液面变化专题定量计算
- 格式:doc
- 大小:184.50 KB
- 文档页数:4
可编辑修改精选全文完整版浮力液面高度变化量计算方法与技巧一、原理分析如何计算液面高度变化量呢?关键是弄清液面变化所对应的体积和相应的底面积,如图所示。
1.高度关系:+h h h ∆=∆∆浸物液①V h S ∆∆=排液容②(ΔV 排=V ②+V ③+V ④)V h S ∆∆=排浸物③(ΔV 排=V ①+V ④)2.体积关系:①V ①=V ②+V ③ ⇒ S 物·Δh 物=(S 容-S 物)·Δh 液⇒ S h h S S ⋅∆∆=-物物液物容 ②V ②+V ③+V ④= V ①+V ④ ⇒ S 容·Δh 液=S 物·Δh 浸 ⇒ S h h S ⋅∆∆=浸物液容3.递进关系:Δh 液 → Δp 液 → ΔF 液 → ΔF 浮 → ΔF 外二、例题分享如图所示,有一圆柱形容器和一个足够长的圆柱形金属块,容器底面积S 容=30cm 2,圆柱体底面积S柱=10cm 2,容器中盛有水,金属块吊在一根细线下,现将金属块慢慢放入水中,水未溢出,金属块上下底面始终和水面平行。
求:①若金属块浸入水中深度达到15cm时,容器底部受到水的压强增大了多少?②若绳子从金属块底部刚好接触到水面时开始向下放下15cm时,容器底部受到水的压强增了多少?1.第1小问分析过程:要求水对容器底部增加的压强,也就是求水位增加的高度。
如何求水位增加的高度呢?思维过程如下:当圆柱体浸入水中15cm时,实际上是一个动态过程,圆柱体一边下降,水位一边上升,圆柱体下降的深度加上水位上升的高度刚好为15cm。
由此可见,如何将动态变化过程转化为静态过程才是解题关键。
多数同学可能有这样的思维过程:假设原来水位不变,我们把圆柱体浸入水中后排开的水用容器接到,然后将排开的水再倒回容器中。
这个时候有两种思考:(1)倒入圆柱体两边的空白处,这样水位上升的高度,Δh=V排/(S容-S柱)。
显然,圆柱体浸入水中的深度就是15cm+Δh,跟题意矛盾。
初三物理专题提高练习 浮力之液面变化定量计算知识点回顾:1、压强公式:P= ,求压力F= 。
2、液体内部压强公式: 。
3、液体对容器底面积的压力求解方法:先求液体对底面积的压强P= ,再求压力F= 。
4、阿基米德原理公式:F 浮= 。
例题1:如图1甲所示,一底面积为80cm 2的直筒型容器内装有h 1=30cm 的水,将一底面积为60cm 2的物体A 浸入一部分时,如图1乙,水面上升了6cm ,求: (1)物体A 浸入的体积? (2)物体A 浸入的深度? (3)物体A 所受的浮力?例题2:如图2甲所示,一底面积为80cm 2的直筒型容器内装有h 1=30cm 的水,放入物体A 后,物体A 漂浮,如图2乙所示,水面上升至h 2=40cm ,求: (1)此时水对底面的压强?(2)放入物体前后水对底面的压强差?(3)此时水对底面的压力? (4)放入物体前后水对底面的压力差?(5)物体所受的浮力?图1 乙甲图2练习1:如图3甲所示,底面积为80cm 2的圆筒形容器内装有适量的液体,放在水平桌面上;底面积为60cm 2的圆柱形物体A 悬挂在细绳的下端静止时,细绳对物体A 的拉力为F 1。
将物体A 浸没在圆筒形容器内的液体中,静止时,容器内的液面升高了7.5cm ,如图3乙所示,此时细绳对物体A 的拉力为F 2。
已知F 1与F 2之差为7.2N 。
不计绳重,g 取10N/kg 。
