碰撞理论与过渡态理论 学案
- 格式:doc
- 大小:42.00 KB
- 文档页数:3
第十二章 化学动力学基础 (二)本章知识要点与公式1. 碰撞理论双分子碰撞频率 :2AB AB A B Z pd L c = 22AA AA A 2Z d L π= 临界能c E 与活化能a E 的关系:12a c E E RT =+ 用简单碰撞理论计算双 分子反应的速率常数:2AB aEk d RT π⎛⎫=- ⎪⎝⎭ 2AA 2a E k d RT π⎛⎫=- ⎪⎝⎭ 概率子Pexp a E k PA RT ⎛⎫=- ⎪⎝⎭2ABA d π= A P A =n n n n 2. 过渡态理论用统计热力学方法计算速率常数:,0B B B exp E k T f k h f RT π≠⎛⎫=- ⎪⎝⎭用热力学方法计算速率常数:()0010B r m r m exp exp nk T S H k c h R RT ≠≠-⎛⎫⎛⎫∆∆=- ⎪ ⎪⎝⎭⎝⎭对于双分子理想气体反应:1n000B r m r m exp exp k T S H P k h RT R RT -≠≠⎛⎫⎛⎫⎛⎫∆∆=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3.原盐效应稀溶液中,离子强度对反应速率的影响: A B 0lg2kz z k = A z 与B z 同号,产生正的原盐效应,I ↑ k ↑;A z 与B z 昇号,产生负的原盐效应,I k ↑↓。
4. 光化学反应光化学第一定律:只有被分子吸收的光才能引起分子的光化学反应。
光化学第二定律:在初级反应中, 一个反应分子吸收一个光子而被活化。
1 mol 光子能量(1 Einstein ) 101197J m mol Lhcu Lh νλλ-.===⋅⋅量子产率 ar I ϕ=5. 催化反应催化剂通过改变反应历程,改变反应的表观活化能来改变反应速率,只能缩短达到平蘅的时间,而不能改变平蘅的组成。
酶催化反应历程( Michaelis – Menten 机理)米氏常数12m 1k kK k -+=当[]S →∞ 时 []m m m111S K r r r =⋅+将1r对[]1S 作图,可求m K 和m r .典型俐题讲解例 1 500K 时,实验测得 NO 2 分解反应的提前因子为 61312.0010mol m s --⨯⋅⋅,碰撞截面为1921.0010m -⨯,试计算该反应的概率因子 P解 :2AA2A d π=c 2σ= ()()19223-12 1.0010m 602310mol-=⨯⨯⨯.⨯7-13133710mol m s -=.⨯⋅⋅61371320010mol m s 33710mol m s A P A --1∞--1∞.⨯⋅⋅==.⨯⋅⋅ 例 2 实验测得 N 2O 5 分解反应在不同温度时的反应速率常数,数据列于表中。
高中物理碰撞复习课教案
教学目标:
1. 复习和巩固学生对碰撞理论的基本概念;
2. 加深学生对碰撞定律和碰撞类型的理解;
3. 提升学生解题和应用碰撞理论的能力。
教学内容:
1. 碰撞的基本概念
2. 完全弹性碰撞和非完全弹性碰撞
3. 碰撞的定律
4. 质点的碰撞问题
教学过程:
一、导入(5分钟)
教师通过引入碰撞的实际场景,引发学生对碰撞现象的兴趣,并带入今天的学习内容。
二、讲解(15分钟)
1. 讲解碰撞的基本概念
2. 分别介绍完全弹性碰撞和非完全弹性碰撞的特点和应用
3. 探讨碰撞的定律及其物理意义
三、案例分析(20分钟)
