(完整版)江苏省普通高校“专转本”统一考试《高等数学》试卷.doc
- 格式:doc
- 大小:189.02 KB
- 文档页数:2
江苏专转本高等数学真题(附答案)2009年江苏省普通高校“专转本”统一考试高等数学一、单项选择题(本大题共6小题,每小题4分,满分24分)1、已知32lim 22=-++→x b ax x x ,则常数b a ,的取值分别为()A 、2,1-=-=b aB 、0,2=-=b aC 、0,1=-=b aD 、1,2-=-=b a 2、已知函数423)(22-+-=x x x x f ,则2=x 为)(x f 的 A 、跳跃间断点B 、可去间断点C 、无穷间断点D 、震荡间断点 3、设函数??>≤=0,1sin 0,0)(x x x x x f α在点0=x 处可导,则常数α的取值范围为()A 、10<<αB 、10≤<αC 、1>αD 、1≥α 4、曲线2)1(12-+=x x y 的渐近线的条数为()A 、1B 、2C 、3D 、45、设)13ln()(+=x x F 是函数)(x f 的一个原函数,则=+?dx x f )12(' ()A 、C x ++461 B 、C x ++463 C 、C x ++8121 D 、C x ++8123 6、设α为非零常数,则数项级数∑∞=+12n n n α()A 、条件收敛B 、绝对收敛C 、发散D 、敛散性与α有关二、填空题(本大题共6小题,每小题4分,满分24分)7、已知2)(lim =-∞→x x Cx x ,则常数=C . 8、设函数dt te x x t ?=20)(?,则)('x ?= . 9、已知向量)1,0,1(-=→a ,)1,2,1(-=→b ,则→→+b a 与→a 的夹角为 .10、设函数),(y x z z =由方程12=+yz xz 所确定,则x z ??= . 11、若幂函数)0(12>∑∞=a x na n n n 的收敛半径为21,则常数=a . 12、微分方程0)2()1(2=--+xdy y ydx x 的通解为 . 三、计算题(本大题共8小题,每小题8分,满分64分)13、求极限:xx x x sin lim 30-→ 14、设函数)(x y y =由参数方程-+=+=32)1ln(2t t y t x 所确定,,求22,dx y d dx dy . 15、求不定积分:?+dx x 12sin . 16、求定积分:?-10222dx x x .17、求通过直线12213-=-=z y x 且垂直于平面02=+++z y x 的平面方程. 18、计算二重积分??Dyd σ,其中}2,2,20),{(22≥+≤≤≤≤=y x y x x y x D . 19、设函数),(sin xy x f z =,其中)(x f 具有二阶连续偏导数,求yx z 2. 20、求微分方程x y y =-''的通解.。
江苏省专转本⾼数真题及答案⾼等数学试题卷(⼆年级)注意事项:出卷⼈:江苏建筑⼤学-张源教授1、考⽣务必将密封线内的各项⽬及第 2页右下⾓的座位号填写清楚. 3、本试卷共8页,五⼤题24⼩题,满分150分,考试时间120分钟. ⼀、选择题(本⼤题共6⼩题,每⼩题4分,满分24分) 1、极限 lim(2xsin 1 Sin 3x )=()x xA. 0B.2C.3D.52、设f (x)⼆2)sinx ,则函数f (x )的第⼀类间断点的个数为()|x|(x -4)'A. 0B.1C.2D.3133、设 f(x) =2x 2 -5x 2,则函数 f(x)()A.只有⼀个最⼤值B.只有⼀个极⼩值C.既有极⼤值⼜有极⼩值D.没有极值34、设z =ln(2x)-在点(1,1)处的全微分为()y1 1A. dx - 3dyB. dx 3dyC. ⼀ dx 3dyD. - dx - 3dy2 21 15、⼆次积分pdy.y f (x, y )dx 在极坐标系下可化为()sec'— 'sec jA. —4d ⼨ o f (「cos 〒,「sin ⼨)d 「B. —4d 丁 ? f (「cos 〒,「sin ⼨)「d 「&下列级数中条件收敛的是()⼆、填空题(本⼤题共6⼩题,每⼩题4分,共24分)7要使函数f(x)=(1-2x )x 在点x=0处连续,则需补充定义f(0)= _________________ . 8、设函数 y = x (x 2 +2x +1)2 +e 2x ,贝⼙ y ⑺(0) = _______ .江苏省 2 0 12 年普通⾼校专转本选拔考试2、考⽣须⽤钢笔或圆珠笔将答案直接答在试卷上, 答在草稿纸上⽆效. sec ? iC. o f (「cosd 「sin Jd 「D.4sec ?2d 丁 ? f (「cos ⼨,「sin ⼨):?d "「TVXTnW ?、n9、设y =x x (x >0),则函数y 的微分dy =.(1)函数f (x)的表达式;11、设反常积分[_e 」dx=q ,则常数a= ______________ . 12、幕级数£上律(x -3)n 的收敛域为 __________________ :“⼆ n3 三、计算题(本⼤题共8⼩题,每⼩题8分,共64 分)2x +2cosx —2 lim ⼚x 0x ln(1 x)2116、计算定积分",-严.17、已知平⾯⼆通过M (1,2,3)与x 轴,求通过N(1,1,1)且与平⾯⼆平⾏,⼜与x 轴垂直的直线⽅程.18、设函数 “ f(x,xyr (x 2 y 2),其中函数f 具有⼆阶连续偏导数,函数具有⼆阶连-2续导数,求⼀Zc^cy19、已知函数f(x)的⼀个原函数为xe x ,求微分⽅程丫 4/ 4^ f (x)的通解. 20、计算⼆重积分..ydxdy ,其中D 是由曲线y 「x-1,D四、综合题(本⼤题共2⼩题,每⼩题10分,共20分)21、在抛物线y =x 2(x 0)上求⼀点P ,使该抛物线与其在点P 处的切线及x 轴所围成的平⾯图形的⾯积为2,并求该平⾯图形绕x 轴旋转⼀周所形成的旋转体的体积.3x322、已知定义在(⽫,畑)上的可导函数f(x)满⾜⽅程xf(x)-4( f(t)dt=x 3-3,试求:10、设向量a,b 互相垂直,且= 3,^=2,,贝 U ^+2b13、求极限 14、设函数 y = y(x)由参数⽅程 xdty = t 2 2lnt所确定, 求鱼dx dx 2 °15、求不定积分 2x 1 J 2~cos x1直线T 及x 轴所围成的平⾯(2)函数f(x)的单调区间与极值;(3)曲线y= f(x)的凹凸区间与拐点.