求:(1)物体的体积? (2)液体的密度?练习2:如图4甲所示,一底面积为80cm 2的直筒型容器内装有适量的水,一圆柱形物体A 漂浮于水面,水面高度为40cm ;若将其取出,如图4乙所示,水面下降了10cm ,求: (1)物体A 排开液体的体积? (2)物体A 漂浮时所受的浮力?(3)物体A 的重力?(4)取出物体前后水对底面的压力差?练习3:如图5甲所示,一底面积为80cm 2的直筒型容器内装有适量的水,一底面积为60cm 2,高10cm 的物体A 完全浸没在水中;将A 提出一部分,此时水面距离A 上表面8cm ,如图5乙,求: (1)物体A 完全浸没时所受的浮力? (2)物体A 浮力变化了多少?(3)水对容器底的压力变化了多少? (4)水对容器底的压强变化了多少? (5)水面高度变化了多少?图3乙甲图4 乙甲 图5甲例题3:如图6甲所示,底面积为80cm 2的圆筒形容器内装有适量的液体,液体密度为 1.2×103kg/m 3放在水平桌面上;底面积为60cm 2的圆柱形物体A 完全浸没在液体中,静止时,容器内的液面升高了7.5cm ,如图6乙所示,物体A 上表面到液面的距离为h 1。
浮力专题:液面升降问题浮力专题:液面升降问题一、判断液面升降方法:比较V排的变化物体浸在液体中,若浮力变大,V排变大,液面;若浮力变小,则V排变小,液面;若浮力不变,则V排不变,液面。
(填“上升”或“下降”或“不变”)1、如图所示,将两块相同的橡皮泥做成实心球形和碗形,分别放入相同的甲、乙两杯水中.静止时甲杯中橡皮泥所受的浮力________(填“大于”“小于”或“等于”)乙杯中橡皮泥所受的浮力,杯中水面_______.2、(1)如图所示,小船和石块一起漂浮在水中,将石块(或金属块)从船中取出放入水中后,水面。
(2)如图2所示,在一较大容器的水面上放一木块,木块上面放一个体积为1dm3、重7.84N的物体,此时木块漂浮.如果将物体从木块上拿下并放入水中,当木块和物体都静止时,容器中的水面将()A.上升B.下降C.不变D.无法判断收集于网络,如有侵权请联系管理员删除3、将冰块分别放在水、盐水和煤油(或酒精)中,冰块完全熔化后,判断液面的变化。
1)冰块放在水中,漂浮,熔化后,液面。
2)冰块放在盐水中,漂浮,熔化后,液面。
3)冰块放在煤油(或酒精)中,沉底,熔化后,液面。
4、冰块内包有一个木块漂浮在水面上,冰块熔化后,水面。
5、冰块内包有一个石块(石块密度大于水的密度)漂浮在水面上,冰块熔化后,石块(填浮沉状况),则水面。
检测:1.(1)在图中,容器内装有一定量的水,水面上浮有木块甲,在甲上放有铁块乙,甲与乙之间用细绳相连,当木块翻转,铁块乙没入水中时,则()A.容器内液面高度一定不变 B.容器内液面高度一定降低C.容器内液面高度一定升高 D.容器内液面高度先升高后降低(2)现将绳子剪断,当木块和铁块都静止后,下列分析正确的是()A.铁块沉底,木块漂浮 B.水面下降,容器底受到水的压强变小收集于网络,如有侵权请联系管理员删除C.桌面受到的压力变小 D.桌面受到的压强不变2.重为5N 的木块A ,在水中处于静止状态,此时绳子的拉力为3N,若绳子突然断了,水面(填“上升”或“下降”或“不变”),最终木块所受浮力为,水对容器底的压力(填“增加”或“减小”)了。
