第二节+++中心极限定理
- 格式:ppt
- 大小:472.00 KB
- 文档页数:17
第二节中心极限定理独立同分布序列的中心极限定理定理1设X1,X2,…Xn,…是独立同分布的随机变量序列,且具有相同数学期望和方差E(Xi)=μ,D(Xi)=σ2(i=1,2,…)。
记随机变量的分布函数为F n(x),则对于任意实数x,有(不证)其中φ(x)为标准正态分布函数。
由这一定理知道下列结论:(1)当n充分大时,独立同分布的随机变量之和的分布近似于正态分布N(nμ,nσ2)。
我们知道,n个独立同分布的正态随机变量之和服从正态分布。
中心极限定理进一步告诉我们。
不论X1,X2,…X n,…独立同服从什么分布,当n充分大时,其和Z n近似服从正态分布。
(2)考虑X1,X2,…X n,…的平均值,有它的标准化随机变量为,即为上述Y n。
因此的分布函数即是上述的F n(x),因而有由此可见,当n充分大时,独立同分布随机变量的平均值的分布近似于正态分布[例5-3]对敌人的防御地段进行100次射击,每次射击时命中目标的炮弹数是一个随机变量,其数学期望为2,均方差为1.5,求在100次射击中有180颗到220颗炮弹命中目标的概率。
解设X i为第i次射击时命中目标的炮弹数(i=1,2,…,100),则为100次射击中命中目标的炮弹总数,而且X1,X2,…X100同分布且相互独立。
由定理1可知,随机变量近似服从标准正态分布,故有[例]某种电器元件的寿命服从均值为100(单位:小时)的指数分布。
现随机抽出16只,设它们的寿命是相互独立的,求这16只元件的寿命的总和大于1 920小时的概率。
解设第i只电器元件的寿命为X i=(i=1,2,…16),E(X i)=100,D(X i)=1002=10 000,则是这16只元件的寿命的总和。
E(Y)=100×16=1 600,D(Y)= 160 000,则所求概率为:棣莫弗(De Moivre)-拉普拉斯(Laplace)中心极限定理下面介绍另一个中心极限定理,它是定理1的特殊情况。