第二节中心极限定理解读
- 格式:pdf
- 大小:2.97 MB
- 文档页数:26
第二节中心极限定理独立同分布序列的中心极限定理定理1设X1,X2,…Xn,…是独立同分布的随机变量序列,且具有相同数学期望和方差E(Xi)=μ,D(Xi)=σ2(i=1,2,…)。
记随机变量的分布函数为F n(x),则对于任意实数x,有(不证)其中φ(x)为标准正态分布函数。
由这一定理知道下列结论:(1)当n充分大时,独立同分布的随机变量之和的分布近似于正态分布N(nμ,nσ2)。
我们知道,n个独立同分布的正态随机变量之和服从正态分布。
中心极限定理进一步告诉我们。
不论X1,X2,…X n,…独立同服从什么分布,当n充分大时,其和Z n近似服从正态分布。
(2)考虑X1,X2,…X n,…的平均值,有它的标准化随机变量为,即为上述Y n。
因此的分布函数即是上述的F n(x),因而有由此可见,当n充分大时,独立同分布随机变量的平均值的分布近似于正态分布[例5-3]对敌人的防御地段进行100次射击,每次射击时命中目标的炮弹数是一个随机变量,其数学期望为2,均方差为1.5,求在100次射击中有180颗到220颗炮弹命中目标的概率。
解设X i为第i次射击时命中目标的炮弹数(i=1,2,…,100),则为100次射击中命中目标的炮弹总数,而且X1,X2,…X100同分布且相互独立。
由定理1可知,随机变量近似服从标准正态分布,故有[例]某种电器元件的寿命服从均值为100(单位:小时)的指数分布。
现随机抽出16只,设它们的寿命是相互独立的,求这16只元件的寿命的总和大于1 920小时的概率。
解设第i只电器元件的寿命为X i=(i=1,2,…16),E(X i)=100,D(X i)=1002=10 000,则是这16只元件的寿命的总和。
E(Y)=100×16=1 600,D(Y)= 160 000,则所求概率为:棣莫弗(De Moivre)-拉普拉斯(Laplace)中心极限定理下面介绍另一个中心极限定理,它是定理1的特殊情况。
中心极限定理中心极限定理是概率论中的一个重要定理,它描述了一类独立同分布随机变量之和的极限分布特征。
本文将介绍中心极限定理的概念、数学表达式以及应用场景,并探讨其原理和证明过程。
一、中心极限定理的概念中心极限定理是概率论的核心内容之一,它表明在一定条件下,当独立同分布随机变量的数量趋于无穷大时,它们的和的分布趋近于正态分布。
这意味着即使原始随机变量不服从正态分布,其和的分布仍然接近正态分布。
二、中心极限定理的数学表达式中心极限定理可以用数学公式表示为:若X₁, X₂, ..., Xₙ是n个独立同分布的随机变量,且具有相同的数学期望μ和方差σ²,则当n趋于无穷大时,这n个随机变量之和的标准化变量(即减去期望值再除以标准差)Zₙ=(X₁+X₂+...+Xₙ-nμ)/(√(nσ²))的极限分布为标准正态分布,即Zₙ服从N(0,1)分布。
三、中心极限定理的应用场景中心极限定理在实际应用中具有广泛的意义。
例如,在统计学中,当样本容量足够大时,可以利用中心极限定理来近似计算样本均值的抽样分布。
此外,在概率论和数理统计中,中心极限定理也被应用于估计参数的置信区间、假设检验等问题中。
四、中心极限定理的原理和证明过程中心极限定理的原理主要基于独立性和同分布的假设,并借助于大数定律和特征函数的性质进行证明。
具体证明过程较为复杂,可参考相关数学教材和概率论专业资料。
总结:中心极限定理是概率论中一项重要的结果,它描述了独立同分布随机变量和的极限分布接近于正态分布的性质。
中心极限定理在统计学和概率论的研究与应用中具有广泛的意义,并在实际问题中发挥着重要的作用。
理解中心极限定理的概念、数学表达式和应用场景,对于深入研究概率论和统计学具有重要意义。