蛋白质的理化性质和分类
- 格式:ppt
- 大小:1.52 MB
- 文档页数:22
第二节蛋白质的理化性质和生物学特性一、蛋白质的胶体性质蛋白质是高分子化合物,分子量一般在10kD~1000kD。
根据测定所知,如分子量为34.5kD的球状蛋白,其颗粒的直径为4.3nm。
所以,蛋白质分子颗粒的直径一般在1~100nm,在水溶液中呈胶体溶液,具有丁铎尔现象、布朗运动、不能透过半透膜、扩散速度减慢、粘度大等特征。
蛋白质分子表面含有很多亲水基团,如氨基、羧基、羟基、巯基、酰胺基等,能与水分子形成水化层,把蛋白质分子颗粒分隔开来。
此外,蛋白质在一定pH溶液中都带有相同电荷,因而使颗粒相互排斥。
水化层的外围,还可有被带相反电荷的离子所包围形成双电层,这些因素都是防止蛋白质颗粒的互相聚沉,促使蛋白质成为稳定胶体溶液的因素。
蛋白质分子不能透过生物膜的特点,在生物学上有重要意义,它能使各种蛋白质分别存在于细胞内外不同的部位,对维持细胞内外水和电解质分布的平衡、物质代谢的调节都起着非常重要的作用。
另外,利用蛋白质不能透过半透膜的特性,将含有小分子杂质的蛋白质溶液放入半透膜袋内,然后将袋浸于蒸馏水中,小分子物质由袋内移至袋外水中,蛋白质仍留在袋内,这种方法叫做透析。
透析是纯化蛋白质的方法之一。
二、蛋白质的两性性质蛋白质和氨基酸一样,均是两性电解质,在溶液中可呈阳离子、阴离子或兼性离子,这取决于溶液的pH值、蛋白质游离基团的性质与数量。
当蛋白质在某溶液中,带有等量的正电荷和负电荷时,此溶液的pH值即为该蛋白质的等电点(pI)。
当pH偏酸时,蛋白质分子带正电荷。
相反,pH偏碱,蛋白质分子带负电荷(图2-2-1)图2-2-1 蛋白质的两性电离蛋白质溶液的pH值在等电点时,蛋白质的溶解度、黏度、渗透压、膨胀性及导电能力均最小,胶体溶液呈最不稳定状态。
凡碱性氨基酸含量较多的蛋白质,等电点往往偏碱,如组蛋白和精蛋白。
反之,含酸性氨基酸较多的蛋白质如酪蛋白、胃蛋白酶等,其等电点往往偏酸。
人体内血浆蛋白质的等电点大多是pH 5.0左右。
蛋白质的理化性质第四节蛋白质的理化性质一、两性离解和等电点蛋白质是由氨基酸组成的,在其分子表面带有很多可解离基团,如羧基、氨基、酚羟基、咪唑基、胍基等。
此外,在肽链两端还有游离的α-氨基和α-羧基,因此蛋白质是两性电解质,可以与酸或碱相互作用。
溶液中蛋白质的带电状况与其所处环境的pH 有关。
当溶液在某一特定的pH 条件下,蛋白质分子所带的正电荷数与负电荷数相等,即净电荷数为零,此时蛋白质分子在电场中不移动,这时溶液的pH 称为该蛋白质的等电点,此时蛋白质的溶解度最小。
由于不同蛋白质的氨基酸组成不同,所以蛋白质都有其特定的等电点,在同一pH 条件下所带净电荷数不同。
如果蛋白质中碱性氨基酸较多,则等电点偏碱,如果酸性氨基酸较多,等电点偏酸。
酸碱氨基酸比例相近的蛋白质其等电点大多为中性偏酸,约在5.0 左右。
1、两性解离蛋白质可以在酸性环境中与酸中和成盐,而游离成正离子,即蛋白质分子带正电,在电场中向阴极移动;在碱性环境中与碱中和成盐而游离成负离子,即蛋白质分子带负电,在电场中向阳极移动。