五、证明题(本⼤题共2⼩题,每⼩题9分,共18分)123、证明:当0 : x :: 1 时,arcsinx x x3.6⼗x0 g(t)dt g(x)24、设f(x)⼀2—XHO,其中函数g(x)在(⽫,母)上连续,且lim g(x⼃=3证x T1—COSX卫(0) x = 01明:函数f (x)在X = 0处可导,且f (0)⼔.⼀. 选择题1-5BCCABD⼆. 填空题7-12e°128x n(1 ln x)dx5ln 2 (0,6]13求极限x m0 2x 2 cos x - 216、计算定积分 ----------- dx .1x ? 2x T13 t -^dt ⼆21 1 :; t2 1 t2dt =2arctant 1 t2原式=x叫x2 2 cos x -2 2x—2si nx=limx_0x—sin x3= lim4x3 x刃2x314、设函数y = y(x)由参数⽅程所确定,求2』=t +21 nt dydxd2ydx2原式号dx dydtdx2t -t12td2y_d燈)dtdx2t2 dt t2dx2dxdtt2115、求不定积分2x 12dx. cos x2x 1原式=i'2■ dx ' cosx ⼆(2x 1)d tanx ⼆(2x 1) tanx - tanxd(2x 1) 原式=令.2x -1 “,则原式=.?? 32(1)函数f (x)的表达式;17、已知平⾯⼆通过M (1,2,3)与x 轴,求通过N(1,1,1)且与平⾯⼆平⾏,⼜与x 轴垂直的直线⽅程.解:平⾯⼆的法向量n -OM 「=(0,3,⼀2),直线⽅向向量为S = n "「= (0,-2,-3),直线⽅程:x -1 y -1 z -10 ⼀ -2 ⼀ -3 18、设函数z ⼆f(x,xy^ (x 2 y 2),其中函数f 具有⼆阶连续偏导数,函数具有⼆阶连Z =f i f 2 y 2x ' zf i2 x f 2 xyf 22 2x 2y : .x :x.y19、已知函数f (x)的⼀个原函数为xe x ,求微分⽅程y” ? 4y ' 4y = f (x)的通解. 解:f (x) = (xe x ^ = (x 1)e x ,先求 y ” ? 4y ' 4y =0 的通解,特征⽅程:r 2 ? 4r *4 = 0,h 、2 = -2,齐次⽅程的通解为Y =(G C 2X )e'x .令特解为y =(Ax B)e x ,代⼊原⽅程9Ax 6A 9^x 1,有待定系数法得:__ 120、计算⼆重积分i iydxdy ,其中D 是由曲线y = :x-1,直线y= —x 及x 轴所围成的平⾯D 2闭区域.原式=ydy 丫 dx 1.j 0'2y12四. 综合题21、在抛物线y =x 2(x 0)上求⼀点P ,使该抛物线与其在点P 处的切线及x 轴所围成的平⾯图形的⾯积为2,并求该平⾯图形绕x 轴旋转⼀周所形成的旋转体的体积. 3 解:设 P 点(x 0,x ° )(x 0 0),则 k 切=2x °,切线:,y - x ° = 2x 0(x- x °)续导数,求;2z解:9A=1QA+9B =1解得* A 」9 -1,所以通解为丫"6)⼧(討?2x/即,y +x ° =2x °x ,由题意((y x^ 2x 0s y)dy =⼻,得 X0 = 2,P(2,4)(2)函数f(x)的单调区间与极值;(3)曲线—f(x)的凹凸区间与拐点.x解:(1)已知 xf(x)-4 4 f (t)dt =X 3 -3两边同时对 x 求导得:f (X )? x 「(x)-4f(x) =3x 2 3即.y" — -y=3x 则 y = —3x 2+cx 3 由题意得:f(1)=—2, c=1,贝U f(x)=—3x 2 + x 3 ■ x ' (2) f (x) =3x 2 -6x = 0,论=0,x 2 = 2 列表讨论得在(-⼆,0) (2,::)单调递增,在(0,2)单调递减。
2011--2010江苏省普通高校“专转本”统一考试高等数学试题及答案成败在于努力从2001年到2010年的转本试卷及答案杨威2001年江苏省普通高校“专转本”统一考试高等数学一、选择题(本大题共5小题,每小题3分,共15分)1、下列各极限正确的是 ( )A 、e xx x =+→)11(lim 0B 、e xx x =+∞→1)11(limC 、11sinlim =∞→x x x D 、11sin lim 0=→xx x2、不定积分=-⎰dx x211 ( )A 、211x-B 、c x+-211C 、x arcsinD 、c x +arcsin3、若)()(x f x f -=,且在[)+∞,0内0)('>x f 、0)(''>x f ,则在)0,(-∞内必有 ( )A 、0)('<x f ,0)(''<x f B 、0)('<x f ,0)(''>x f C 、0)('>x f ,0)(''<x f D 、0)('>x f ,0)(''>x f4、=-⎰dx x 21 ( )A 、0B 、2C 、-1D 、15、方程x y x 