Vol .5() No .3Mar .2021此i f教学参考习题研究液面高度变化求法解析石玉东(河北省献县商林中学河北沧州062250)文章编号:1〇〇2-218X (2021)03-0051-03 中图分类号:G 632.4 文献标识码:B摘要:对常见的液面高度变化问题进行分类,并对每类情况进行了详尽的解析;通过分析第1类物体上下移动型,总结出了求液面高度变化量的计算公式,并用此公式解决了第2和第3类问题;前3类都是物体浸入液体体积即V #变而液体总体积V 液总不变的问题,第4类是V *不变改变的问题,第5类是V *和V **都改变的问题。
关键词:液体;浮力;液面升降;体积浮力和液体压强是初中物理考查的重点和难点, 解答此类题目的关键在于正确求出液面高度的变化 量A A 。
那么,求解A A 有何规律可循呢?下面对相关问题分类进行说明。
_、物体上下移动型题目1物体放在柱形容器液体中,当物体在液体中向上、向下移动时,求液面高度的变化A A 。
解法1观察推导法观察物体浸人液体中的体积即^#变化时,液面 实际的升降情况,弄清的变化量A V#与容器中的哪部分体积相等,进而求出A /i 。
解法2假定分离法将物体在液面处分为上、下两部分,假定这两部 分在液面处分离,并使其中一部分上升或下降,弄清M 升'#,所以M j3容厶'V "排S 容。
原液面现液面图4图假定分离法:物体下移前,如图4所示,假定原液 面上部分不动,下部分沉底。
物体下移后,如图5所 示,假定现液面上部分不动,下部分沉底,设原液面上升的体积(图5中灰色部分)为A /^=f。
〇容排=A V ^ = S容A /i 升A V 升,比较图4和图5容 易看出AV 排=AV 升=S 容A/i 升,所以A/i 升=。
V#的变化量与容器中的哪部分体积相等,进而求出M 。
原液面现液面 AK ,,A /i #AK »J /j 飞八/ _ ——、H I—A"3-3- - _ ±2:•AK 轉,—:,TAK #图1图2图31.物体下移观察推导法:如图2所示,物体向下移动,V #变 2.物体上移观察推导法:如图7所示,物体向上移动,V 排变 小,液面下降。
浮力习题中的液面变化问题浮力是初中物理教学中的重点和难点。
在浮力习题教学中经常会涉及到求液面变化的问题。
这种问题的综合性较强,是对学生综合运用物理知识分析并解决相关问题的考查。
本文由生活中初春开化时河面将如何变化这一问题引入,对漂浮于水面的冰块融化后液面将如何变化这一问题做了讨论并以此展开联想,分别论述了浮力习题中经常涉及到的求解液面变化的几种情况。
每当初春河开化时,我们都会发现河面上漂浮着很多冰排,那么当这些冰排融化后,河面将如何变化呢?我们可以把漂浮在河面上的冰排看作是漂浮在量杯中的冰块,计算冰块融化后量杯内液面示数的变化,并对冰中混有石子、汽泡、油滴、蜡块这四种情况加以讨论。
例:纯冰漂在水面的情形水槽中装有体积为V的水,水面上漂浮着重为G的一块冰。
求冰融化后,液面示数将如何变化?分析:设冰块的重力为G,其质量为m,所受浮力为F1,排开水的体积为V1,冰块的体积为V2,冰块未融化时液面以下的体积为V12,冰块融化成水的体积为V3,冰块融化后液面以下的体积为V13,水的密度为P1,冰的密度为P2。
在冰块未融化之前,由于冰块是漂浮在水面上的,故F1=G根据阿基米德原理F1=P1gV1G=mg=P2gV2整理可得P1gV1=P2gV2当冰块熔化后,冰块融化成水的体积为V3此时故也就是说,漂浮在水面上的冰排开水的体积恰好等于冰化成水的体积,所以冰融化后液面保持不变。
从这道题可以看出当纯冰漂浮在水面时冰融化后液面不变化。
但是漂浮的冰的内部混有其他物质时,液面将如何变化呢?下面我们对以下几种情况对该题进行讨论。