以“P”代表收集于网络,如有侵权请联系管理员删除收集于网络,如有侵权请联系管理员删除蛋白质分子,以―NH 2 和―COOH 分别代表其碱性和酸性解离基团,随pH 变化,蛋白质的解离反应可简示如下:(pH>pI ) (pH=pI ) (pH<pI )移向阳极 不移动 移向阴极2、等电点沉淀和电泳①等电点沉淀蛋白质在等电点时,以两性离子的形式存在,其总电荷数为零,这样的蛋白质颗粒在溶液中因为没有相同电荷而相互排斥的影响,所以极易借静电引力迅速结合成较大的聚集体,因而易发生沉淀析出。
这一性质常在蛋白质分离、提纯时应用。
在等电点时,除了蛋白质的溶解度最小外,其导电性、粘度、渗透压以及膨胀性均为最小。
②电泳蛋白质颗粒在溶液中解离成带电的颗粒,在直流电场中向其所带电荷相反的电极移动。
这种大分子化合物在电场中定向移动的现象称为电蛋白质的阴离子蛋白质的阳离子蛋白质的兼性离子(等电点)NH 3+COO -P NH 3+P COOHNH 2COO-P泳。
蛋白质的理化性质(一)关键词:蛋白质蛋白质是由氨基酸组成的大分子化合物,其理化性质一部分与氨基酸相似,如两性电离、等电点、呈色反应、成盐反应等,也有一部分又不同于氨基酸,如高分子量、胶体性、变性等。
一、蛋白质的胶体性质蛋白质分子量颇大,介于一万到百万之间,故其分子的大小已达到胶粒1~100nm范围之内。
球状蛋白质的表面多亲水基团,具有强烈地吸引水分子作用,使蛋白质分子表面常为多层水分子所包围,称水化膜,从而阻止蛋白质颗粒的相互聚集。
与低分子物质比较,蛋白质分子扩散速度慢,不易透过半透膜,粘度大,在分离提纯蛋白质过程中,我们可利用蛋白质的这一性质,将混有小分子杂质的蛋白质溶液放于半透膜制成的囊内,置于流动水或适宜的缓冲液中,小分子杂质皆易从囊中透出,保留了比较纯化的囊内蛋白质,这种方法称为透析(dialysis)。
蛋白质大分子溶液在一定溶剂中超速离心时可发生沉降。
沉降速度与向心加速度之比值即为蛋白质的沉降系数S。
校正溶剂为水,温度20℃时的沉降系数S20·w可按下式计算:式中X 为沉降界面至转轴中心的距离,W为转子角速度,W2X为向心加速度,dX/dt为沉降速度。
单位用S,即Svedberg单位,为1×1013秒,分子愈大,沉降系数愈高,故可根据沉降系数来分离和检定蛋白质。
二、蛋白质的两性电离和等电点蛋白质是由氨基酸组成的,其分子中除两端的游离氨基和羧基外,侧链中尚有一些解离基,如谷氨酸、天门冬氨酸残基中的γ和β-羧基,赖氨酸残基中的ε-氨基,精氨酸残基的胍基和组氨酸的咪唑基。
作为带电颗粒它可以在电场中移动,移动方向取决于蛋白质分子所带的电荷。
蛋白质颗粒在溶液中所带的电荷,既取决于其分子组成中碱性和酸性氨基酸的含量,又受所处溶液的pH影响。
当蛋白质溶液处于某一pH时,蛋白质游离成正、负离子的趋势相等,即成为兼性离子(zwitterion,净电荷为O),此时溶液的pH值称为蛋白质的等电点(isoelectricpoint,简写pI)。
蛋白质的理化性质(一)蛋白质的两性解离及等电点1.蛋白质的等电点(pI):当蛋白质溶液处于某一pH时,蛋白质上可解离基团解离成正、负离子的趋势相等,净电荷为零时溶液的pH。
➢等电点时溶解度最小可使蛋白质沉淀。
➢蛋白质pI要用等电聚焦等方法测定。
(二)蛋白质的胶体性质1.胶体溶液的三个条件:①大小在1-100nm范围内:蛋白质分子量很大,属胶体颗粒范围。
②同种电荷互相排斥:相同蛋白质颗粒带有同性电荷,与周围的反离子构成稳定的双电层。
③质点外围有水化层:多肽链上的极性基团极易吸附水分子,使蛋白质颗粒外围形成一层水化膜。
蛋白质可以形成稳定的胶体溶液。
