第2章 无机合成的技术和方法-低温固相合成
- 格式:ppt
- 大小:1.52 MB
- 文档页数:31
研究生课程论文封面课程名称 材料制备与合成开课时间 10-11学年第一学期学院 数理与信息学院学科专业 凝聚态物理学号 2009210663 姓名 朱伶俊学位类别 理学任课教师 李正全交稿日期成绩评阅日期评阅教师签名浙江师范大学研究生学院制低温固相合成综述目前,环境污染、能源过度消耗队地球及人类带来的危害已经越来越大。
人们在发展经济的同时也在积极面对怎样克服对环境的污染,保护我们的生态平衡。
近十几年来,由于传统的化学反应里在溶液或气相中进行,其反应需要能耗高,时间长,污染环境严重以及工艺复杂,因此越来越多的人将目光投向曾经被人类很早就利用过的固相化学反应。
低温固相化学反应法是20世纪80年代发展起来的一种新的合成方法,并且发展极为迅速。
其制备工艺简单,反应条件温和,节约能源,产率高,污染低等优点,使其再化学合成领域中日益受到重视。
固相反应法已经成为了人们制备新型无机功能材料的重要手段之一。
1、低温固相合成的发展固相化学反应是人类最早使用的化学反应之一,我们的祖先早就掌握了制陶工艺,将制得的陶器用作生活日用品。
但固相化学作为一门学科被确认却是在20世纪初,原因自然是多方面的,除了科学技术不发达的限制外,更重要的原因是人们长期的思想束缚。
自亚里士多德时起,直至距今80多年前,人们广泛相信“不存在液体就不发生固体间的化学反应”。
直到1912年,Hedvall在Berichte 杂志发表了《关于林曼绿》(CaO和ZnO的粉末固体反应)为题的论文,有关固相化学的历史才正式拉开序幕。
事实上,许多固相反应在低温条件下便可发生。
早在1904年,Pfeifer等发现加热[Cr(en)3]Cl3或[Cr(en)3](SCN)3分别生成cis-[Cr(en)2Cl2]Cl和trans-[Cr(en)2(SCN)2]SCN;1963年,Tscherniajew等首先用K2[PtI6]与KCN固-固反应,制取了稳定产物K2[Pt(CN)6]。
低热固相合成化学低热固相合成化学是一种在低温下进行的固相合成方法,它在无需高温条件下,通过固态反应将原料转化为所需产物。
这种方法具有简单、环境友好、节能等优点,因此在化学合成领域中得到广泛应用。
低热固相合成化学的基本原理是通过在低温下使反应物发生固态反应,从而得到所需产物。
相较于传统的高温合成方法,低热固相合成化学不需要高温加热设备,因此具有较低的能源消耗和较少的环境污染。
此外,低热固相合成化学还可以避免由于高温反应导致的副反应和产物失活等问题,从而提高产物纯度和产率。
低热固相合成化学的方法包括球磨法、气固相反应法和固体相互作用法等。
其中,球磨法是一种将反应物放置于球磨罐中,并通过球磨体的摩擦作用使其发生固态反应的方法。
这种方法具有反应速度快、反应条件温和等特点,适用于一些高能消耗的反应。
气固相反应法是通过气体在固体反应物表面吸附并与之发生反应,从而实现低热固相合成的方法。
这种方法通常需要提前将反应物在低温下与气体进行预处理,然后在高温下将其与反应物进行反应。
这种方法适用于一些需要气体参与的反应,如气体分解、气体吸附等。
固体相互作用法是指两种或多种固体物质之间发生相互作用,从而实现低热固相合成的方法。
这种方法可以通过固体物质之间的离子交换、电荷转移、共价键形成等方式来实现。
固体相互作用法具有选择性好、产物纯度高等特点,适用于一些需要精确控制反应条件的反应。
在低热固相合成化学中,反应条件的选择对于反应的进行至关重要。
一般来说,反应温度较低、反应时间较长、反应物的初始浓度较高等条件有利于反应的进行。
此外,反应物的物理性质、化学性质、反应物之间的相互作用等因素也会影响反应的进行,因此需要根据具体的反应体系来选择合适的反应条件。
低热固相合成化学在有机合成、无机合成、材料合成等领域都有广泛的应用。