422=+在空间直角坐标系中表示 ( ) A 、圆柱面B 、点C 、圆D 、旋转抛物面二、填空题(本大题共5小题,每小题3分,共15分)6、设⎩⎨⎧+==22tt y te x t ,则==0t dx dy7、0136'''=+-y y y 的通解为 8、交换积分次序=⎰⎰dy y x f dx x x220),(9、函数yx z =的全微分=dz10、设)(x f 为连续函数,则=+-+⎰-dx x x x f x f 311])()([三、计算题(本大题共10小题,每小题4分,共40分) 11、已知5cos)21ln(arctan π+++=x x y ,求dy .12、计算xx dte x xt x sin lim202⎰-→.13、求)1(sin )1()(2--=x x xx x f 的间断点,并说明其类型.14、已知x y x y ln 2+=,求1,1==y x dxdy.15、计算dx ee xx⎰+12. 16、已知⎰∞-=+02211dx x k ,求k 的值. 17、求x x y y sec tan '=-满足00==x y 的特解.18、计算⎰⎰Ddxdy y2sin ,D 是1=x 、2=y 、1-=x y 围成的区域.19、已知)(x f y =过坐标原点,并且在原点处的切线平行于直线032=-+y x ,若b ax x f +=2'3)(,且)(x f 在1=x 处取得极值,试确定a 、b 的值,并求出)(x f y =的表达式.20、设),(2y x x f z =,其中f 具有二阶连续偏导数,求x z∂∂、yx z ∂∂∂2.四、综合题(本大题共4小题,第21小题10分,第22小题8分,第23、24小题各6分,共30分) 21、过)0,1(P 作抛物线2-=x y 的切线,求(1)切线方程; (2)由2-=x y ,切线及x 轴围成的平面图形面积;(3)该平面图形分别绕x 轴、y 轴旋转一周的体积。
2001年江苏省普通高校“专转本”统一考试 ___________________________________________ 1 2002年江苏省普通高校“专转本”统一考试 ___________________________________________ 6 2003年江苏省普通高校“专转本”统一考试 __________________________________________ 10 2004年江苏省普通高校“专转本”统一考试 __________________________________________ 14 2005年江苏省普通高校“专转本”统一考试 __________________________________________ 18 2006年江苏省普通高校“专转本”统一考试 __________________________________________ 21 2007年江苏省普通高校“专转本”统一考试 __________________________________________ 24 2008年江苏省普通高校“专转本”统一考试 __________________________________________ 28 2009年江苏省普通高校“专转本”统一考试 __________________________________________ 31 2010年江苏省普通高校“专转本”统一考试 __________________________________________ 342001年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 37 2002年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 38 2003年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 40 2004年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 41 2005年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 43 2006年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 45 2007年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 47 2008年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 49 2009年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 51 2010年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 532001年江苏省普通高校“专转本”统一考试高等数学一、选择题(本大题共5小题,每小题3分,共15分)1、下列各极限正确的是 ( )A 、e xxx =+→)11(lim 0B 、e xx x =+∞→1)11(limC 、11sinlim =∞→x x x D 、11sin lim 0=→xx x2、不定积分=-⎰dx x211 ( )A 、211x-B 、c x+-211 C 、x arcsin D 、c x +arcsin3、若)()(x f x f -=,且在[)+∞,0内0)('>x f 、0)(''>x f ,则在)0,(-∞内必有 ( ) A 、0)('<x f ,0)(''<x f B 、0)('<x f ,0)(''>x f C 、0)('>x f ,0)(''<x f D 、0)('>x f ,0)(''>x f4、=-⎰dx x 21 ( )A 、0B 、2C 、-1D 、15、方程x y x 422=+在空间直角坐标系中表示 ( ) A 、圆柱面B 、点C 、圆D 、旋转抛物面二、填空题(本大题共5小题,每小题3分,共15分)6、设⎩⎨⎧+==22tt y te x t ,则==0t dx dy7、0136'''=+-y y y 的通解为 8、交换积分次序=⎰⎰dy y x f dx xx22),(9、函数yx z =的全微分=dz10、设)(x f 为连续函数,则=+-+⎰-dx x x x f x f 311])()([三、计算题(本大题共10小题,每小题4分,共40分) 11、已知5cos)21ln(arctan π+++=x x y ,求dy .12、计算xx dte x xt x sin lim22⎰-→.13、求)1(sin )1()(2--=x x xx x f 的间断点,并说明其类型.14、已知x y x y ln 2+=,求1,1==y x dxdy.15、计算dx ee xx⎰+12.16、已知⎰∞-=+02211dx x k ,求k 的值.17、求x x y y sec tan '=-满足00==x y 的特解.18、计算⎰⎰Ddxdy y 2sin ,D 是1=x 、2=y 、1-=x y 围成的区域.19、已知)(x f y =过坐标原点,并且在原点处的切线平行于直线032=-+y x ,若b ax x f +=2'3)(,且)(x f 在1=x 处取得极值,试确定a 、b 的值,并求出)(x f y =的表达式.20、设),(2y x x f z =,其中f 具有二阶连续偏导数,求x z ∂∂、yx z∂∂∂2.四、综合题(本大题共4小题,第21小题10分,第22小题8分,第23、24小题各6分,共30分) 21、过)0,1(P 作抛物线2-=x y 的切线,求(1)切线方程; (2)由2-=x y ,切线及x 轴围成的平面图形面积;(3)该平面图形分别绕x 轴、y 轴旋转一周的体积。
江苏省2022年普通高校专转本选拔考试《高等数学》试题和答案一、选择题(本大题共8小题,每小题4分,共32分) 1.要使函数2()(1)x xf x x -=-在区间(11)-,内连续,则应补充定义(0)f =( A )A.2e -B.1e -C.eD.2e 2.2sin ()(1)xf x x x =-的第二类间断点的个数为( C )A.0B.1C.2D.33.设(1)1f '=,且0(1)(1)lim 1h f ah f ah h →--+=,则常数a 的值为( B )A.1-B.12-C.12 D.14.设()F x 为()f x 的一个原函数,且()f x 可导,则下列等式正确的是( D ) A.()()dF x f x C =+⎰ B.()()df x F x C =+⎰ C.()()F x dx f x C =+⎰ D.()()f x dx F x C =+⎰5.设二重积分=Dπ,其中222{(,|,0}D x y x y R x =+≤≥,则R 的值为( D )6.下列级数条件收敛的是( C )A.21sin n n n ∞=∑ B.211(1)sin n n n ∞=-∑C.1(1)nn ∞=-∑ D.211(1)sin n n n ∞=-∑7.若矩阵113A 12102a --⎛⎫⎪= ⎪⎪-⎝⎭的秩为2,则常数a 的值为( A ) A.4- B.2- C.2 D.48.设1100001111111234D --=--,ij M 是D 中元素ij a 的余子式,则41424344+++=M M M M ( B )A.2-B.0C.1D.2二、填空题(本大题共6小题,每小题4分,共24分)9.sin lim n n n→∞= 0 . 10.设函数20()arctan 0x x f x x x ⎧≠⎪=⎨⎪⎩,=0,则(0)f '= 1 .11.设函数()sin3f x x =,则2022(0)f =() 0 . 12.若+242=x ae dx e ∞-⎰,则常数a = -2 .13.若幂级数1nn n n x a ∞=∑的收敛半径为2,则幂级数1(1)n n n a x ∞=-∑的收敛区间为13()22, . 14.若向量组1234(1,0,2,0)(1,0,0,2)(0,1,1,1)(2,1,,2)k αααα====,,,线性相关,则k = 4 .三、计算题(本大题共8小题,每小题8分,共64分)15. 求极限sin 0sin 1lim sin x x e x x x→--解:sin 0sin 1lim sin x x e x x x →--sin 20sin 1=lim x x e x x →--sin 0cos cos =lim 2x x e x xx →- sin 0cos 1=lim 2x x x e x →-⋅0cos sin =lim 2x x x x →⋅1=216. 求极限1arctan x dx x⎰解:1arctan x dx x⎰21=arctan 2x d x ⎰2211=arctan arctan 22x x d x x ⋅-⎰2222111=arctan ()1221+x x dx x xx ⋅-⋅⋅-⎰22211=arctan +221+x x dx x x ⋅⋅⎰ 22111=arctan +(1)221x dx x x ⋅-+⎰211=arctan +(arctan )22x x x C x ⋅-+17.设31()x f x x <=≥ 1,求定积分51()f x dx -⎰。
