就是林德伯格—勒维定理的一个特殊情况.3.用频率估计概率的误差设n μ为n 重贝努里试验中事件A 发生的频率, p 为每次试验中事件A 发生的概率,,1p q -=由棣莫佛—拉普拉斯定理,有⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<-<-=⎭⎬⎫⎩⎨⎧<-pq n npqnp pq nP p n P n n εμεεμ .12-⎪⎪⎭⎫ ⎝⎛Φ=⎪⎪⎭⎫ ⎝⎛-Φ-⎪⎪⎭⎫ ⎝⎛Φ≈pq n pq n pq n εεε这个关系式可用解决用频率估计概率的计算问题:4. 李雅普诺夫定理定理8(李雅普诺夫定理) 设随机变量 ,,,,21n X X X 相互独立, 它们具有数学期望和方差: ,2,1,0)(,)(2=>==i X D X E kk k k σμ,记.122∑==nk k nB σ 若存在正数δ, 使得当∞→n 时,,0}|{|1122→-∑=++nk k knXE Bδδμ则随机变量之和∑=n k k X 1的标准化变量:nnk kn k kn k k n k k nk k n B X X D X E X Z ∑∑∑∑∑=====-=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=11111μ的分布函数)(x F n 对于任意x , 满足).(21lim )(lim 2/112x dt e x B X P x F x t n n k k n k k n n n Φ==⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤-=⎰∑∑∞--==∞→∞→πμ注:定理8表明, 在定理的条件下, 随机变量.11nnk kn k kn B X Z ∑∑==-=μ当n 很大时,近似地服从正态分布)1,0(N . 由此, 当n 很大时,∑∑==+=nk k n n nk k Z B X 11μ近似地服从正态分布⎪⎪⎭⎫ ⎝⎛∑=21,n n k k B N μ.这就是说,无论各个随机变量),2,1( =k X k 服从什么分布,只要满足定理的条件,那么它们的和∑=nk k X 1当n 很大时,就近似地服从正态分布.这就是为什么正态随机变量在概率论中占有重要地位的一个基本原因.在很多问题中,所考虑的随机变量可以表示成很多个独立的随机变量之和,例如,在任一指定时刻,一个城市的耗电量是大量用户耗电量的总和;一个物理实验的测量误差是由许多观察不到的、可加的微小误差所合成的,它们往往近似地服从正态分布.例题选讲:切比雪夫不等式例1(讲义例1)在每次试验中, 事件A发生的概率为0.75, 利用切比雪夫不等式求: 事件A出现的频率在0.74~0.76之间的概率至少为0.90?中心极限定理例2(讲义例2) 一盒同型号螺丝钉共有100个,已知该型号的螺丝钉的重量是一个随机变量,期望值是100g标准差是10g, 一盒螺丝钉的重量超过10.2kg的概率.例3 (讲义例3)计算机在进行数学计算时,遵从四舍五入原则。
2013年02月下半月刊266艺术文化交流中心极限定理自18世纪由棣莫弗提出至今,其内容已经非常丰富。
中心极限定理研究一个随机变量何时服从正态分布,若一个随机变量是由大量相互独立的随机因素的综合影响所形成的,而每个个别因素在总的影响中的作用都是微小的,那么这个随机变量往往服从或近似服从正态分布,这就是中心极限定理所得的结论。
本文主要研究了中心极限定理在药品测试问题中的应用。
定理(勒维—麟德伯格(Levy-Lindeberg )定理)设(1,2,)n n ξ=L 为相互独立同分布的随机序列,且(),k E a ξ=22()(0),(1,2,),k D k ξσσ=<∞≠=L 则{}n ξ服从中心极限定理,即随机变量nkn naξη−∑的分布函数()n F x 对于任意x满足212lim ()lim ().n k xt n n n na F x P x edt x ξ−−∞→∞→∞−==Φ∑例(药品测试问题)药品测试也是一个需要用到概率统计知识的领域。
对大量的数据进行统计分析,判断治愈率高低,进而做出最优的决策。
这就是中心极限定理在药品测试中的重要作用。
某药厂断言,该厂生产的某种药品对于医治一种疑难的血液病的治愈率为0.8,医院检验员任意抽查100个服用此药品的病人,如果其中多于75人治愈,就接受这一断言,否则就拒绝。
若实际上此药品对这种疾病的治愈率是0.8,则接受这一断言的概率是多少?解 把每一位病人服用此药的疗效当作一次试验,则100个人服用此药的效果视为100重伯努利试验。
设事件X 表示其中治愈的病人人数,则~(100,0.8).X b 已知()0.8,~(100,0.8),p P A X b ==则4,np =由80~(0,1),4X N −得(75100)P X ≤≤75808010080444X P −−− =≤≤801.2554X P −=−<<(5)(1.25)=Φ−Φ−0.8944,=故接受这一断言的概率为0.8944。
中心极限定理的内容及意义1. 中心极限定理呀,这可是个超神奇的东西呢!简单说就是不管原来的总体分布长啥样,只要样本量足够大,样本均值的分布就近似于正态分布。
就好比咱们学校组织抽奖,奖品有好多不同类型,一开始奖品的分布是乱七八糟的。
可是当抽奖的次数足够多,也就是样本量够大的时候,每次抽奖得到的平均奖品价值的分布就变得很有规律了,就像正态分布那样规规矩矩的。
这多奇妙啊!2. 中心极限定理的意义可不得了。
它就像一把万能钥匙,能打开很多统计学上的难题之门。
比如说,有个卖水果的小贩,他进的水果大小不一,最开始水果大小的分布特别复杂。
但是如果他每次称一大袋水果当作一个样本,称的次数多了,这些样本的平均水果大小就会遵循正态分布。
这让他能更好地预估自己水果的平均大小,然后定价啊,控制成本啥的,是不是超级有用?3. 嘿,中心极限定理!你知道吗?它让我们能在很复杂的情况下做出靠谱的估计。
想象一下,一个工厂生产各种形状和大小的零件,那些零件最初的尺寸分布乱得像一团麻。
但是呢,当我们从生产线每次取足够多的零件当作样本,样本的平均尺寸就会像听话的孩子一样,接近正态分布。
这就像给工程师们吃了颗定心丸,他们能根据这个来判断生产是否正常,多棒啊!4. 中心极限定理是统计学里的一颗璀璨明星啊。
它的内容就是告诉我们,即使总体是千奇百怪的分布,只要样本量上去了,样本均值的分布就向正态分布看齐。
就像一群性格各异的人,一开始乱哄哄的。
可是当把他们分成足够多的小组,每个小组的平均性格就会有一定的规律,就好像被正态分布的魔力给约束住了一样。
这对我们做调查研究可太有帮助了,能让我们从混乱中找到规律呢。
5. 哇塞,中心极限定理真的很牛!它的内容可以这么理解,无论总体的分布是像高山一样起伏不定,还是像迷宫一样错综复杂,只要样本数量足够大,样本均值的分布就会变得像正态分布那样平滑和有规律。
比如说,在一个大型的购物商场里,顾客的消费金额分布一开始各种各样。