教师通过几个碰撞问题案例,引导学生分析并解决问题,加深他们对碰撞理论的理解和应用能力。
四、练习(15分钟)
学生根据给出的碰撞问题,分组讨论并解答,教师辅导并纠正错误,加强学生对碰撞理论的掌握。
五、总结与反思(5分钟)
教师对本节课的重点内容进行总结,并鼓励学生反思学习过程中的收获和不足之处。
六、作业布置(5分钟)
布置相关的碰撞题目,要求学生认真完成,并在下节课上检查。
教学资源:
1. 碰撞理论教材资料
2. 碰撞问题案例
3. 解题方法和技巧的指导
教学评估:
1. 学生参与度和课堂表现
2. 学生课后作业完成情况
3. 学生对碰撞理论的理解程度和应用能力
教学反思:
通过不断调整教学方法和内容,提高学生的学习兴趣和学习效果,促进他们在物理学习中取得更好的成绩。
高中物理碰撞教案1. 了解碰撞的概念和分类;2. 掌握碰撞的动量守恒定律和能量守恒定律;3. 能够应用碰撞定律解决实际问题。
教学重点和难点:重点:碰撞的概念和分类,碰撞的动量守恒定律和能量守恒定律;难点:在实际问题中应用碰撞定律解决问题。
教学过程:一、导入新知识(5分钟)教师展示一个碰撞的视频,引导学生思考碰撞是什么,碰撞有哪些种类。
二、讲解碰撞的概念和分类(10分钟)1. 碰撞是指两个或两个以上的物体在一定的时间内发生的相互作用。
2. 根据碰撞前后物体之间的作用力,可以将碰撞分为完全弹性碰撞、完全非弹性碰撞和部分弹性碰撞。
三、讲解碰撞的动量守恒定律(15分钟)1. 动量守恒定律:在没有外力作用的条件下,系统总动量守恒,即碰撞前后系统的总动量保持不变。
2. 利用动量守恒定律可以解决一些碰撞问题。
四、讲解碰撞的能量守恒定律(15分钟)1. 能量守恒定律:在没有外力做功的条件下,系统的总机械能守恒,即碰撞前后系统的总机械能保持不变。
2. 利用能量守恒定律可以解决一些碰撞问题。
五、解决实例问题(15分钟)教师出示几个碰撞问题,让学生尝试应用碰撞定律解决。
六、总结归纳(5分钟)1. 确认学生是否掌握了碰撞的概念和分类;2. 让学生总结碰撞的动量守恒定律和能量守恒定律的应用方法。
作业布置:1. 完成课堂练习题;2. 阅读教材相关章节,做好笔记。
教学反思:本节课教学目标达成良好,学生对碰撞的概念和分类有了基本的了解,对碰撞定律的应用也有一定的掌握。
在以后的教学中,可以通过更多的实例让学生加深对碰撞定律的理解,进一步提高学生的应用能力。
[影响影响化学反应速率化学反应速率的因素教案的因素教案] ]苏教版选修《化学反应原理》苏教版选修《化学反应原理》 专题二专题二 第一单元第一单元 影响化学反应速率的因素影响化学反应速率的因素无锡市第一中学无锡市第一中学 尤艳丹尤艳丹【教学目标】【教学目标】[知识与技能知识与技能] ]1.理解浓度、压强、温度、催化剂等对化学反应速率的影响因素,影响化学反应速率的因素教案。
教案。
2.能用有效碰撞理论、过渡态理论等相关理论简单解释浓度、压强、温度、催化剂等对化学反应速率的影响。
反应速率的影响。
[过程与方法过程与方法] ]通过实验探究、观察思考、讨论归纳等学习活动体验科学探究、主动获取知识的过程。
通过实验探究、观察思考、讨论归纳等学习活动体验科学探究、主动获取知识的过程。
[情感态度与价值观情感态度与价值观] ]将化学知识应用于生产生活实际,关注与化学有关的热点问题,树立辩证唯物主义的世界观。
树立辩证唯物主义的世界观。
【教学重点、难点】【教学重点、难点】理解浓度、压强、温度、催化剂等因素对化学反应速率的影响。
理解浓度、压强、温度、催化剂等因素对化学反应速率的影响。