2001年江苏省普通高校“专转本”统一考试高等数学一、选择题(本大题共5小题,每小题3分,共15分)1、下列各极限正确的是 ( )A 、e xxx =+→)11(lim 0B 、e xx x =+∞→1)11(limC 、11sinlim =∞→x x x D 、11sin lim 0=→xx x2、不定积分=-⎰dx x211 ( )A 、211x-B 、c x+-211C 、x arcsinD 、c x +arcsin3、若)()(x f x f -=,且在[)+∞,0内0)('>x f 、0)(''>x f ,则在)0,(-∞内必有 ( )A 、0)('<x f ,0)(''<x f B 、0)('<x f ,0)(''>x f C 、0)('>x f ,0)(''<x f D 、0)('>x f ,0)(''>x f4、=-⎰dx x 21 ( )A 、0B 、2C 、-1D 、15、方程x y x 422=+在空间直角坐标系中表示 ( ) A 、圆柱面B 、点C 、圆D 、旋转抛物面二、填空题(本大题共5小题,每小题3分,共15分)6、设⎩⎨⎧+==22tt y te x t ,则==0t dx dy7、0136'''=+-y y y 的通解为 8、交换积分次序=⎰⎰dy y x f dx x x220),(9、函数yx z =的全微分=dz10、设)(x f 为连续函数,则=+-+⎰-dx x x x f x f 311])()([三、计算题(本大题共10小题,每小题4分,共40分) 11、已知5cos)21ln(arctan π+++=xx y ,求dy .12、计算xx dte x xt x sin lim202⎰-→.13、求)1(sin )1()(2--=x x xx x f 的间断点,并说明其类型.14、已知x y x y ln 2+=,求1,1==y x dxdy.15、计算dx ee xx⎰+12. 16、已知⎰∞-=+02211dx x k ,求k 的值. 17、求x x y y sec tan '=-满足00==x y 的特解.18、计算⎰⎰Ddxdy y2sin ,D 是1=x 、2=y 、1-=x y 围成的区域.19、已知)(x f y =过坐标原点,并且在原点处的切线平行于直线032=-+y x ,若b ax x f +=2'3)(,且)(x f 在1=x 处取得极值,试确定a 、b 的值,并求出)(x f y =的表达式.20、设),(2y x x f z =,其中f 具有二阶连续偏导数,求x z∂∂、yx z ∂∂∂2.四、综合题(本大题共4小题,第21小题10分,第22小题8分,第23、24小题各6分,共30分) 21、过)0,1(P 作抛物线2-=x y 的切线,求(1)切线方程; (2)由2-=x y ,切线及x 轴围成的平面图形面积;(3)该平面图形分别绕x 轴、y 轴旋转一周的体积。
2019年江苏省普通高校“专转本”统一考试一、选择题(本大题共8小题,每小题4分,共32分)l. 设当0→x 时,函数()2()ln 1f x kx =+与()1cos g x x =-是等价无穷小,则常数k 的值为( ) A.14 B.12C.1D.2 2. 0x =是函数()111xf x e =+的( )A. 跳跃间断点B. 可去间断点C. 无穷间断点D. 振荡间断点 3. 设函数()f x 在0x =处连续,且()0lim 1sin 2x f x x→=,则()0f '=( )A. 0B.12C. 1D. 2 4. 设()f x 是函数cos2x 的一个原函数,且()00f =,则()f x dx =⎰( )A.1cos 24x C -+ B.1cos 22x C -+ C.cos2x C -+ D. cos2x C + 5. 设211ln 2ln 2a dx x x +∞=⎰,则积分下限a 的值为( ) A. 2 B. 4 C. 6 D. 8 6. 设()f x 为(),-∞+∞上的连续函数,则与211f dx x ⎛⎫⎪⎝⎭⎰的值相等的定积分为( ) A.()221f x dx x ⎰B. ()122f x dx x ⎰C. ()1122f x dx x ⎰D. ()1221f x dx x ⎰7.二次积分()011,xdx f x y dy --⎰⎰交换积分次序后得( )A.()011,y dy f x y dx --⎰⎰ B.()100,ydy f x y dx -⎰⎰C.()110,ydy f x y dx -⎰⎰ D.()10,ydy f x y dx -⎰⎰8.设()1ln 1nn u ⎛=-+⎝,1ln 1n v n ⎛⎫=+ ⎪⎝⎭,则( ) A.级数1nn u∞=∑与1nn v∞=∑都收敛 B. 级数1nn u∞=∑与1nn v∞=∑都发散C. 级数1nn u∞=∑收敛,而级数1nn v∞=∑发散 D. 级数1nn u∞=∑发散,而级数1nn v∞=∑收敛二、填空题{本大题共6小题,每小题4分,共24分)9. 设函数()()112,1,1x x x f x a x -⎧⎪-<=⎨≥⎪⎩在点1x =处连续,则常数a = .10. 曲线1ttx te y e ⎧=⎨=-⎩在点()0,0处的切线方程为 . 11. 设()ln 1y x =+,若()2018!n x y ==,则n = .12.定积分()141cosx x x dx -+⎰的值为 .13.设()2,1,2a b →→⨯=-,3a b →→⋅=,则向量a →与向量b →的夹角为 .14.幂级数2133n nn x n∞=+∑的收敛半径为 . 三、计算题(本大题共8小题,每小题8分,共64分)15. 求极限()3ln 1lim1xx x t t dte →+-⎡⎤⎣⎦-⎰.16.求不定积分()2x xx e dx +⎰.17.计算定积分7⎰.18. 