例如,在有机合成中,低热固相合成化学可以用于合成有机小分子化合物、有机聚合物等。
在无机合成中,低热固相合成化学可以用于合成无机材料、氧化物等。
无机合成第二章介绍在无机化学领域,无机合成是指通过化学反应合成无机化合物的过程。
该过程涉及到无机反应和合成方法的选择。
本章将介绍无机合成的几种常见方法,并以具体实例说明它们的应用。
一、热分解法热分解法是一种通过加热固态物质使其分解生成所需的产物的合成方法。
这种方法广泛应用于合成无机材料,并且可以用于制备金属氧化物、金属非氧化物、金属合金等多种无机化合物。
例如,可以使用热分解法制备氧化铜(\[CuO\])。
首先,将氢氧化铜(\[Cu(OH)2\])或碳酸铜(\[CuCO3\])加热至适当温度,使其分解为\[CuO\]。
其反应方程式为:\[Cu(OH)2 \to CuO + H2O\]热分解法的优点是制备过程简单,无需使用复杂的试剂和设备。
然而,需要注意的是控制反应温度和反应时间,以确保合成产物的纯度和晶体结构。
二、浸渍法浸渍法是一种常用的合成无机材料的方法,特别适合制备表面特性优良的材料。
该方法通过将基底材料浸泡在合适的溶液中,使溶液中的化合物在基底上沉积,并形成所需的无机材料。
例如,通过浸渍法可以合成多孔性二氧化硅(\[SiO2\])材料。
首先,将基底材料(如海绵)浸泡在含有硅源(如硅酸,\[Si(OH)4\])的溶液中,然后经过干燥和热处理,即可得到多孔性\[SiO2\]材料。
浸渍法的优点是可以控制材料的孔径和孔隙度,并且可应用于复杂形状的基底材料。
然而,需注意选择适当的溶液和浸渍条件,以确保合成产物的均匀性和质量。
三、溶胶-凝胶法溶胶-凝胶法是一种通过在溶液中形成胶体,并通过凝胶化处理来合成无机材料的方法。
该方法适用于合成高纯度、高度结构可控的材料。
以二氧化钛(\[TiO2\])材料为例,溶胶-凝胶法可以将钛源(如钛酸酯)在适当的溶剂中溶解,并通过水解和聚合反应形成钛溶胶。
然后,通过热处理或其他处理方法将钛溶胶凝胶化,得到所需的\[TiO2\]材料。
溶胶-凝胶法的优点是可以控制材料的形貌、尺寸和结构,并且适用于大规模制备。
低热固态化学反应与材料合成早在新石器时代- 我们的祖先就已掌握固态化学反应技术,烧陶。
随后青铜器时代- 铁器时代到现代社会的水泥、钢铁、半导体、光、电、磁等材料的开发利用都与固态反应息息相关。
固态化学反应作为固体材料的重要合成方法- 为人类社会进步作出了不可磨灭的贡献。
固态反应通常指高温下的固态反应。
到目前为止- 已合成了大量固体材料。
但高温固态反应只限于制备那些热力学稳定的化合物- 而对于低热条件下稳定的介稳态化合物或动力学上稳定的化合物不适于采用高温合成。
为此- 人们在提高固态反应速度- 降低反应温度等方面做了大量工作- 发展了一些新的合成方法。
如气态输运法、水热法、微波法、软化学法、前体法、熔融法、自蔓延法等。
但这些方法存在控制复杂、设备操作费高、污染严重等缺陷-因而使用受到限制。
室温固态化学反应是上世纪80年代末发展起来的一种新的合成方法。
1988年忻新泉等开始报导“固态配位化学反应研究”系列,探讨了室温或近室温条件下的固# 固态化学反应。
1990年开始合成新的原子簇化合物并测定了数以百计的晶体结构。
1991年报导了到目前为止仍是最大的二十核含硫原子簇EI*(J>%!K B! F E , F化合物。
其后研究了硫原子簇化合物的三阶非线性光学性E %"- %% F。
1998年与贾殿赠合作申请“室温固态反应合成纳米材料”的专利。
推动了低热固态化学反应逐步向材料合成领域发展。
低热固态反应与通常意义的固态反应相比最大的特点在于反应温度降至室温或近室温。
因而具有便于操作和控制的优点。
此外还有不使用溶剂、高选择性、高产率、污染少、节省能源、合成工艺简单E %B F等特点。