2.利用胶体溶液性质,可用透析法将蛋白质中小分子杂质除去。
(三)蛋白质的沉淀1.定义:蛋白质在溶液中的稳定性是有条件的、相对的。
如果加入适当的试剂使蛋白质分子处于等电点状态或破坏其水化层和双电层,蛋白质胶体溶液因不再稳定而产生沉淀。
此现象即为蛋白质的沉淀作用。
2.类型:分可逆沉淀与不可逆沉淀。
➢可逆沉淀▁非变性沉淀定义:在温和条件下,改变溶液的pH或电荷状况,蛋白质结构和功能没有发生变化。
如等电点沉淀法、盐析法和有机溶剂沉淀法等。
是分离和纯化的基本方法。
a.等电点沉淀法:用弱酸或弱碱调节蛋白质溶液的pH等于pI,破坏蛋白质表面净电荷使蛋白质沉淀。
b.盐析沉淀法:1.盐析:通过加入大量高浓度中性盐如硫酸铵、氯化钠等,破坏蛋白质分子表面的水化层,中和它们的电荷,而使蛋白质沉淀析出的现象。
2.各种蛋白质亲水性及荷电均有差别,因此通过调节中性盐浓度,可使混合蛋白质溶液中的不同蛋白分别沉淀析出,这种方法称为分段盐析。
3.盐溶:加入低浓度盐导致蛋白质溶解度增加的现象。
c.有机溶剂沉淀法定义:加入能与水互溶的有机溶剂如乙醇、丙酮等,破坏蛋白质的水化膜使蛋白质产生沉淀。
注意:通常在低温条件下进行,否则有机溶剂与水互溶产生的溶解热会使蛋白质发生变性。
➢不可逆沉淀▁变性沉淀定义:沉淀条件剧烈,破坏了蛋白质胶体溶液稳定性,同时也破坏了蛋白质结构和功能。
蛋白质的理化性质【摘要】蛋白质是生物体内功能最为复杂的大分子,其理化性质直接影响着其功能和应用。
氨基酸的组成和序列决定了蛋白质的结构和功能,不同的氨基酸序列会导致蛋白质不同的理化性质。
分子量也会影响蛋白质的溶解性和折叠状态,从而影响其功能。
蛋白质的溶解性和聚集态受多种因素影响,包括pH、温度等。
而蛋白质的热稳定性和折叠状态直接关系到其功能的稳定性。
深入研究蛋白质的理化性质有助于了解其功能和应用,同时也为蛋白质工程和药物设计提供重要依据。
对蛋白质的理化性质进行细致研究,有助于揭示其内在机制,进而推动相关领域的发展和应用。
【关键词】蛋白质、理化性质、氨基酸、分子量、溶解性、聚集态、构象、热稳定性、折叠状态、结构、功能、应用。
1. 引言1.1 蛋白质的理化性质概述蛋白质是生物体内最重要的大分子有机化合物之一,具有多样的生物学功能。
蛋白质的理化性质涉及其组成、结构及行为特性等方面,对于揭示蛋白质在生物体内的功能和作用具有重要意义。
蛋白质的理化性质受到多种因素的影响,包括氨基酸组成和序列、分子量、溶解性、聚集态和构象以及热稳定性等。
氨基酸是构成蛋白质的基本单元,不同氨基酸的组成和排列方式决定了蛋白质的结构和功能。
蛋白质的氨基酸序列对其理化性质有重要影响,不同氨基酸的性质可以影响蛋白质的溶解性、稳定性等特性。
分子量是影响蛋白质理化性质的重要因素之一。
分子量较大的蛋白质通常具有较高的溶解性和稳定性,同时也可能对其聚集态和构象造成影响。
蛋白质的溶解性受到多种因素的影响,包括pH 值、离子强度、温度等。
溶解性的变化可能导致蛋白质结构的改变,从而影响其功能和生物学活性。
蛋白质的热稳定性与其折叠状态密切相关。
蛋白质在特定温度范围内保持特定的折叠状态,一旦超出该范围可能导致蛋白质失去功能。
研究蛋白质的热稳定性可以为其在生物学的应用提供重要参考。
蛋白质的理化性质是与其结构密切相关的,深入研究蛋白质的理化性质有助于了解其功能和应用,为生物学和药物研究提供重要参考。