设()2,z f x y x y =-,其中函数f 具有二阶连续偏导数,求22zx∂∂.19. 设(),z z x y =是由方程()2sin 1y x xy z +++=所确定的函数,求z x ∂∂,z y∂∂.20. 求通过()1,0,1M ,且与直线1111:123x y z L ---==和21:2332x tL y t z t=+⎧⎪=+⎨⎪=+⎩都平行的平面方程.21.求微分方程xy y e '''-=的通解.22. 计算二重积分⎰⎰Dydxdy ,其中D是由曲线y =与直线1y =及0x =所围成的平面闭区域.四、证明题(本大题10分) 23.证明:当02x <<时,22xxe x+<-.五、综合题(本大题共2题,每小题10分,共20分)24.已知函数()43f x ax bx =+在点3x =处取得极值27-,试求: (1)常数,a b 的值;(2)曲线()y f x =的凹凸区间与拐点; (3)曲线()1y f x =的渐近线.25.设()f x 为定义在[)0,+∞上的单调连续函数,曲线():C y f x =通过点()0,0及()1,1,过曲线C 上任一点(),M x y 分别作垂直于x 轴的直线x l 和垂直于y 轴的直线y l ,曲线C 与直线x l 及x 轴围成的平面图形的面积记为1S ,曲线C 与直线y l 及y 轴围成的平面图形的面积记为2S ,已知122S S =,试求: (1)曲线C 的方程;(2)曲线C 与直线y x =围成的平面图形绕x 轴旋转一周所形成的旋转体的体积.。
江苏省普通高校专转本模拟试题及参考答案高等数学 试题卷一、单项选择题(本大题共 8 小题,每小题 4 分,共 32 分.在下列每小题中选出一个正确答 案,请在答题卡上将所选项的字母标号涂黑)1. 要使函数21()(2)xx f x x −−=−在区间(0,2) 内连续,则应补充定义 f (1) =( )A. 2eB. 1e −C. eD. 2e − 2. 函数2sin ()(1)xf x x x =−的第一类间断点的个数为( )A. 0B. 2C. 3D. 1 3. 设'()1f x =,则0(22)(22)limh f h f h h→−−+=( )A. 2−B. 2C. 4D. 4−4.设()F x 是函数()f x 的一个原函数,且()f x 可导,则下列等式正确的是( ) A. ()()dF x f x c =+∫ B. ()()df x F x c =+∫ C.()()F x dx f x c =+∫ D.()()f x dx F x c =+∫5. 设2Dxdxdy =∫∫,其中222{(,)|,0}D x y x y R x =+≤>,则R 的值为( )A. 1B.D.6.下列级数中发散的是( )A 21sin n nn∞=∑. B. 11sin n n ∞=∑C. 1(1)nn ∞=−∑ D.211(1)sinnn n ∞=−∑ 7.若矩阵11312102A a −−= 的秩为2,则常数a 的值为( )A. 0B. 1C. 1−D. 28. 设1100001111111234D =−−,其中ij M 是D 中元素ij a 的余子式,则3132M M +=( ) A. 2− B. 2 C. 0 D. 1 二、填空题(本大题共6小题,每小题4分,满分24分) 9. 1lim sinn n n→∞=____________________________.10.设函数2sin ,0()10,0xx f x x x ≠ =+ =,则'(0)f =______________________________________.11.设函数()cos 2f x x =, 则(2023)(0)f =__________________________________________. 12.若21ax e dx −∞=∫,则常数a =___________________________________.13. 若幂级数1nnn a x +∞=∑的收敛半径为2,则幂级数11(1)nn n x a +∞=−∑的收敛区间为__________________. 14.若向量组1(1,0,2,0)α=,2(1,0,0,2)α=,3(0,1,1,1)α=,4(2,1,,2)k α=线性相关,则k =_____________________________________.三、计算题(本大题共8小题,每小题8分,满分64分) 15. 求极限22sin lim(cos 1)x x t tdtx x →−∫;16.求不定积分22x x e dx ∫;17.求定积分21sin 2x dx π−∫; 18.设函数(,)z z x y =由方程cos y x e xy yz xz =+++所确定的函数,求全微分dz . 19.求微分方程''4'5x y y y xe −−−=的通解; 20.求二重积分Bxydxdy ∫∫,其中D 为由曲线2(0)y x x ≥及直线2x y +=和y 轴所围成的平面闭区域;21.设矩阵A 与B 满足关系是2AB A B =+,其中301110014A= ,求矩阵B .22.求方程组12341234123436536222x x x x x x x x x x x x ++−=−++=− −+−= 的通解; 四、证明题(本大题10分)23.证明:当04x π−<<时,0sin xt e tdt x <∫.五、综合题(本大题共2小题,每小题10分,满分20分)24.求曲线x =及直线2y =与y 轴所围成的平面图形的面积并计算该图形绕y 轴旋转一周所得的旋转体的体积..25.设定义在(,)−∞+∞上的函数()f x 满足方程'()()f x f x x −=,且(0)0f =,求: (1)函数()f x 的解析式;(2)曲线()y f x =的单调区间和极值点.