【教学方法与手段】【教学方法与手段】问题讨论、分组实验探究、自主学习问题讨论、分组实验探究、自主学习【教学用品】【教学用品】多媒体设备及相关实验器材多媒体设备及相关实验器材【教学过程】【教学过程】【引入】观看爆炸的视频,煤、石油形成的图片。
【引入】观看爆炸的视频,煤、石油形成的图片。
【提问】你认为决定化学反应快慢的根本原因是什么呢?【提问】你认为决定化学反应快慢的根本原因是什么呢?【学生回答】【学生回答】【板书】一、影响化学反应速率的因素【板书】一、影响化学反应速率的因素内因:反应物的性质内因:反应物的性质【提问】反应物的性质是很难改变的,所以在生产生活中,人们常常会通过改变外界条件来控制反应速率。
请大家结合实际,举例说说有哪些外界条件会影响反应速率。
碰撞基础知识 基本技能1.碰撞的特点(1)碰撞的概念碰撞是指相对运动的物体相遇时,在极短时间内它们的运动状态发生了显著变化的过程。
(2)碰撞过程中的特点。
①时间特点:在碰撞现象中,相互作用时间很短。
②相互作用力特点:在相互作用过程中,相互作用力先是急剧增大,然后再急剧减小,平均作用力很大。
③动量守恒条件特点:系统的内力远远大于外力,所以,系统即使所受外力之和不为零,外力也可以忽略,系统的总动量守恒。
④位移特点:碰撞过程是在一瞬间发生的,时间极短,所以,在物体发生碰撞的瞬间,可忽略物体的位移。
可以认为物体在碰撞前后仍在同一位置。
⑤能量特点:碰撞过程中,一般伴随着机械能的损失,碰撞后系统的总动能要小于或等于碰撞前系统的总动能,即E k1′+E k2′≤E k1+E k2。
⑥速度特点:一般情况下,碰撞的两物体彼此不穿透对方,碰撞结束时,速度大的物体在前,速度小的物体在后,或二者速度相同,再或者两物体速度方向相反。
不存在后面物体速度大于前面物体速度的情况,这样意味着碰撞还未结束,仍在相互作用的过程中。
【例1】 在光滑水平面上有三个完全相同的小球,它们成一条直线,2、3小球静止,并靠在一起,1球以速度v 0射向它们,如图所示。
设碰撞中不损失机械能,则碰后三个小球的速度可能是( )A .v 1=v 2=v 3=13v 0B .v 1=0,v 2=v 3=12v 0C .v 1=0,v 2=v 3=12v 0D .v 1=v 2=0,v 3=v 0解析:由题设条件,三个小球在碰撞过程中总动量和总动能守恒。
若各球质量均为m ,则碰撞前系统总动量为mv 0,总动能应为12mv 20。
假如选项A 正确,则碰后总动量为33mv 0,这显然违反了动量守恒定律,故不可能。
假如选项B 正确,则碰后总动量为22mv 0,这也违反了动量守恒定律,故也不可能。
假如选项C 正确,则碰后总动量为mv 0,但总动能为14mv 20,这显然违反了动能守恒,故也不可能。
16.4 碰撞★教学要求通过体会碰撞中动量守恒、机械能守恒与否,体会动量守恒定律、机械能守恒定律的应用。
★教学过程(一)引入新课碰撞过程是物体之间相互作用时间非常短暂的一种特殊过程,因而碰撞具有如下特点:1.碰撞过程中动量守恒.提问:守恒的原因是什么?(因相互作用时间短暂,因此一般满足F内>>F外的条件)2.碰撞过程中,物体没有宏观的位移,但每个物体的速度可在短暂的时间内发生改变.3.碰撞过程中,系统的总动能只能不变或减少,不可能增加.提问:碰撞中,总动能减少最多的情况是什么?(在发生完全非弹性碰撞时总动能减少最多)熟练掌握碰撞的特点,并解决实际的物理问题,是学习动量守恒定律的基本要求.(二)进行新课一、弹性碰撞和非弹性碰撞1.弹性碰撞在弹性力作用下,碰撞过程只产生机械能的转移,系统内无机械能的损失的碰撞,称为弹性碰撞。