变试1:冰中混有石子的情形量杯中装有体积为V的水,水面上漂浮着重为G的一混有小石子的冰块,小石子的重力为G0。
求冰融化后,液面示数将如何变化?分析:设冰块的总重力为G,其质量为m,纯冰部分重力为G1,所受浮力为F1,排开水的体积为V1,冰块的体积为V2,冰块未融化时液面以下的体积为V12,冰块融化成水的体积为V3,冰块融化后液面以下的体积为V13,水的密度为P1,冰的密度为P2,小石子的质量为m0,小石子的体积为V0,密度为P0。
液面变化专题液面变化问题,主要是要清楚液面变化对应的体积变化,以及在变化中的对应关系,我们认为,不要太死记公式,还是弄清楚分析思路为要。
至于减不减面积的问题,这个没有定论,主要是看你所求而定。
下面我们就来分析几个典型的液面变化问题。
模型1:如图1所示,一个底面积为S 1的圆柱形容器,里面装有适量的水,水的深度为H 0。
现在有一个底面积为S 2的圆柱浸在水中的深度为h 1,如图2所示,此时水面的高度为H 1,液面变化的高度为ΔH ,则有:①V 排= S 2 h 1=(H 1-H 0)S 1=ΔH S 1②容器底部所受水的压强的变化Δp =ρ水g ΔH③容器底部所受水的压力的变化ΔF =Δp S 1=ρ水g ΔH S 1=ρ水g V 排=F 浮 ④圆柱体下表面受到水的压强为p =ρ水g h 1⑤圆柱体下表面受到水的压力为F = pS 2=ρ水g h 1S 2=ρ水g V 排=F 浮=ΔF模型2:如图3所示,一个底面积为S 1的圆柱形容器,里面装有适量的水,一个底面积为S 2的圆柱浸在水中的深度为h 1,水的深度为H 1。
现在将圆柱体向上提高h 3后,物体浸在水中的深度为h 2,如图4所示,此时水面的高度为H 2。
水面下降的高度为ΔH 1,则有:图110图211图311图41 2①圆柱体上提引起物体排开水体积的变化ΔV 1= h 3S 2=(S 1- S 2)ΔH 1 ②水面下降引起物体排开水体积的变化ΔV 2=ΔH 1S 2③圆柱体排开水的体积的变化ΔV 排=ΔV 1+ΔV 2=(S 1- S 2)ΔH 1+ΔH 1S 2=ΔH 1S 1 ④圆柱体所受浮力的变化ΔF 浮=ρ水g ΔV 排=ρ水g ΔH 1S 1 ⑤容器底部所受水的压强的变化Δp =ρ水g ΔH 1⑥容器底部所受水的压力的变化ΔF =Δp S 1=ρ水g ΔH 1 S 1=ρ水g V 排=F 浮模型3:如图5所示,一个底面积为S 1的圆柱形水槽,里面装有适量的水,一个底面积为S 2的圆柱形容器内装有一个实心金属球,容器竖直漂浮在水槽的水中,容器浸在水中的深度为h 1,水的深度为为H 0。
初三物理专题提高练习 浮力之液面变化定量计算
知识点回顾:
1、压强公式:P= ,求压力F= 。
2、液体内部压强公式: 。
3、液体对容器底面积的压力求解方法:先求液体对底面积的压强P= ,再求压力F= 。
4、阿基米德原理公式:F 浮= 。
例题1:如图1甲所示,一底面积为80cm 2
的直筒型容器内装有
h 1=30cm 的水,将一底面积为60cm 2
的物体A 浸入一部分时,如图1乙,水面上升了6cm ,求: (1)物体A 浸入的体积? (2)物体A 浸入的深度? (3)物体A 所受的浮力?
例题2:如图2甲所示,一底面积为80cm 2
的直筒型容器内装有h 1=30cm 的水,放入物体A 后,物体A 漂浮,如图2乙所示,水面上升至h 2=40cm ,求: (1)此时水对底面的压强?