这些特点符合当今社会绿色化学发展的要求- 因而越来越受到人们的欢迎。
短短几年间- 室温固态化学反应在材料合成领域已经得到许多成功应用- 正逐步发展成为合成领域的一个小小分枝。
下面归纳近几年低热固态化学反应在材料合成方面的进展。
实验2 纳米氧化锆的固相合成一、目的和要求1、通过锆盐与氢氧化钠的固相反应,了解固相合成法的特点。
2、掌握固相合成纳米氧化锆的基本原理和制备过程。
二、实验原理氧化锆由于其固有的化学成分、晶体结构、粒度等基本性质,因而具有化学稳定性好、热传导系数小、硬度大等优点,是一种重要的结构和功能陶瓷材料。
普通氧化锆在常温至1170℃以单斜相存在,加热到1170℃~2370℃时转变为四方相,2370℃以上时由四方相转变成立方相(2700℃左右熔融)。
由于纯氧化锆的高温相(立方相或四方相)随着温度的降低会转变成低温相(单斜相)。
要获得室温下稳定的高温相氧化锆,就需要在氧化锆中掺杂某些其它氧化物,如氧化钇、氧化钙、氧化镁、氧化钪等,形成复合氧化物。
这种掺杂的四方相部分稳定或全稳定的氧化锆在相变增韧和微裂纹增韧方面性能优良,具有极高的室温强度和断裂韧性。
用氧化钇稳定的四方相氧化锆(Y-TZP),当晶体粒度控制在纳米级(小于100nm)时,可能带来材料性能的突变,如材料强度和断裂韧性的显著提高等。
同时,氧化钇稳定的氧化锆还是一种优良的气敏材料(用于氧气传感器)和固体电池材料。
目前制备纳米氧化锆粉体的方法分液相法和气相法。
其中液相法有共沉淀法、水热法、溶胶-凝胶法、微乳液法等。
这些方法各有其特点,但也存在很多不足。
如共沉淀法一般是以氧氯化锆为原料,在锆盐溶液中加入沉淀剂,得到氢氧化物沉淀,再经过滤、洗涤、干燥、煅烧、研磨得到氧化锆粉体。
这种方法比较简单易行,可制得粒度小、成分较易控制的多组分纳米粉末,不足之处是制得的粉体往往存在较多的硬团聚体,影响制品的烧结温度和力学性能。
为了解决粉体的团聚问题,采用加入分散剂并控制温度在乙醇中陈化的方法,可制备出低温可烧结的纳米氧化锆粉体。
水热法制备纳米氧化锆一般以锆的无机或有机化合物为原料,可制得粒径小、高分散的粉体。
水热法的不足之处是制备条件较苛刻,成本较高,产量较低。
溶胶-凝胶法和醇盐水解法使用锆的有机化合物,同样存在着原料来源困难,价格较高,水解法反应时间长、产率过低、难以工业化生产等缺陷。
茂基稀土有机化合物的低温固相合成方法
茂基稀土有机化合物的低温固相合成方法是目前应用非常广泛的一种
研究方法,它可以以一种更安全和更简单的方式合成具有复杂结构的
多组分有机物质,这些物质用于各种工业领域,例如制药、染料和农
药等。
本文将详细介绍茂基稀土有机化合物的低温固相合成方法,提
供一种可行的解决方案。
首先,要获得有效的低温固相合成方法,必须选择适当的原料。
通常
情况下,使用的原料是茂基稀土有机化合物的卤素衍生物。
接下来,
我们根据原料的要求,选择不同茂基稀土类型来进行实验,以验证低
温固相合成方法的可行性。
为了保证合成反应的有效性,常用的方法
是混合不同茂基稀土类型,然后在高温环境下进行。
其次,在低温固相合成反应中,我们需要考虑不同反应条件之间的相
互作用,以及反应时间、反应温度、反应放大器和反应剂的比重等因素。
此外,我们还需要考虑助剂的选择,这是因为助剂可以帮助合成
反应变得更加有效。
根据反应条件的不同,可以选择不同类型的助剂,例如催化剂、络合剂和填料等。
最后,在低温固相合成过程中,我们需要注意安全事项,因为合成反
应可能会产生有毒气体,这些气体可能会对人体和环境造成一定的危害。
因此,在实验室内进行实验时,应注意选择适当的放大器和隔离
装置。
综上所述,茂基稀土有机化合物的低温固相合成方法是一种相当有效
的方法,可以获得较高的成功率、产量和纯度。
实验室的研究人员可
以根据实际情况,使用不同的原料和反应条件,来获得高品质的产物。