【例1】质量m1=10g的小球在光得的水平面上以v1=30cm/s的速度向右运动,恰遇上质量m2=50 g的小球以v2=10cm/s的速度向左运动。
碰撞后,小球m2恰好静止。
那么碰撞后小球m1的速度多大?方向如何?2.非弹性碰撞(1)非弹性碰撞:受非弹性力作用,使部分机械能转化为内能的碰撞称为非弹性碰撞。
(2)完全非弹性碰撞:是非弹性磁撞的特例,这种碰撞的特点是碰后粘在—起(或碰后具有共同的速度),其动能损失最大。
(试试如何推导?)【例2】如图所示,P物体与一个连着弹簧的Q物体正碰,碰撞后P物体静止,Q物体以P物体碰撞前速度v离开,已知P与Q质量相等,弹簧质量忽略不计,那么当弹簧被压缩至最短时,下列的结论中正确的应是( )A.P的速度恰好为零B.P与Q具有相同速度C.Q刚开始运动D.Q的速度等于v【例3】.如图所示,质量为M的重锤自h高度由静止开始下落,砸到质量为m的木楔上没有弹起,二者一起向下运动.设地层给它们的平均阻力为F,则木楔可进入的深度L是多少?【例4】在光滑水平面上,有A、B两个小球向右沿同一直线运动,取向右为正,两球的动量分别是p A=5kgm/s,p B=7kgm/s,如图所示.若能发生正碰,则碰后两球的动量、△p B可能是()增量△pA.△p A=-3kgm/s;△p B =3kgm/sB.△p A=3kgm/s;△p B =3kgm/sC.△p A=-10kgm/s;△p B =10kgm/sD.△p A=3kgm/s;△p B =-3kgm/s二、对心碰撞和非对心碰撞1.对心碰撞两球碰撞时,碰撞之前球的运动速度与两球心的连线在同—条直线上,碰撞之后两球的速度仍沿着这条直线,这种碰撞称为对心碰撞,也叫正碰。
16.4 碰撞(学案)学习目标1.了解碰撞运动,了解弹性碰撞、非弹性碰撞和完全非弹性碰撞。
会应用动量、能量的观点综合分析、解决一维碰撞问题。
2.了解对心碰撞与非对心碰撞。
3.了解散射和中子的发现过程,体会理论对实践的指导作用,进一步了解动量守恒定律的普适性。
4.加深对动量守恒定律和机械能守恒的理解,并能简单运用这两个定律解决问题。
学习过程一、观看视频,寻找碰撞运动的特点【观看视频】1.视频中,你看到了什么?2.带着问题,从物理学的角度再次观看视频,你发现了什么?【思考问题】【理论分析】1.碰撞过程所需的时间特点? 1.碰撞的相互作用时间2.碰撞过程内力与外力的大小特点? 2.碰撞过程,远远大于3.碰撞过程中,物体的位移特点? 3.碰撞过程是瞬时的,可忽略4.碰撞过程中,物体有没有发生形变? 4.碰撞过程中,物体形变二、探究碰撞过程中的能量变化【思考问题】系统内力远远大于外力,符合什么定律的条件?定律:表达式方程:【问题探究】1.系统的重力势能是否变化?2.系统的弹性势能是否变化?3.系统的机械能是否变化?【理论分析】1.系统的重力势能变化分析:碰撞过程时间极短,可忽略,所以重力势能。
2.系统的弹性势能变化分析:判断弹性势能的变化,需要分析碰撞过程中的物体形变情况。
A.弹性形变,碰撞前后,两物体,碰撞前后E弹=0B.非弹性形变,碰撞前后:两物体,碰撞前后E弹=0C.完全非弹性形变,碰撞前后,没有弹力作用,两物体不分开,以共同速度合在一起运动,碰撞前后,E弹=03.系统的机械能变化分析:根据形变与弹性势能的情况,对机械能的损失进行分类讨论。
1.弹性形变:机械能,动能→弹性势能→动能2.非弹性形变:碰撞前后,物体的一部分形变没有恢复,系统机械能。
减少的机械能转化为其他形式的能量。