参考答案一、单项选择题1. B2. D3. D4. D5. B6. B7. A8. B9. C 二、填空题9. 1 10. 1 11. 0 12. 1ln 2213. (1,3)− 14. 4三、计算题15. 2232022250022sin sin 2sin()4lim lim 4lim (1cos )63()2x x x x x t tdt t tdt x x x x x x x →→→===−∫∫; 16. 2222222222222222222224x x x x x x x xxe e x e e e x e e e x e dx x x dx x dx x c =−=−+=−++∫∫∫;17.26206111sin (sin )(sin )22212x dx x dx x dx πππππ−=−+−−∫∫∫; 18. 因为sin sin ,,z zz x y zx y yz x x x x y x ∂∂∂−−−−=+++=∂∂∂+ 且0,y yz zz e x z e x z y x y yy y x∂∂∂−−−=++++=∂∂∂+ 所以可得sin y x y z e x zdzdx dy y x y x−−−−−−=+++. 19. 解:因为特征方程为2450r r −−=,特征值为125,1r r ==−,所以齐次微分方程''4'50y y y −−=的通解为5112x x y c e c e −=+; 设''4'5x y y y xe −−−=的一个特解为*()x y x ax b e −=+,可得11*()1236x y x x e −=−+,所以原方程的通解为:511211*()1236x x x y y y c e c e x x e −−=+=+−+.20. 由22y x x y =+= 可得交点坐标(11),, 可得21116xBxydxdydx xydy ==∫∫∫∫; 21. 因为2AB A B =+,所以可得(2)A E B A −=,从而可得:1(2)B A E A −=−;又因1211(2)221111A E −−−−=−−− ,所以可得1522(2)432223B A E A −−− =−=−− − ; 22.求方程组12341234123436536222x x x x x x x x x x x x ++−=−++=− −+−= 的通解; 解:111361113611136101241513601012010120101212212031240011200112100120101200112−−−−−−→−→−→− −−−−−−− →− − 一个特解为2220 ,齐次线性方程组12341234123430530220x x x x x x x x x x x x ++−=−++= −+−= 的一组基础解系为:11111η= ,所以原方程组的通解为:123412121210x x c x x=+. 四、证明题 23.证明:当04x π−<<时,0sin xt e tdt x <∫.证明:令0()sin xt f x x e tdt =−∫,则有'()1sin x f x e x =−,令:''()sin cos 0x x f x e x e x =−−=,可得4x π=−,当04x π−<<,''()0f x <,所以当04x π−<<时,'()1sin x f x e x =−为递减函数,可得'()1sin '(0)1x f x e x f =−>=,所以当04x π−<<时,0()sin xt f x x e tdt =−∫为递增函数,因此可得:0()sin (0)0xt f x x e tdt f =−>=∫,从而可证得:0sin x t e tdt x <∫; 五、综合题 24.求曲线x =及直线2y =与y 轴所围成的平面图形的面积并计算该图形绕y 轴旋转一周所得的旋转体的体积..解:x x y = ⇒ =,则图形面积为:20Aydx dx = 旋转体的体积:2222200022y V x dy ydy ππππ====∫∫; 25.设定义在(,)−∞+∞上的函数()f x 满足方程'()()f x f x x −=,且(0)0f =,求: (1)函数()f x 的解析式;(2)曲线()y f x =的单调区间和极值点. 解:(1)()()()1dxdxx x x f x e xe dx c e xe dx c x ce −−−−−∫∫=+=+=−++∫∫,又因为(0)0f =,所以可得:1c =−,即:()1x f x x e −=−+−; (2)令'()10x f x e −=−+=,可得0x =; x(,0)−∞ 0 (0,)+∞ '()f x −+因此可知:(,0)−∞为函数()1x f x x e −=−+−的递减区间,(0,)+∞为函数()1x f x x e −=−+−的递增区间,点(0,0)为函数()1x f x x e −=−+−的极小值点.。