(2)放入物体前后水对底面的压强差?
(3)此时水对底面的压力? (4)放入物体前后水对底面的压力差?
(5)物体所受的浮力?
1
图1
乙
甲
图2
练习1:如图3甲所示,底面积为80cm 2
的圆筒形容器内装有适量的液体,放在水平桌面
上;底面积为60cm 2
的圆柱形物体A 悬挂在细绳的下端静止时,细绳对物体A 的拉力为F 1。
将物体A 浸没在圆筒形容器内的液体中,静止时,容器内的液面升高了7.5cm ,如图3乙所示,此时细绳对物体A 的拉力为F 2。
已知F 1与F 2之差为7.2N 。
不计绳重,g 取10N/kg 。
求:
(1)物体的体积? (2)液体的密度?
练习2:如图4甲所示,一底面积为80cm 2
的直筒型容器内装有适量的水,一圆柱形物体A 漂浮于水面,水面高度为40cm ;若将其取出,如图4乙所示,水面下降了10cm ,求: (1)物体A 排开液体的体积? (2)物体A 漂浮时所受的浮力?
(3)物体A 的重力?
(4)取出物体前后水对底面的压力差?
练习3:如图5甲所示,一底面积为80cm 2
的直筒型容器内装有适量的水,
一底面积为60cm 2
,高10cm 的物体A 完全浸没在水中;将A 提出一部分,此时水面距离A 上表面8cm ,如图5乙,求: (1)物体A 完全浸没时所受的浮力? (2)物体A 浮力变化了多少?
(3)水对容器底的压力变化了多少? (4)水对容器底的压强变化了多少? (5)水面高度变化了多少?
图3
乙
甲
图4
乙
甲 图5
乙
甲
例题3:如图6甲所示,底面积为80cm 2
的圆筒形容器内
装有适量的液体,液体密度为 1.2×103kg/m 3
放在水平桌
面上;底面积为60cm 2
的圆柱形物体A 完全浸没在液体中,静止时,容器内的液面升高了7.5cm ,如图6乙所示,物体A 上表面到液面的距离为h 1。
然后,将物体A 竖直向上移动h 2,物体A 静止时,所受浮力为多少?(已知h 1为3cm ,h 2为5cm 。
不计绳重,g 取10N/kg 。
)
练习4:如图7甲所示,底面积为80cm 2
的圆筒形容器内装有适量的液体,放在水平桌面
上;底面积为60cm 2
的圆柱形物体A 悬挂在细绳的下端静止时,细绳对物体A 的拉力为F 1。
将物体A 浸没在圆筒形容器内的液体中,静止时,容器内的液面升高了7.5cm ,如图7乙所示,此时细绳对物体A 的拉力为F 2,物体A 上表面到液面的距离为h 1。
然后,将物体A 竖直向上移动h 2,物体A 静止时,细绳对物体A 的拉力为F 3。
已知F 1与F 2之差为7.2N ,F 2与F 3之比为5:8,h 1为3cm ,h 2为5cm 。
不计绳重,g 取10N/kg 。
则物体A 的密度是多少kg/m 3。
图6
乙
甲
图7
乙
甲
练习5:如图8甲所示,底面积为80cm 2
的圆筒形容器内装有适量的液体,放在水平桌面
上;底面积为60cm 2
的圆柱形物体A 悬挂在细绳的下端,且使物体A 的下表面恰好刚与液面距离3cm 静止时,细绳对物体A 的拉力为F 1。
将物体A 向下运动5cm 时,细绳对物体A 的拉力为F 2。
然后,将物体A 继续向下运动直到A 完全浸没,如图8乙所示,物体A 静止时,细绳对物体A 的拉力为F 3,此时容器内的液面比甲图中升高了7.5cm 。
已知F 1与F 3之差为6N ,F 2
与F 3之比为6:5,不计绳重,g 取10N/kg 。
则物体A 的密度是多少kg/m 3。
图8
乙
甲。