3.完全非弹性形变: 碰撞前后,形变 ,系统机械能损失 。
三、碰撞的分类及其表达式方程【思考问题】1.抓住机械能的变化,对碰撞进行分类。
一、有效碰撞理论1918年,英国化学家路易斯在研究分子运动论时,就提出了碰撞理论。
当时认为反应物分子间的相互碰撞是反应进行的先决条件。
反应物分子碰撞的频率越高,反应速率越大。
在实际的化学反应里,每秒发生的碰撞次数巨大,但是真正能发生反应的碰撞有限,以碘化氢分解为例,实际速率与理论碰撞速率相差1012倍,因此只有极少数碰撞是有效的。
为什么会发生这样的现象,碰撞理论认为,碰撞中能发生反应的一组分子(下面简称分子组)首先必具备足够的能量,以克服分子无限接近时电子云之间的斥力,从而导致分子中的原子重排,即发生化学反应。
我们把具有足够能量的分子组称为活化分子组。
活化分子组在全部分子中所占有的比例以及活化分子组所完成的碰撞次数占碰撞总数的比例,都是符合特定的分布规律(马克斯尔-波耳兹曼分布)。
当然,能量是有效碰撞的一个必要条件,但不充分。
在拥有能量后,还要当活化分子组中的各个分子采取合适的取向进行碰撞时,反应才能发生。
如NO2 + CO——→NO + CO2只有当CO分子中的碳原子与NO2中的氧原子相碰撞时,才能发生重排反应;而碳原子与氮原子相碰撞的这种取向则不会发生氧原子的转移(图截选自无机化学第三版)。
此时可以反应速率可以表示为可以看出,能量Ea越高,反应速率越小。
因为Ea越高即对分子组的能量要求越高,故活化分子组所占的比例越少,有效撞次数所占的比例也就越小,故反应速率越小。
而这个能量Ea,就是活化能。
最初的时候,阿伦尼乌斯定义:有效碰撞反应物的最低能量与反应物分子的平均能量之差就是活化能。
活化能属于一种能量限制,对于不同的反应,活化能是不同的,每摩尔几十到几百千焦之间都有,它的大小对各类反应的速率有着重要影响。
截止到次,如果用无机化学中的大学知识来阐释,反应速率与碰撞频率Z,能量因子(分子有效碰撞分数)f,以及方位因子p有关。
(1)碰撞频率Z反应物分子之间在单位时间内单位体积中所发生的碰撞的总次数是N A(阿佛加德罗常数)的倍数,Z =分子间碰撞的总次数/N A (次数/摩尔)。
教科版高中物理碰撞教案
教学内容:碰撞
教学目标:了解碰撞的基本概念,并能够应用相关知识解决问题。
教学重点:碰撞的类型和性质。
教学难点:碰撞中动量守恒和动能守恒的应用。
教学准备:教科书、教学PPT、实验器材。
教学过程:
一、导入(5分钟)
1.引入碰撞的概念,让学生回顾碰撞在生活中的应用和意义。
2.通过一些图片和视频展示碰撞现象,引起学生的兴趣。
二、理论学习(15分钟)
1.介绍碰撞的基本概念和分类。
2.讲解碰撞中的动量守恒和动能守恒原理。
3.示范一些碰撞实验,让学生理解碰撞现象的规律。
三、巩固练习(20分钟)
1.给学生布置一些碰撞相关的练习题,让他们运用所学知识解决问题。
2.引导学生分组进行碰撞实验,并观察记录实验结果。
四、拓展应用(10分钟)
1.让学生通过实际案例,了解碰撞在工程领域的应用。
2.鼓励学生提出自己的问题和想法,讨论碰撞的更深层次的意义。
五、总结反思(5分钟)
1.对碰撞的知识点进行总结回顾。
2.鼓励学生提出对本课程的反馈和建议。
六、作业布置(5分钟)
1.留作业:完成课堂练习题和实验报告。
2.布置下节课主题。
教学延伸:可以通过让学生设计和进行更复杂的碰撞实验,来进一步深化对碰撞原理的理解。
教学评价:观察学生的课堂表现和作业情况,检查学生对碰撞概念的掌握情况。
高中物理人教版碰撞教案