江苏省2010年普通高校专转本选拔统一考试数 学 试 题一、单项选择题(本大题共6小题,每小题4分,满分24分)1.设当0x →时,函数()sin f x x x =-与()n g x ax =是等价无穷小,则常数,a n 的值为( ) A. 1,36a n == B. 1,33a n == C. 1,412a n == D. 1,46a n == 2.曲线223456x x y x x -+=-+的渐近线共有( ) A. 1条 B. 2条 C. 3条 D. 4条3.设函数22()cos t x x e tdt Φ=⎰,则函数()x Φ的导数()x 'Φ等于( ) A. 222cos x xe x B. 222cos x xe x - C. 2cos x xe x - D. 22cos x e x -4.下列级数收敛的是( ) A. 11n n n ∞=+∑ B. 2121n n n n ∞=++∑C. 1n n ∞=D. 212n n n ∞=∑ 5.二次积分1101(,)y dy f x y dx +⎰⎰交换积分次序后得( )A.1101(,)x dx f x y dy +⎰⎰ B. 2110(,)x dx f x y dy -⎰⎰ C. 2111(,)x dx f x y dy -⎰⎰ D. 2111(,)x dx f x y dy -⎰⎰ 6.设3()3f x x x =-,则在区间(0,1)内( )A. 函数()f x 单调增加且其图形是凹的B. 函数()f x 单调增加且其图形是凸的C. 函数()f x 单调减少且其图形是凹的D. 函数()f x 单调减少且其图形是凸的二、填空题(本大题共6小题,每小题4分,满分24分) 7. 1lim()1x x x x →∞+=- 8. 若(0)1f '=,则0()()lim x f x f x x→--= 9. 定积分312111x dx x -++⎰的值为 10. 设(1,2,3),(2,5,)a b k ==r r ,若a r 与b r 垂直,则常数k =绝密★启用前11.设函数z =10x y dz=== 12. 幂级数0(1)nn n x n ∞=-∑的收敛域为 三、计算题(本大题共8小题,每小题8分,满分64分)13、求极限2011lim()tan x x x x→- 14、设函数()y y x =由方程2x y y ex ++=所确定,求22,dy d y dx dx15、求不定积分arctan x xdx ⎰16、计算定积分40⎰ 17、求通过点(1,1,1),且与直线23253x t y t z t =+⎧⎪=+⎨⎪=+⎩垂直,又与平面250x z --=平行的直线的方程。
2018 年江苏省普通高校 “专转本 ”统一考试
一、 选择题(本大题共 6 小题,每小题 4 分,满分 24 分)
1、当 x
0 时,下列无穷小与
f x
xsin 2 x 同阶的是 (
)
A. cos x 2
1
B.
1 x 3 1
C. 3x 1
D. 1 x
2
3
1
2、设函数 f (x)
x a ,若 x
1 为其可去间断点,则常数 a ,b 的值分别为
(
)
x
2
x b
A. 1, 2
B. 1,2
C.
1, 2
D. 1,2
3、设 f ( x)
1 x ,其中
x 为可导函数,且
1 3 ,则 f 0 等于 (
)
1 x
A. 6
B. 6
C.
3
D. 3
4、设 F x e 2 x 是函数 f x 的一个原函数,则
xf x dx
(
)
A. e
2 x
1
x 1 C B. e 2x 2x 1 C C. e 2x
1
x 1 C D. e 2 x 2x 1 C
2
2
5、下列反常积分发散的是
( )
x
1
1
1
e dx
3 dx dx
dx A.
B.
x C.
1 x 2
D.
1
1 x
6、下列级数中绝对收敛的是
(
)
(
1)
n
1 2
1
n
sin n
( 3)
n
A.
B.
C.
n
n
n 1
n 2
D.
n 1
n 1
n 1
n 3
二、填空题(本大题共
6 小题,每小题 4 分,共 24 分)
1
2
7 设 lim 1
ax x lim xsin
,则常数 a _________.
x 0
x
x
8、设函数 y x x
x 0 ,则 y
____________.
9、设 z
z x, y 是由方程 z 2 xyz 1所确定的函数,则
z ___________ .
x
10、曲线 y
3x 4 4x 3 6x 2 12 x 的凸区间为 ___________ .
11、已知空间三点 M 1,1,1 , A 1,1,0 , B 2,1,2 ,则
AMB 的大小为 __________ .
12、幂级数 ( x 4) n
的收敛域为 ____________ .
n 1
n5n
三、计算题(本大题共8 小题,每小题8 分,共 64 分)
13、求极限lim 1 1 .
x2 ln 1 x2
x 0
14、设函数y y( x) 由参数方程
x3 xt 2 t 1 0
y t 3 t 1 所确定,求
dy .
dx t 0
15、求不定积分
1 dx .
x x 1
16、计算定积分
2
2x 1 ln xdx .
1
x 1 3t
17、求通过点M 1,2,3 及直线y 1 4t 的平面方程.
z 1 5t
18、求微分方程y3 2 x2 y dx 2x3dy 0 的通解.
19、设z xf y,x
,其中函数具有一阶连续偏导数,求全微分dz .y
20、计算二重积分xydxdy,其中 D x, y
2
y2 1,0 y x .x 1
D
四、证明题(本大题共 2 小题,每小题9 分,共18 分)
21、证明:当x
2
0 时,ln x x .
e
x
22、设F ( x)
f (t )dt 0,其中函数 f ( x) 在 ( , ) 上连续,且 lim f ( x) 1,证明: F ( x) 在
0 x
x
=x 0
x
x 0
点 x 0处连续。
五、综合题(本大题共 2 小题,每小题10 分,共 20 分)
23、设 D 是由曲线弧y cosx x 与 y sin x x及x轴所围成的平面图形,试求:
4 2 4
(1) D 的面积;
(2) D 绕 x 轴旋转一周所形成的旋转体的体积.
24、设函数 f x 满足方程 f x 3 f x 2 f x 0 ,且在 x 0 处取得极值1,试求:
( 1)函数 f (x) 的表达式;
f x
( 2)曲线y 的渐近线.
f x。