第二节中心极限定理(概率论与数理统计)
- 格式:ppt
- 大小:376.50 KB
- 文档页数:25
中心极限定理无论随机变量12,,,,n X X X 服从什么分布,当n 充分大时,其和的极限分布是正态分布,这就是我们今天要讲的中心极限定理。
定理 5.5(独立同分布中心极限定理)设随机变量12,,,,n X X X 相互独立,服从同一分布,且具有数学期望和方差2(),()0,i i E X D X μσ==>1,2,i =,则随机变量之和1ni i X =∑的标准化变量nin Xn Y μ-=∑的分布函数()n F x 对于任意X 满足2/2lim ()lim d ()n i x t n n n X n F x P x t x μΦ-→∞→∞⎧⎫-⎪⎪⎪=≤==⎬⎪⎪⎩⎭∑⎰定理 5.5表明,对于均值为,μ方差为20σ>的独立同分布的随机变量的和1ni i X =∑的标准化随机变量,不论12,,,,n X X X 服从什么分布,当n 充分大时,都有~(0,1)nin Xn Y N μ-=∑近似,从而,当n 充分大时21~(,)nii XN n n μσ=∑近似.定理5.5′ 设随机变量列12,,,,n X X X 相互独立,服从同一分布,且具有数学期望和方差2(),()0,i i E X D X μσ==>1,2,i =,令11nn i i X X n ==∑,则当n 充分大时~(0,1)N 近似,即2~(,/)n X N n μσ近似.例5.3 一盒同型号螺丝钉共有100个,已知该型号的螺丝钉的重量是一个随机变量,期望值是100 g,标准差是10 g,求一盒螺丝钉的重量超过10.2 kg 的概率.解 设i X 为第i 个螺丝钉的重量,,100,,2,1 =i Y 为一盒螺丝钉的重量,则1001,i i Y X ==∑12100,,,X X X 相互独立,由()100,i E X=10,σ= 100n =知()100()10 000,i E X E X =⨯=()100()10 000,i D X D X =⨯=由独立同分布中心极限定理,~(10000,10000)Y N 近似,{}{10 200}110 200P Y P Y >=-≤10 00010 20010 0001100100Y P --⎧⎫=-≤⎨⎬⎩⎭1(2)10.977 20.022 8.Φ≈-=-=定理5.6(李雅普诺夫定理)设随机变量 ,,,,21n X X X 相互独立,它们具有数学期望和方差2(),()0,1,2,k k k kE X D X k μσ==>=,记.122∑==nk k nB σ若存在正数δ,使得当∞→n 时,,0}|{|1122→-∑=++nk k knXE B δδμ则随机变量之和∑=n k k X 1的标准化变量nnk kn k kn k k n k k nk k n B X X D X E X Z ∑∑∑∑∑=====-=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=11111μ的分布函数)(x F n 对于任意x ,满足2/211lim ()lim d ().n nk k x t k k n n n n X F x P x t x B μΦ-==→∞→∞⎧⎫-⎪⎪⎪⎪=≤==⎨⎬⎪⎪⎪⎪⎩⎭∑∑⎰ 定理5.7(棣莫佛—拉普拉斯定理)设随机变量(1,2,)~(,)(01),n n b n p p η=<<则对任意x ,有22lim d ().t x n P x t x Φ--∞→∞⎧⎫⎪≤==⎬⎪⎭⎰证明 由于n η可视为n 个相互独立、服从同一参数p 的(01)-分布的随机变量12,,,n X X X 的和,即有1nn i i X η==∑,其中(),()(1),i i E X p D X p p ==-1,2,i =,故由独立同分布中心极限定理可得22lim lim d ().n i n n t xX np P x P x t x Φ→∞→∞-⎧⎫-⎪⎪⎧⎫⎪⎪≤=≤⎬⎬⎪⎪⎭⎪⎭==∑⎰, 定理5.7表明:若随机变量n η服从二项分布,即~(,)n b n p η,则当n 充分大时,有~(0,1)npN η-近似,从而,当n 充分大时~(,(1))n N np np p η-近似例5.4 假如某保险公司开设人寿保险业务,该保险有1万人购买(每人一份),每人每年付100元保险费,若被保险人在年度内死亡, 保险公司赔付其家属1万元.设一年内一个人死亡的概率为0.005试问:在此项业务中保险公司亏本的概率有多大?保险公司每年利润不少于10万的概率是多少?解 设X 表示一年内被保险人的死亡人数,则,~(10000,0.005)X b ,于是()100000.00550,()100000.0050.99549.75E X D X =⨯==⨯⨯=由棣莫佛—拉普拉斯定理,~(50,49.75)X N 近似.保险公司亏本,也就是赔偿金额大于10 000100100⨯=万元,即死亡人数大于100人的概率所以保险公司亏本的概率为(){100}1{100}117.050P X P X P Φ>=-≤=-≈-= 这说明,保险公司亏本的概率几乎是零.如果保险公司每年的利润不少于10万元,即赔偿人数不超过90人,则保险公司每年利润不少于10万的概率为(){90} 5.671P X ≤≈Φ≈Φ=.可见,保险公司每年利润不少于10万元的概率几乎是100%.。