教学内容:碰撞的基本概念与运动规律
教学目标:
1. 了解碰撞的基本定义和种类
2. 掌握碰撞的动量守恒定律和动能守恒定律
3. 能够应用碰撞的相关知识解决问题
教学重点:碰撞的动量守恒定律和动能守恒定律
教学难点:应用碰撞定律解决实际问题
教学过程:
一、导入(5分钟)
通过提问“你知道碰撞是什么吗?”,引导学生思考碰撞的概念,并带入本课的主题。
二、讲解碰撞的基本理论(10分钟)
1. 讲解碰撞的定义及种类:完全弹性碰撞和非完全弹性碰撞
2. 引导学生理解碰撞前后动量守恒和动能守恒的概念
三、实验(15分钟)
1. 设计一个简单的实验,让学生观察完全弹性碰撞和非完全弹性碰撞的现象,帮助他们理解碰撞
2. 引导学生观察实验结果,讨论碰撞前后动量和动能的变化情况
四、讲解碰撞定律(10分钟)
1. 介绍碰撞的动量守恒定律和动能守恒定律的表达式
2. 通过简单的例题演示如何应用碰撞定律解决问题
五、练习(15分钟)
1. 布置几道练习题,让学生独立思考并解答
2. 带领学生一起讨论解题思路,并指导他们正确运用碰撞定律
六、作业布置(5分钟)
布置相关的作业,巩固学生对碰撞定律的理解和应用。
七、课堂总结(5分钟)
对本节课的重点内容进行总结,强调碰撞的重要性和应用。
鼓励学生在实际生活中多加观察,在实践中应用所学知识。
教学反思:
通过本节课的教学,学生对碰撞的基本概念和运动规律有了更深入的理解,提高了他们的动手能力和解决问题的能力。
同时,教师要不断引导学生思考和探索,培养他们的实践能力和创新思维。
第2课时影响化学反应速率的因素学习目标通过实验探究,掌握温度、浓度、压强和催化剂对化学反应速率的影响。
学习任务1 浓度、压强对化学反应速率的影响1.化学反应速率理论(1)碰撞理论:基元反应碰撞理论认为,化学反应之所以能发生,是反应物分子之间互相碰撞的结果,但只有能量超过某一限度E c(相当于活化能)并满足一定方向要求的活化分子之间的碰撞,才是真正发生反应的有效碰撞。
(2)过渡态理论:基元反应过渡态理论认为,基元反应在从反应物到产物的变化过程中要经历一个中间状态,这个状态称为过渡态。
AB+C[A…B…C]A+BC反应物过渡态反应产物过渡态是反应过程中具有高能量的一种结构状态,过渡态能量与反应物的平均能量之差E a称为基元反应的活化能。
微点拨:过渡态就是一种旧键快要断裂但还没有彻底断裂,新键将要形成但还没有彻底形成的特殊状态。
活化能在反应历程图中也叫“能垒”。
2.浓度对化学反应速率的影响(1)影响规律:其他条件不变时,增大反应物的浓度,反应速率增大;减小反应物的浓度,反应速率减小。
(2)碰撞理论解释:反应物浓度增大→单位体积内活化分子数增多→单位时间内有效碰撞几率增加→反应速率加快;反之,反应速率减慢。
3.压强对化学反应速率的影响(1)影响规律:对于有气体参加的化学反应,在相同温度下,增大压强(减小容器容积),反应速率增大;减小压强(增大容器容积),反应速率减小。
(2)碰撞理论解释:增大压强→气体体积缩小→反应物浓度增大→单位体积内活化分子数增多→单位时间内有效碰撞几率增加→反应速率加快;反之,反应速率减慢。
即压强对化学反应速率的影响,可转化成浓度对化学反应速率的影响。
微点拨:浓度、压强改变均不能改变分子的能量,所以不会影响活化分子百分比,但是可以影响“单位体积”内活化分子数目,因此可以影响“有效碰撞”几率进而影响化学反应速率。
双氧水应用非常广泛。
纺织、造纸工业可以用作纤维的漂白剂;有机工业可以作氧化剂;环境保护可处理各种有害废水。
