6常用时序逻辑功能器件
- 格式:ppt
- 大小:1.51 MB
- 文档页数:45
时序逻辑电路分类介绍时序逻辑电路是一种用于处理时序信号的电路,它由逻辑门和存储元件组成。
时序逻辑电路按照其功能和结构的不同,可以分为多种类型。
本文将对时序逻辑电路的分类进行全面、详细、完整和深入的探讨。
一、根据功能分类1. 同步时序逻辑电路同步时序逻辑电路是指其数据在同一个时钟上升沿或下降沿进行传递和存储的电路。
这类电路广泛应用于计算机中的寄存器、时钟驱动器和状态机等。
同步时序逻辑电路具有可靠性高、稳定性强的特点。
2. 异步时序逻辑电路异步时序逻辑电路是指其数据不依赖时钟信号而进行传递和存储的电路。
这种电路在通信系统中常用于数据传输和处理,如异步串行通信接口(UART)。
异步时序逻辑电路具有处理速度快和实时性强的特点。
二、根据结构分类1. 寄存器寄存器是一种时序逻辑电路,用于存储和传递数据。
寄存器通常采用D触发器作为存储元件,可以实现数据的暂存和移位操作。
寄存器广泛应用于计算机的数据存储和寄存器阵列逻辑器件(RALU)等。
2. 计数器计数器是一种时序逻辑电路,用于生成特定的计数序列。
计数器可以按照时钟信号对计数进行增加或减少,并可以在达到指定计数值时触发其他操作。
计数器被广泛应用于时钟发生器、频率分频器和时序控制等电路中。
3. 时序控制器时序控制器是一种时序逻辑电路,用于控制其他电路的时序和操作。
时序控制器根据输入的控制信号和当前的状态,通过逻辑运算和状态转移进行运算和控制。
时序控制器被广泛应用于计算机的指令译码和状态机的设计中。
三、根据存储方式分类1. 同步存储器同步存储器是一种时序逻辑电路,用于存储和读取数据。
同步存储器是在时钟信号作用下进行数据存取的,并且数据的读取和写入操作都在时钟的上升沿或下降沿进行。
同步存储器主要包括静态随机存储器(SRAM)和动态随机存储器(DRAM)等。
2. 异步存储器异步存储器是一种时序逻辑电路,用于存储和读取数据。
与同步存储器不同的是,异步存储器的读取和写入操作不依赖时钟信号,而是由数据访问信号和存储器内部的同步电路进行控制。
时序逻辑电路的基本单元时序逻辑电路(SequentialLogicCircuits),又称为时序门电路,是由多种组件构成的电路,它能够跟踪时间的变化,可以用来实现信号的时序控制,从而实现特定的功能。
它的基本单元是由逻辑门、存储器、时序器和比较器等组成的元件组合。
因此,要研究时序逻辑电路的基本单元,就必须先了解这些元件的工作原理。
逻辑门是由若干个输入变量组成,其输出与输入变量有关,可用于实现逻辑功能。
根据输入变量的不同,可以将逻辑门分为与门、或门、异或门、非门、时序逻辑门等。
另外,还可以采用复杂逻辑门,如多输入门、组合电路等,它们能够实现复杂的逻辑功能。
存储器的功能是把输入的信号变换为输出,它可以储存数据,并能够真实地反映输入信号的变化,从而实现电子记忆功能。
一般来说,存储器可以分为电容存储器、场效应管存储器、晶体管存储器和可编程逻辑器件存储器等。
时序器是一种可以按照特定的时序执行序列动作的电路。
它的主要功能是控制信号的变化,从而实现特定的功能。
一般来说,时序器由穿越触发器、异步状态机和同步状态机组成,这些内部的控制逻辑由信号的变化触发。
比较器是一种电路,它主要用来比较两个输入变量的大小,并产生一个比较结果。
它必须是可靠的,以便在比较过程中不断地更新输出信号。
一般来说,比较器由几个比较型逻辑门组成,如比较器、波特率计数器、双稳态比较器等,它们能够实现不同的比较功能。
时序逻辑电路的基本单元是由逻辑门、存储器、时序器和比较器等构成的。
它们能够实现信号的时序控制,从而实现时序逻辑电路的功能。
逻辑门可实现不同的逻辑功能,存储器能够实现电子记忆功能,时序器能够控制信号变化,而比较器则能够比较两个输入变量大小。
因此,研究这些基本单元对于理解时序逻辑电路的实际应用十分重要。
时序逻辑电路的发展使得电子设备的控制变的十分便捷,它的灵活性也大大提高了。
就拿计算机来说,它就是一个时序逻辑电路,通过它能够实现复杂的计算功能。
2019年上海理工大学826电路与电子技术基础考研初试考试大纲参考教材:《电路》邱关源主编,高等教育出版社《电子技术基础》(模拟部分),康华光主编,高等教育出版社《电子技术基础》(数字部分),康华光主编,高等教育出版社第一部分电路1. 电路模型和电路定律掌握电路概念、电路模型、电路的组成和作用,了解基本物理量。
重点掌握基尔霍夫定律。
重点掌握电源模型、受控源模型、电阻元件的伏安关系以及元件的功率计算。
2. 电阻电路的等效变换重点掌握用等效的方法分析直流电阻电路、用电源模型等效的方法分析电路、输入电阻的计算方法、电阻的星形联结和三角形联结的等效变换。
3. 电阻电路的一般分析了解电路图的概念和电路一般分析方法的含义。
重点掌握用支路电流法、网孔电流法、节点电压法分析直流电阻电路。
4. 电路定理重点掌握用叠加定理、戴维南定理、最大功率传输定理分析含有受控源的直流电阻电路。
了解诺顿定理。
5. 储能元件重点掌握电容元件、电感元件的伏安关系。
重点掌握电容、电感元件的串联与并联。
6. 一阶电路和二阶电路的时域分析了解电路的过渡过程、暂态、换路概念。
掌握响应的初始值、稳态值、时间常数概念;掌握电路的零输入响应、零状态响应和全响应概念。
重点掌握用三要素法分析一阶电路。
了解用经典方法分析二阶电路。
7. 相量法重点掌握正弦量的相量表示法、相量的运算、元件伏安特性和电路定律的相量形式。
8. 正弦稳态电路分析重点掌握用相量法和相量图分析稳态正弦交流电路以及功率的计算方法。
掌握提高功率因数的意义,重点掌握复功率的计算和最大功率传输的计算。
9. 含有耦合电感的电路掌握互感现象及同名端的含义,重点掌握含耦合电感电路的一般分析方法。
掌握变压器的原理,重点掌握理想变压器的计算。
10. 电路的频率响应重点掌握电路谐振的条件和串联、并联谐振电路的特点。
11. 三相电路重点掌握三相对称电源的线电压和相电压的关系、对称和不对称三相交流电路的计算。