新课程高中物理碰撞教案课程目标:了解碰撞的基本概念和原理,学习碰撞中的能量转化和动量守恒定律,掌握碰撞实验的方法和计算碰撞参数。
教学内容:一、碰撞的概念和分类1. 碰撞的定义和基本特征2. 弹性碰撞和非弹性碰撞的区别3. 完全弹性碰撞和完全非弹性碰撞的概念二、碰撞中的能量转化1. 能量守恒定律在碰撞中的应用2. 碰撞中能量的转化和损失三、碰撞中的动量守恒1. 动量守恒定律的概念和应用2. 碰撞中动量守恒的条件和实验验证四、碰撞实验方法和数据处理1. 碰撞实验的基本步骤和仪器2. 碰撞参数的测量和计算方法3. 实验数据的处理和分析教学过程:一、引入1. 给学生介绍碰撞的定义和基本特征,引导学生思考碰撞在日常生活中的例子。
2. 引导学生讨论弹性碰撞和非弹性碰撞的区别,引出碰撞中的能量转化和动量守恒原理。
二、理论探讨1. 讲解碰撞中的能量转化和动量守恒原理,引导学生理解碰撞中能量和动量的转化过程。
2. 讲解碰撞实验的方法和数据处理,指导学生掌握碰撞参数的测量和计算技巧。
三、实验操作1. 组织学生进行碰撞实验,让学生亲自操作测量仪器,记录实验数据。
2. 引导学生根据实验数据计算碰撞参数,分析碰撞结果并验证动量守恒定律。
四、讨论总结1. 引导学生讨论实验结果和结论,总结碰撞中的能量转化和动量守恒规律。
2. 综合学习内容,让学生思考碰撞在实际应用中的重要性和意义。
教学评估:1. 实验报告:要求学生完成实验报告,包括实验过程、数据处理和结论分析。
2. 课堂讨论:组织学生进行碰撞实验结果的讨论,评价学生对碰撞概念和原理的理解。
3. 练习测试:布置相关练习和测试题,检测学生对碰撞知识的掌握程度。
课后拓展:1. 组织学生进行碰撞模拟实验,探讨不同碰撞情况下的能量和动量变化。
2. 鼓励学生进行碰撞项目设计,结合实际情况提出碰撞相关问题并进行解决方案设计。
3. 深入学习碰撞在工程领域的应用,了解碰撞对工程设计和安全规范的重要性。
高中物理三体碰撞问题教案一、教学目标:1. 了解三体碰撞问题的基本概念。
2. 掌握解决三体碰撞问题的方法。
3. 能够利用物理知识分析和解决实际问题。
二、教学重点:1. 三体碰撞问题的基本概念。
2. 解决三体碰撞问题的方法。
三、教学难点:1. 如何正确应用碰撞原理解决三体碰撞问题。
四、教学内容:1. 三体碰撞问题的定义和基本概念。
2. 解决三体碰撞问题的方法和步骤。
3. 实际应用中的三体碰撞问题。
五、教学过程:1. 导入:通过一个简单的实例引入三体碰撞问题,让学生了解碰撞的基本概念。
2. 授课:讲解三体碰撞问题的定义、条件和解决方法,引导学生理解碰撞的过程和规律。
3. 练习:让学生进行一些简单的计算和分析练习,巩固所学知识。
4. 拓展:引导学生思考实际生活中的三体碰撞问题,让他们运用所学知识解决实际问题。
5. 总结:对本节课的重点内容进行总结,强调三体碰撞问题的重要性和应用。
六、教学反馈:1. 对学生进行小组讨论,让他们互相交流归纳所学内容。
2. 师生互动,及时纠正学生的错误认识和解决问题方法。
3. 帮助学生解决在学习过程中遇到的困难和疑惑。
七、教学评价:1. 学生参与度:通过课堂讨论和练习评价学生对于三体碰撞问题的理解和掌握程度。
2. 学习效果:观察学生在课后作业和实际应用中解决问题的能力和水平。
3. 教学方法:评估教师在教学过程中的引导和指导效果。
八、教学反思:1. 思考本节课的教学效果和学生的学习情况。
2. 总结教学中存在的不足和改进之处,提高教学质量和效果。
一、有效碰撞理论1.有效碰撞:2.活化分子:3.活化能:4.催化剂:5化学反应必备两个条件:第一,分子有较高.._________(即_____________);第二,碰撞要有合适的___________。
6、用碰撞理论解释浓度、压强、温度、催化剂对化学反应速率的影响。
①、浓度:在其他条件不变时,增大反应物浓度,增多,因而单位时间内的增多,化学反应速率。
②、压强:对于气体来说,其他条件不变时,增大压强即增大,因而可以增大③、温度:在其他条件不变时,升高温度,一方面增加,使一部分原来能量较低的分子变成,反应物中活化分子百分数,单位时间内增多;另一方面加快,单位时间里反应物分子间的碰撞次数,反应速率。
但前者是反应加快的主要原因。
④、催化剂:在其他条件不变时,使用催化剂,能活化能,大大增加,反应速率。
7.请绘制反应过程中活化能与反应热的关系的二维图象8、判断正误:打“√”or“×”A.当碰撞的分子具有足够的能量和适当的取向时,才能发生化学反应( )B.分子间的碰撞是发生化学反应的必要条件( )C.有效碰撞是发生化学反应的充分条件( )D.发生有效碰撞的分子一定是活化分子( )E.活化分子的碰撞一定是有效碰撞( )F.活化分子间每次碰撞都发生化学反应( )G.有效碰撞次数的多少与单位体积内反应物中活化分子的多少有关( )H.活化能的大小决定这个化学反应前后的能量变化大小( )I.使用催化剂能改变分子的活化能( )J.催化剂能使不起反应的物质间发生反应( )K.实验室制氢气时,若向稀硫酸中加几滴硫酸铜溶液,则产生氢气的速率加快,该反应中硫酸铜是催化剂( )L.单独加热氯酸钾,产生氧气的速率小,而将少量高锰酸钾和氯酸钾混合共热制氧气,产生氧气的速率明显加快,该实验中高锰酸钾是催化剂( )。
一、有效碰撞理论
1.有效碰撞:
2.活化分子:
3.活化能:
4.催化剂:
5化学反应必备两个条件:
第一,分子有较高
.._________(即_____________);
第二,碰撞要有合适的___________。
6、用碰撞理论解释浓度、压强、温度、催化剂对化学反应速率的影响。
①、浓度:在其他条件不变时,增大反应物浓度,增多,因而单位时间内的增多,化学反应速率。
②、压强:对于气体来说,其他条件不变时,增大压强即增大,因而可以增
大
③、温度:在其他条件不变时,升高温度,一方面增加,使一部分原来能量较低的分子变成,反应物中活化分子百分数,单位时间内增多;另一方面加快,单位时间里反应物分子间的碰撞次数,反应速率。
但前者是反应加快的主要原因。
④、催化剂:在其他条件不变时,使用催化剂,能活化能,大大增加,反应速率。
7.请绘制反应过程中活化能与反应热的关系的二维图象
8、判断正误:打“√”or“×”
A.当碰撞的分子具有足够的能量和适当的取向时,才能发生化学反应( )
B.分子间的碰撞是发生化学反应的必要条件( )
C.有效碰撞是发生化学反应的充分条件( )
D.发生有效碰撞的分子一定是活化分子( )
E.活化分子的碰撞一定是有效碰撞( )
F.活化分子间每次碰撞都发生化学反应( )
G.有效碰撞次数的多少与单位体积内反应物中活化分子的多少有关( )
H.活化能的大小决定这个化学反应前后的能量变化大小( )
I.使用催化剂能改变分子的活化能( )
J.催化剂能使不起反应的物质间发生反应( )
K.实验室制氢气时,若向稀硫酸中加几滴硫酸铜溶液,则产生氢气的速率加快,该反应中硫酸铜是催化剂
( )
L.单独加热氯酸钾,产生氧气的速率小,而将少量高锰酸钾和氯酸钾混合共热制氧气,产生氧气的速率明显加快,该实验中高锰酸钾是催化剂
( )。